SOLITAIRE CLOBBER PLAYED ON HAMMING GRAPHS

Paul Dorbec ${ }^{1}$
ERTE Maths a Modeler, Institut Fourier, 100 rue des Maths, 38402 GRENOBLE, France
paul.dorbec@ujf-grenoble.fr
Eric Duchêne ${ }^{2}$
ERTE Maths a Modeler, Institut Fourier
eric.duchene@ujf-grenoble.fr
Sylvain Gravier ${ }^{3}$
ERTE Maths a Modeler, Institut Fourier
sylvain.gravier@ujf-grenoble.fr

Received: 3/2/07, Revised: 4/8/08, Accepted: 4/11/08, Published: 4/17/08

Abstract

The one-player game Solitaire Clobber was introduced by Demaine et al. Beaudou et al. considered a variation called SC2. Black and white stones are located on the vertices of a given graph. A move consists in picking a stone to replace an adjacent stone of the opposite color. The objective is to minimize the number of remaining stones. The game is interesting if there is at least one stone of each color. In this paper, we investigate the case of Hamming graphs. We prove that game configurations on such graphs can always be reduced to a single stone, except for hypercubes. Nevertheless, hypercubes can be reduced to two stones.

1. Introduction and Definitions

We consider the one-player game SC2 that was introduced in [3]. This game is a variation of the game Solitaire Clobber defined by Demaine et al. in [2]. Note that both solitaire games come from the two-player game Clobber, that was created and studied in [1]. One can have a look to [4] for more information about Clobber.

The game SC2 is a solitaire game whose rules are described in the following. Initially, black and white stones are placed on the vertices of a given graph G (one per vertex), forming what we call a game configuration. A move consists in picking a stone and "clobbering" (i.e.

[^0]removing) another one of the opposite color located on an adjacent vertex. The clobbered stone is removed from the graph and is replaced by the picked one. The goal is to find a succession of moves that minimizes the number of remaining stones. A game configuration of SC2 is said to be k-reducible if there exists a succession of moves that leaves at most k stones on the board. The reducibility value of a game configuration C is the smallest integer k for which C is k-reducible.

In [3], the game was investigated on cycles and trees. It is proved that in these cases, the reducibility value can be computed in quadratic/cubic time. In this paper, we play SC2 on Hamming graphs.

Given two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$, the cartesian product $G_{1} \square G_{2}$ is the graph $G=(V, E)$ where $V=V_{1} \times V_{2}$ and $\left(u_{1} u_{2}, v_{1} v_{2}\right) \in E$ if and only if $u_{1}=v_{1}$ and $\left(u_{2}, v_{2}\right) \in E_{2}$, or $u_{2}=v_{2}$ and $\left(u_{1}, v_{1}\right) \in E_{1}$. One generally depicts such a graph with $\left|V_{2}\right|$ vertical copies of G_{1}, and $\left|V_{1}\right|$ horizontal copies of G_{2}, as shown on Fig. 1.

Figure 1: The cartesian product of two graphs G_{1} and G_{2}

A Hamming graph is a multiple cartesian product of cliques. $K_{2} \square K_{3}$ and $K_{4} \square K_{5} \square K_{2}$ are examples of Hamming graphs. Hypercubes, defined by $\square^{n} K_{2}$, constitute a well-known class of Hamming graphs.

For the convenience of the reader, we may often mix up a vertex and the stone that it supports. The label/color of a vertex will thus define the color of the stone on it. We may also say that "a vertex clobbers another one", instead of talking of the corresponding stones.

Given a game configuration C on a graph G, we say that a label/color c is rare on a subgraph S of G if there exists a unique vertex $v \in S$ such that v is labeled c. On the contrary, c is said to be common if there exist at least two vertices of this color in S. A configuration is said to be monochromatic if all the vertices have the same color. A monochromatic game configuration does not allow any move, so we now assume that a game configuration is never monochromatic.

Given v a vertex of G, the color of the stone on v will be denoted by $c(v)$. For a color c (black or white), we denote by \bar{c} the other color.

In this paper, we prove that we can reduce any game configuration (non monochromatic) on a Hamming graph to one or two stones. Moreover, we assert that we can choose the color and the location of the remaining stones. To facilitate the proofs, we make the following three definitions.

Definition We say that a graph G is strongly 1-reducible if: for any vertex v, for any arrangement of the stones on G (provided $G \backslash v$ is not monochromatic), for any color c (black or white), there exists a way to play that yields a single stone of color c on v.

A joker move consists of changing the color of any stone at any time during the game. It can be used only once.

Therefore, a graph G is strongly 1-reducible joker if: for any vertex v, for any color c, for any arrangement of the stones on G (provided $c(v)$ is not rare or $c(v)=c$), there exists a way to play that yields a single stone of color c on v, with the possible use of a joker move.

Definition A graph G is said to be strongly 2-reducible if: for any vertex v, for any arrangement of the stones on G (provided $G \backslash v$ is not monochromatic), for any two colors c and c^{\prime} (provided there exist two different vertices u and u^{\prime} such that $c(u)=c$ and $c\left(u^{\prime}\right)=c^{\prime}$), there exists a way to play that yields a stone of color c on v, and (possibly) a second stone of color c^{\prime} somewhere else.

Definition Let G be a graph, v_{i} and v_{j} two vertices of G, c and c^{\prime} two colors belonging to $\{0,1\}$. A game configuration C on G is said to be 1-reducible on v_{i} with c or $\left(1, v_{i}, c\right)$ reducible if there exists a way to play that yields only one stone of color c on G, located on v_{i}. A configuration C is said to be 2-reducible on v_{i} with c and c^{\prime} or $\left(2, v_{i}, c, c^{\prime}\right)$-reducible if there exists a way to play that yields a stone of color c on v_{i}, and (possibly) a second stone of color c^{\prime} on some other vertex. C is said to be $\left(2, v_{i}, c, v_{j}, c^{\prime}\right)$-reducible if there exists a way to play that yields a stone of color c on v_{i} and a second stone of color c^{\prime} on v_{j}.

In the next section, we solve the case of SC2 played on cliques. We prove in Proposition 1 that any clique of size at least 3 is strongly 1-reducible.

In Section 3, we play the game on hypercubes. We prove in Theorem 5 that hypercubes are both strongly 1-reducible joker and strongly 2-reducible, the proofs are intertwined. We also prove in Proposition 6 that any hypercube has a non-monochromatic configuration for which it is not 1-reducible. This somehow stresses the relevance ot Theorem 5.

Finally, in Section 4, we prove in Theorem 12 that all the Hamming graphs except hypercubes and $K_{2} \square K_{3}$ are strongly 1-reducible. To prove this, we use a slightly stronger result in Theorem 8; we prove that if G is a strongly 1-reducible graph containing at least 4 vertices, then the Cartesian product of G with any clique is strongly 1-reducible.

2. SC2 Played on Cliques

It is not very surprising that every game configuration on a clique is 1-reducible. Furthermore, we also prove that we can choose the color and the location of the single remaining stone.

Proposition 1. Cliques of size $n \geq 3$ are strongly 1-reducible.

When $n<3$, note that cliques are 1-reducible, but we can't decide where and with which color we finish.

Proof. Let C be a game configuration on $K_{n}(n \geq 3)$. Let v be a vertex of K_{n} such that $K_{n} \backslash v$ is not monochromatic. Let c be any color in $\{0,1\}$. We prove that C is $(1, v, c)$-reducible:

First assume that C contains no rare color. We consider two cases:

* if $c=c(v)$. By hypothesis, there exists a vertex w labeled $\overline{c(v)}$. Since $c(v)$ and $c(w)$ are not rare, there exist two vertices v^{\prime} and w^{\prime} such that $c\left(v^{\prime}\right)=c(v)$ and $c\left(w^{\prime}\right)=c(w)$. The succession of moves leading to a single remaining stone is the following: w clobbers v, w^{\prime} clobbers all the vertices with the label $c(v)$ except v^{\prime}, and finally, v^{\prime} clobbers all the vertices labeled $\overline{c(v)}$, and ends on v.
* if $c=\overline{c(v)}$. As previously, there exist w labeled $\overline{c(v)}$ and v^{\prime} labeled $c(v) . v^{\prime}$ clobbers all the vertices labeled $\overline{c(v)}$ except w. Then w clobbers all the vertices labeled $c(v)$ and ends on v.

Now assume that C has a rare color located on a vertex $v_{r} \neq v$. If $c=c\left(v_{r}\right)$, then it is enough to have v_{r} clobber all the vertices and finish on v. If $c=\overline{c\left(v_{r}\right)}$, have v_{r} clobber all the vertices except one (call it $v^{\prime} \neq v$) and finish on v. Then have v^{\prime} clobber v and this concludes the proof.

3. SC2 Played on Hypercubes

In this section, we study SC2 on hypercubes. We prove that these graphs are strongly 2reducible.

Let $n>2$. Note that Q_{n} is defined recursively as the product $K_{2} \square Q_{n-1}, Q_{0}$ being a single vertex. This means that Q_{n} is made of two copies Q_{n}^{l} and Q_{n}^{r} of Q_{n-1}, where each vertex of Q_{n}^{l} is adjacent to its copy in Q_{n}^{r}. Let $N=2^{n-1}$. For each $i>1$, it is well known that Q_{i} admits a Hamiltonian cycle. Denote by v_{1}, \ldots, v_{N} the vertices of Q_{n}^{l}, ordered such that $\left(v_{1}, \ldots, v_{N}\right)$ form a Hamiltonian cycle. Denote by $v_{1}^{\prime}, \ldots, v_{N}^{\prime}$ the vertices of Q_{n}^{r}, such
that v_{i} is adjacent to v_{i}^{\prime} for all i. Note that $\left(v_{1}^{\prime}, \ldots, v_{N}^{\prime}\right)$ forms a Hamiltonian cycle of Q_{n}^{r}. Here is the diagram of the hypercube Q_{n} that will be used in the rest of the paper:

Figure 2: The hypercube Q_{n}

Let v_{i} be a vertex of Q_{n}. Note that when referring to v_{i+j}, where $(i+j)$ is not in $[1, N]$, then use the appropriate subscript $i+j \pm N$ instead.

The following lemmas describe the successions of moves used to reduce a game configuration to a certain form:

Lemma 2. Let C be a game configuration on a Hamiltonian graph G with n vertices ($n>2$). Let $\left(v_{1}, \ldots, v_{n}\right)$ be the list of the vertices ordered according to a Hamiltonian cycle of G. If there exists a vertex v_{i} such that $c\left(v_{i}\right)$ is rare on G, then C is both $\left(1, v_{i \pm 1}, c\left(v_{i}\right)\right)$-reducible and $\left(1, v_{i \pm 2}, \overline{c\left(v_{i}\right)}\right)$-reducible.

Proof. The first reduction is obtained when v_{i} clobbers all the stones along the Hamiltonian cycle $\left(v_{1}, \ldots, v_{N}\right)$. According to the direction in which we move around the cycle, we end either on v_{i+1} or on v_{i-1}.

To get the second reduction, v_{i} clobbers all the stones along the Hamiltonian cycle, except the last one. This means that v_{i} finishes on v_{i+2} or v_{i-2}, and is then clobbered by v_{i+1} or v_{i-1} respectively.

Lemma 3. Let C be a game configuration on Q_{n}, with $n>3$. If there exists a rare color on Q_{n}^{r}, and if Q_{n}^{l} is not monochromatic, then there exists a way to play that yields no stones on Q_{n}^{r} and N stones on Q_{n}^{l}, both colors being common on Q_{n}^{l}. If $n=3$, there may be a rare color on Q_{n}^{l}, but we can choose its location on two distinct vertices.

Proof. Let c be the rare color on Q_{n}^{r} and denote by v_{i}^{\prime} the vertex such that $c\left(v_{i}^{\prime}\right)=c$. We consider three cases for the stones on Q_{n}^{l} :

- \bar{c} is rare on Q_{n}^{l}. Thanks to its Hamiltonian cycle and by Lemma 2, we know that Q_{n}^{r} is $\left(1, v_{i \pm 2}^{\prime}, \bar{c}\right)$-reducible. If $n>3, v_{i+2}^{\prime}$ and v_{i-2}^{\prime} are distinct vertices. Also
since \bar{c} is rare on Q_{n}^{l}, this means that either v_{i+2} or v_{i-2} is labeled with the color c. Without loss of generality, suppose that v_{i+2} is labeled c; hence we apply a $\left(1, v_{i+2}^{\prime}, \bar{c}\right)$-reduction of Q_{n}^{r}. Then v_{i+2}^{\prime} clobbers v_{i+2}, so that Q_{n}^{l} contains at least two stones of each color afterwards.
If $n=3$ and $c\left(v_{i+2}\right)=\bar{c}$, this proof is no longer valid. In that case, there are two ways to play, each of them leaving the rare color \bar{c} either on v_{i+1} (diagram 1) or on v_{i-1} (diagram 2).

diagram 1

diagram 2

Figure 3: Lemma 3: special instance of the case $n=3$

- c is rare on Q_{n}^{l}. By Lemma 2, Q_{n}^{r} is $\left(1, v_{i \pm 1}^{\prime}, c\right)$-reducible. We know that at least one of both vertices v_{i+1} and v_{i-1} has the common label \bar{c}. Without loss of generality, assume v_{i+1} does. Last, we apply a $\left(1, v_{i+1}^{\prime}, c\right)$-reduction of Q_{n}^{r}, and then we play from v_{i+1}^{\prime} to v_{i+1}.
- Both colors are common on Q_{n}^{l}. We consider the four cases for the labels of v_{i+1} and v_{i+2} :
$-c\left(v_{i+1}\right)=c$ and $c\left(v_{i+2}\right)=\bar{c}$. Use a Hamiltonian cycle of Q_{n}^{r} to have v_{i}^{\prime} clobber all the vertices except v_{i+1}^{\prime}. This operation yields two stones on Q_{n}^{r} : v_{i+1}^{\prime} labeled \bar{c}, and v_{i+2}^{\prime} labeled c. Play now from v_{i+1}^{\prime} to v_{i+1} and from v_{i+2}^{\prime} to v_{i+2}.
$-c\left(v_{i+1}\right)=\bar{c}$ and $c\left(v_{i+2}\right)=c$. If $n>3, c$ or c^{\prime} appears more than twice in Q_{n}^{l}. If it is the case of \bar{c}, then apply a $\left(1, v_{i+1}^{\prime}, c\right)$-reduction of Q_{n}^{r}, and play from v_{i+1}^{\prime} to v_{i+1}. If c appears more than twice in Q_{n}^{l}, then apply a $\left(1, v_{i+2}^{\prime}, \bar{c}\right)$-reduction of Q_{n}^{r}, and play from v_{i+2}^{\prime} to v_{i+2}. If $n=3$, there are two possible arrangements of the stones on Q_{n}^{l}. In both cases, there exists a way to play that yields a rare color on Q_{n}^{l}, with two possible locations:
$-c\left(v_{i+1}\right)=c$ and $c\left(v_{i+2}\right)=c$. If c appears more than twice in Q_{n}^{l}, then apply a $\left(1, v_{i+2}^{\prime}, \bar{c}\right)$-reduction of Q_{n}^{r}, and play from v_{i+2}^{\prime} to v_{i+2}. Then play from v_{i+2}^{\prime} to v_{i+2}. Otherwise, and if $n>3$, this means that the color \bar{c} appears more than twice, in particular on v_{i-1}. Then apply a $\left(1, v_{i+1}^{\prime}, c\right)$-reduction of Q_{n}^{r}, and play from v_{i-1}^{\prime} to v_{i-1}. If $n=3$, this implies $c\left(v_{i}\right)=c\left(v_{i-1}\right)=\bar{c}$. It then suffices to invert the order of the vertices $\left(v_{i+1}\right.$ becomes $\left.v_{i-1} \ldots\right)$ to reduce to the previous case.
$-c\left(v_{i+1}\right)=\bar{c}$ and $c\left(v_{i+2}\right)=\bar{c}$. This case is similar to the previous one.

Figure 4: Lemma 3: special instances of the case $n=3$ (2)

Lemma 4. Let C be a game configuration on Q_{n}, with $n>2$. If there exists a rare color on Q_{n}^{r}, and if Q_{n}^{l} is monochromatic, then there exists a way to play that yields no stones on Q_{n}^{r} and N stones on Q_{n}^{l}, which is not monochromatic. Also, if this operation yields a rare label on Q_{n}^{l}, we can choose its location on two distinct vertices.

Proof. Let c be the rare color on Q_{n}^{r} and denote by v_{i}^{\prime} the vertex such that $c\left(v_{i}^{\prime}\right)=c$. We consider two cases about Q_{n}^{l} :

- All the vertices of Q_{n}^{l} have the color c. Use a Hamiltonian cycle of Q_{n}^{r} to have v_{i}^{\prime} clobber all the vertices except v_{i+1}^{\prime} and v_{i+2}^{\prime}. It ends on v_{i+3}^{\prime}. Then v_{i+2}^{\prime} clobbers v_{i+3}^{\prime}. This operation yields two stones labeled \bar{c} on v_{i+1}^{\prime} and v_{i+3}^{\prime}. Then play from v_{i+1}^{\prime} to v_{i+1} and from v_{i+3}^{\prime} to v_{i+3}. Both colors now appear at least twice on Q_{n}^{l}.
- All the vertices of Q_{n}^{l} have the color \bar{c}. By Lemma 2, we can apply a $\left(1, v_{i \pm 1}^{\prime}, c\right)$ reduction of Q_{n}^{r}. Then play from v_{i+1}^{\prime} or v_{i-1}^{\prime} to the corresponding vertex in Q_{n}^{l}. In that case, the color c is rare on Q_{n}^{l}, but it can be located either on v_{i+1} or on v_{i-1}.

We now give the main result of this section about the "strong reducibility" of the hypercube.

Theorem 5. Hypercubes are strongly 1-reducible joker and strongly 2-reducible.

Of course, the most interesting property concerns the 2-reducibility of the hypercube. However, this result is tightly linked to the strong 1-reducibilty joker. One can notice
that the conditions defining the strong 2-reduction and the strong 1-reduction joker are a bit different. Indeed, the "vertex" condition of strong 2-reducibility (i.e. $G \backslash v$ must not be monochromatic) is contained in the condition of strong 1-reducibility joker. But monochromatic hypercubes and hypercubes with a rare color on v_{r} such that $c=c\left(v_{r}\right)$ are also strongly 1-reducible joker, although they are not strongly 2 -reducible. This explains why the conditions of strong 1-reducibility joker are "larger".

Proof. We proceed via induction on the dimension of the hypercube. The reader can verify that these results are true on the hypercube Q_{2} (the square). Note that only four arrangements of the stones must be considered:

Assume that the theorem is true for the hypercube Q_{n-1} and consider the hypercube Q_{n}. Q_{n} is strongly 1-reducible joker.

Without loss of generality, assume that the vertex that will support the last stone is v_{1}. Let c be any color in $\{0,1\}$. We consider any arrangement of the stones on Q_{n} such that $c\left(v_{1}\right)$ is not rare or $c\left(v_{1}\right)=c$. Our objective consists in finding a way to yield a single stone of color c on v_{1}. We are allowed to use a joker. Five cases are considered:

1. Suppose Q_{n}^{l} is $\left(1, v_{1}, c\right)$-reducible joker, and the joker is used to change the color of some vertex v_{j} from the color $d \in\{0,1\}$ to \bar{d}. Also, we suppose that Q_{n}^{r} is $\left(1, v_{j}^{\prime}, \bar{d}\right)$-reducible joker.
We first apply the $\left(1, v_{j}^{\prime}, \bar{d}\right)$-reduction joker on Q_{n}^{r}, which yields a stone of color \bar{d} on v_{j}^{\prime}. We may have used a joker to do this. Then we apply a $\left(1, v_{1}, c\right)$-reduction joker on Q_{n}^{l} with a small modification: instead of using the joker on v_{j}, we play from v_{j}^{\prime} to v_{j}. This move is indeed equivalent to the use of the joker, since v_{j}^{\prime} has the color \bar{d} at this moment. At the end of the play, the joker has been used at most once.
2. Q_{n}^{l} is $\left(1, v_{1}, c\right)$-reducible joker, and the joker is used to change the color of some vertex v_{j} from the color $d \in\{0,1\}$ to \bar{d}. Moreover, Q_{n}^{r} is not $\left(1, v_{j}^{\prime}, \bar{d}\right)$-reducible joker. From the conditions of the strong 1-reduction joker, this means that $c\left(v_{j}^{\prime}\right)=d$, and $c\left(v_{i}^{\prime}\right)=\bar{d}$ for all $i \neq j$.
Since d is rare on Q_{n}^{r}, we can apply both Lemma 3 and 4. If this yields a rare color on Q_{n}^{l}, we choose a location different from v_{1} for it. Hence $c\left(v_{1}\right)$ is never rare and we can apply a $\left(1, v_{1}, c\right)$-reduction joker on Q_{n}^{l}.
3. Q_{n}^{l} is $\left(1, v_{1}, c\right)$-reducible joker, but the joker is not used. We consider any arrangement of the stones on Q_{n}^{r}.
We consider a succession of moves resulting from a $\left(1, v_{1}, c\right)$-reduction of Q_{n}^{l}. In this sequence, there exists a vertex v_{i} that clobbers at least two other vertices before being
(or not) clobbered. Indeed, if each vertex clobbers at most once, then Q_{n}^{l} would be a star, which is not the case. Denote by v_{j} and v_{k} the first two vertices clobbered by v_{i}. When the moves from v_{i} to v_{j} and then to v_{k} are made, let y be the color of v_{i}, and \bar{y} the color of v_{j} and v_{k}. We consider four cases about the colors of v_{i}^{\prime} and v_{j}^{\prime} :

Figure 5: Q_{n}^{l} is 1-reducible on v_{1} with c

- CASE 1: $c\left(v_{i}^{\prime}\right)=\bar{y}$ and $c\left(v_{j}^{\prime}\right)=y$. Apply a $\left(1, v_{1}, c\right)$-reduction of Q_{n}^{l}, and when the time comes to play from v_{i} to v_{j}, play to v_{i}^{\prime} instead. At this moment, y is not rare on Q_{n}^{r}, so we can apply a $\left(1, v_{j}^{\prime}, y\right)$-reduction joker on Q_{n}^{r}. Play then from v_{j}^{\prime} to v_{j} and continue the $\left(1, v_{1}, c\right)$-reduction of Q_{n}^{l}.
- CASE 2: $c\left(v_{i}^{\prime}\right)=c\left(v_{j}^{\prime}\right)=\bar{y}$. Begin a $\left(1, v_{1}, c\right)$-reduction of Q_{n}^{l} up to the move from v_{j} to v_{k} (not included). Play to v_{j}^{\prime} instead. Since $c\left(v_{k}^{\prime}\right)$ is not rare, apply a $\left(1, v_{k}^{\prime}, y\right)$-reduction joker on Q_{n}^{r}. Then play from v_{k}^{\prime} to v_{k} and continue the $\left(1, v_{1}, c\right)$-reduction of Q_{n}^{l}.
- CASE 3: $c\left(v_{i}^{\prime}\right)=c\left(v_{j}^{\prime}\right)=y$. Apply a $\left(1, v_{1}, c\right)$-reduction of Q_{n}^{l} up to the move from v_{i} to v_{j} (not included). Instead of it, have v_{j} clobber v_{i} and then v_{i}^{\prime}. The rest of the play is identical to the previous case.
- CASE 4: $c\left(v_{i}^{\prime}\right)=y$ and $c\left(v_{j}^{\prime}\right)=\bar{y}$. If $c\left(v_{k}^{\prime}\right)=y$, then play as in the second case. Otherwise, play as in the third case.

4. Q_{n}^{l} is not $\left(1, v_{1}, c\right)$-reducible joker, and Q_{n}^{r} is $\left(2, v_{1}^{\prime}, c, \bar{c}\right)$-reducible.

This implies that $c\left(v_{1}\right)=\bar{c}$ and $c\left(v_{i}\right)=c$ for all $i>1$. If Q_{n}^{r} is $\left(1, v_{1}^{\prime}, c\right)$-reducible, we apply this reduction and then play from v_{1}^{\prime} to v_{1}. Q_{n}^{l} becomes monochromatic and the $\left(1, v_{1}, c\right)$-reduction joker can now be applied on it. If Q_{n}^{r} is $\left(2, v_{1}^{\prime}, c, \bar{c}\right)$-reducible, then choose the second remaining stone of color \bar{c}. Let v_{j}^{\prime} be the vertex on which this stone is left. Play now from v_{1}^{\prime} to v_{1}, and from v_{j}^{\prime} to v_{j}. Q_{n}^{l} now satisfies the right conditions to apply a $\left(1, v_{1}, c\right)$-reduction joker.
5. Q_{n}^{l} is not $\left(1, v_{1}, c\right)$-reducible joker, and Q_{n}^{r} is not $\left(2, v_{1}^{\prime}, c, \bar{c}\right)$-reducible.

There are four possible arrangements of the stones on Q_{n} corresponding to these conditions:

- The arrangement (A) does not have to be considered. Indeed, this arrangement is not allowed by the conditions of the 1-reduction joker, since $c\left(v_{1}\right)$ is rare on Q_{n} and $c\left(v_{1}\right) \neq c$.

Figure 6: Strong 1-reducibility joker: case 5

- If the arrangement of the stones is (B), have v_{1}^{\prime} clobber all the vertices of Q_{n}^{r} and end on v_{N}^{\prime}. Then v_{N}^{\prime} clobbers v_{N}, and the conditions of a $\left(1, v_{1}, c\right)$ reduction joker are fulfilled on Q_{n}^{l}.
- If the arrangement of the stones is (C), have v_{i} clobber v_{i}^{\prime} for all $2<i<N$. Apply now a $\left(1, v_{1}^{\prime}, \bar{c}\right)$-reduction joker of Q_{n}^{r}. Finally, v_{1} is clobbered by v_{2}, v_{1}^{\prime} and v_{N} in this order.
- If the stones are placed as in (D), use Lemma 2 to apply a $\left(1, v_{N-1}^{\prime}, \bar{c}\right)$ reduction of Q_{n}^{r}. Then v_{N-1}^{\prime} clobbers v_{N-1}, and we can apply a $\left(1, v_{1}, c\right)$ reduction joker of Q_{n}^{l}.

Q_{n} is strongly 2-reducible.

Without loss of generality, assume that the vertex that will support the last stone is v_{1}. We consider any arrangement of the stones on Q_{n} such that $Q_{n} \backslash v_{1}$ is not monochromatic. Let c and c^{\prime} be any two colors in $\{0,1\}$ such that there are two distinct vertices of Q_{n} labeled with these values. Our objective consists in finding a way to leave a stone of color c on v_{1}, and possibly another one of color c^{\prime} somewhere else. We consider eleven cases, starting with those where Q_{n}^{r} is monochromatic (cases 1 to 5):

1. Q_{n}^{r} is monochromatic of color $y \in\{0,1\}$, and Q_{n}^{l} is $\left(1, v_{1}, c\right)$-reducible. Consider a succession of moves resulting from a $\left(1, v_{1}, c\right)$-reduction of Q_{n}^{l}. First suppose that there exists a move from a stone of color \bar{y} on some vertex v_{i} clobbering a stone of color y on the vertex v_{j}. Replace this move by having v_{i} clobber v_{i}^{\prime}. There exists an Hamiltonian cycle of Q_{n}^{r} where v_{i}^{\prime} and v_{j}^{\prime} are consecutive. Have v_{i}^{\prime} clobber all the stones of Q_{n}^{r} and end on v_{j}^{\prime} with the color \bar{y}. Finally v_{j}^{\prime} clobbers v_{j}, and we can continue the $\left(1, v_{1}, c\right)$-reduction of Q_{n}^{l}.
Suppose now that there exist no moves clobbering a vertex labeled y when applying a $\left(1, v_{1}, c\right)$-reduction of Q_{n}^{l}. Necessarily this means that $c=y$. Also, this implies that all the vertices of Q_{n}^{l} are labeled \bar{y}, except one, namely v_{i}. The $\left(1, v_{1}, c\right)$-reduction of Q_{n}^{l} thus consists in having v_{i} clobber all the vertices of Q_{n}^{l} and end on v_{1}. Without loss of generality, suppose that v_{2} is the penultimate vertex which is clobbered when
applying the $\left(1, v_{1}, c\right)$-reduction of Q_{n}^{l}. The following diagram shows how to apply the $\left(1, v_{1}, c\right)$-reduction of Q_{n} :

Figure 7: Strong 2-reducibility: specific instance of case 1
2. Q_{n}^{r} is monochromatic of color $y \in\{0,1\}$, and Q_{n}^{l} is $\left(2, v_{1}, c, \bar{y}\right)$-reducible.

If Q_{n}^{l} is $\left(1, v_{1}, c\right)$-reducible, then we are in case 1 . Suppose then that the reduction yields two stones, the second one being located on some vertex v_{i}. In that case, apply a $\left(2, v_{1}, c, v_{i}, \bar{y}\right)$-reduction of Q_{n}^{l} and play from v_{i} to v_{i}^{\prime}. Then use Lemma 2 to yield a stone of color c^{\prime} either on v_{i+1}^{\prime} (if $c^{\prime}=\bar{y}$) or on v_{i+2}^{\prime} (if $c^{\prime}=y$).

In cases 3,4 and 5 , we suppose that Q_{n}^{l} is not $\left(2, v_{1}, c, \bar{y}\right)$-reducible. If Q_{n}^{l} is not $\left(2, v_{1}, c, \bar{y}\right)$-reducible, then either $Q \backslash v_{1}$ is monochromatic, or $c=\bar{y}$ and \bar{y} is rare in Q_{n}^{l}. But from our initial assumption that $Q_{n} \backslash v_{1}$ is not monochromatic, we know that there is at least one stone colored in \bar{y} in $Q \backslash v_{1}$. So either $Q \backslash v_{1}$ is monochromatic of color \bar{y} (see cases 4 and 5), or \bar{y} is rare in Q_{n}^{l} and $c\left(v_{1}\right) \neq \bar{y}$ (see case 3).
3. Q_{n}^{r} is monochromatic of color $y \in\{0,1\}$, and \bar{y} is rare on Q_{n}^{l} with $c\left(v_{1}\right) \neq \bar{y}$. If Q_{n}^{l} is not $\left(2, v_{1}, c, \bar{y}\right)$-reducible, then $c=\bar{y}$ and $c^{\prime}=y$ (by our initial assumption that there are two distinct vertices of color c and c^{\prime} respectively in Q_{n}). Let v_{i} be the vertex of Q_{n}^{l} such that $c\left(v_{i}\right)=\bar{y}$. See Fig. 8 for the diagram of such a configuration.
Since $c=\bar{y}$ and $c^{\prime}=y, Q_{n}^{l}$ is $\left(2, v_{1}, c, c^{\prime}\right)$-reducible. Consider the first move of this 2-reduction: it is a move from v_{i} to some v_{j} since $c\left(v_{i}\right)$ is rare. Instead of playing it, play from v_{i} to v_{i}^{\prime}, and then have v_{i}^{\prime} clobber all the stones of Q_{n}^{r} and end on v_{j}^{\prime}. Then play from v_{j}^{\prime} to v_{j} and continue the $\left(2, v_{1}, c, c^{\prime}\right)$-reduction of Q_{n}^{l} to conclude this part of the proof.
4. Q_{n}^{r} is monochromatic of color $y \in\{0,1\}$ and $c\left(v_{1}\right)=y$ is rare on Q_{n}^{l} (see Fig. 9).

We first consider the case $c=y$. For all $2 \leq i \leq N$, play from v_{i} to v_{i}^{\prime}. Then use an Hamiltonian cycle of Q_{n}^{r} to yield the second stone of the right color c^{\prime} (on v_{N} or v_{N-1} according to c^{\prime}) after having clobbered all the other vertices of Q_{n}^{r}.

Figure 8: Strong 2reducibility: case 3

Figure 9: Strong 2reducibility: case 4

If $c=\bar{y}$, then first v_{N} clobbers v_{1}. Then v_{i} clobbers v_{i}^{\prime} for all $3 \leq i \leq N-1$. We apply a $\left(2, v_{1}^{\prime}, y, c^{\prime}\right)$-reduction of Q_{n}^{r}. The last two moves are v_{1}^{\prime} to v_{1}, and v_{2} to v_{1}.
5. Q_{n}^{r} is monochromatic of color $y \in\{0,1\}$ and Q_{n}^{l} is monochromatic of color \bar{y}.

We first consider the case when $c=y$. Play from v_{N} to v_{N}^{\prime} and from v_{N-1}^{\prime} to v_{N-1}. Then use a Hamiltonian cycle of Q_{n}^{r} to clobber all its vertices and yield a stone of color c^{\prime} on Q_{n}^{r}. Finally, have v_{N-1} clobber all the stones of Q_{n}^{l} and end on v_{1}.
If $c=\bar{y}$, play from v_{1}^{\prime} to v_{1}, and then from v_{2} to v_{1}. Have v_{i} clobber v_{i}^{\prime} for all $2<i \leq N$. Use a Hamiltonian cycle to reduce Q_{n}^{r} to a single stone of color c^{\prime}.
In the next cases, we suppose that Q_{n}^{r} is not monochromatic.
6. Q_{n}^{l} is $\left(1, v_{1}, c\right)$-reducible, and Q_{n}^{r} has a rare color.

Apply a $\left(1, v_{1}, c\right)$-reduction of Q_{n}^{l} and use a Hamiltonian cycle to reduce Q_{n}^{r} to a single stone of color c^{\prime} on v_{i+1}^{\prime} or v_{i+2}^{\prime}.
7. Q_{n}^{l} is $\left(1, v_{1}, c\right)$-reducible and both colors are common on Q_{n}^{r}.

We consider a sequence of moves resulting from a $\left(1, v_{1}, c\right)$-reduction of Q_{n}^{l}. In this sequence, there exists a vertex v_{i} that clobbers at least two other vertices before being (or not) clobbered. Denote by v_{j} and v_{k} the first two vertices clobbered by v_{i}. When considering the moves from v_{i} to v_{j} and then to v_{k}, let y be the color of v_{i}, and \bar{y} the color of v_{j} and v_{k}. We consider four cases according to the colors of v_{i}^{\prime} and v_{j}^{\prime} :

- CASE 1: $c\left(v_{i}^{\prime}\right)=\bar{y}$ and $c\left(v_{j}^{\prime}\right)=y$. Apply a $\left(1, v_{1}, c\right)$-reduction of Q_{n}^{l} until the move from v_{i} to v_{j} (not included). Play now from v_{i} to v_{i}^{\prime}, and from v_{j} to v_{j}^{\prime} instead. After this operation, both colors are still common on Q_{n}^{r}, so that we can apply a $\left(2, v_{k}^{\prime}, y, c^{\prime}\right)$-reduction. Then play from v_{k}^{\prime} to v_{k}, and continue the $\left(1, v_{1}, c\right)$-reduction of Q_{n}^{l}.
- CASE 2: $c\left(v_{i}^{\prime}\right)=c\left(v_{j}^{\prime}\right)=\bar{y}$. Apply a $\left(1, v_{1}, c\right)$-reduction of Q_{n}^{l}, and when the time comes to play from v_{j} to v_{k}, play to v_{j}^{\prime} instead. Since y is not rare on

Figure 10: Strong 2-reducibility: case 7
Q_{n}^{r} after this operation, apply a $\left(2, v_{k}^{\prime}, y, c^{\prime}\right)$-reduction of Q_{n}^{r}. After this, play from v_{k}^{\prime} to v_{k} and continue the ($1, v_{1}, c$)-reduction of Q_{n}^{l}.

- CASE 3: $c\left(v_{i}^{\prime}\right)=c\left(v_{j}^{\prime}\right)=y$. Apply a $\left(1, v_{1}, c\right)$-reduction of Q_{n}^{l} until the move from v_{i} to v_{j} (not included). Instead of it, have v_{j} clobber v_{i} and then v_{i}^{\prime}. If y is not rare on Q_{n}^{r} after this operation, then apply a $\left(2, v_{k}^{\prime}, y, c^{\prime}\right)$-reduction of Q_{n}^{r}. If y is rare on Q_{n}^{r}, then use a Hamiltonian path of Q_{n}^{r} starting on v_{j}^{\prime} and ending on v_{k}^{\prime} to yield a stone of color y on v_{k}^{\prime}.
After this, play from v_{k}^{\prime} to v_{k} and continue the $\left(1, v_{1}, c\right)$-reduction of Q_{n}^{l}.
- CASE 4: $c\left(v_{i}^{\prime}\right)=y$ and $c\left(v_{j}^{\prime}\right)=\bar{y}$. If the color \bar{y} appears more than twice in Q_{n}^{r}, or if $c\left(v_{k}^{\prime}\right)=y$, then play as in the second case. Otherwise, this means that $c\left(v_{j}^{\prime}\right)=c\left(v_{k}^{\prime}\right)=\bar{y}$ and the other vertices of Q_{n}^{r} have the color y. Play thus as in the third case.

In the next two cases, we suppose that $c\left(v_{1}\right)$ is not rare on Q_{n}^{l} (which may be monochromatic). Hence Q_{n}^{l} is ($1, v_{1}, c$)-reducible joker. If this reduction does not use the joker, then refer to case 6 or 7 . Otherwise, assume that the joker is used to change the color of some vertex v_{j} from d to \bar{d}.
8. If Q_{n}^{r} is $\left(2, v_{j}^{\prime}, \bar{d}, c^{\prime}\right)$-reducible, we first apply a $\left(2, v_{j}^{\prime}, \bar{d}, c^{\prime}\right)$-reduction of Q_{n}^{r}. We then apply a $\left(1, v_{1}, c\right)$-reduction joker of Q_{n}^{l}, and when the time comes to use the joker, we play from v_{j}^{\prime} to v_{j} instead.
9. Suppose that Q_{n}^{r} is not $\left(2, v_{j}^{\prime}, \bar{d}, c^{\prime}\right)$-reducible. By our earlier assumption, Q_{n}^{r} is not monochromatic, so this can occur in only three kinds of arrangements of the stones on Q_{n}^{r}, all with a rare color. The case when Q_{n}^{l} is monochromatic is studied in case 10, we assume in this section that Q_{n}^{l} is not monochromatic.

- $c\left(v_{j}^{\prime}\right) \neq \bar{d}, \bar{d}$ is rare on Q_{n}^{r} and $c^{\prime}=\bar{d}$. If $n>3$, then use Lemma 3 to empty Q_{n}^{r} and yield N stones on Q_{n}^{l} where both colors are common. Then we can apply a $\left(2, v_{1}, c, c^{\prime}\right)$-reduction of Q_{n}^{l}.
If $n=3$, the lemma can not be used. We thus have to consider all the configurations on Q_{3} satisfying these conditions. Figure 11 details these five configurations (the final colors c and c^{\prime} are detailed under each diagram):
- $c\left(v_{j}^{\prime}\right)=\bar{d}$, and \bar{d} is rare on Q_{n}^{r}. If $n>3$, we play as in the previous case.

When $n=3$, here are the configurations that must be considered:

Figure 11: Case 9: arrangements on $Q_{3}(1)$

Figure 12: Case 9: arrangements on $Q_{3}(2)$

- d is rare on Q_{n}^{r} and $c\left(v_{j}^{\prime}\right)=d$. If $n>3$, we play as in the previous case. If $n=3$, here are the configurations that must be considered:

10. Assume that $c\left(v_{1}\right)=\bar{y}$ is rare on Q_{n}^{l} or that Q_{n}^{l} is monochromatic, and that Q_{n}^{r} has a rare label. This induces four possible cases:

- CASE 1: We suppose that $c\left(v_{1}\right)=\bar{y}$ is rare on Q_{n}^{l} and Q_{n}^{r}. Let v_{i}^{\prime} be the vertex such that $c\left(v_{i}^{\prime}\right)=\bar{y}$. Either v_{i+1}^{\prime} or v_{i-1}^{\prime} (or both) is different from v_{1}^{\prime}. Without loss of generality, assume v_{i+1}^{\prime} is. Apply a $\left(1, v_{i+1}^{\prime}, \bar{y}\right)$-reduction of Q_{n}^{r} in the way of Lemma 2. Then play from v_{i+1}^{\prime} to v_{i+1}. Both colors are now common on Q_{n}^{l}, which becomes $\left(2, v_{1}, c, c^{\prime}\right)$-reducible.
- CASE 2: $c\left(v_{1}\right)=\bar{y}$ is rare on Q_{n}^{l} and y is rare on some vertex v_{i}^{\prime} of Q_{n}^{r}. By Lemma 2, apply a $\left(1, v_{i \pm 2}^{\prime}, \bar{y}\right)$-reduction of Q_{n}^{r} (choose to finish on a vertex different from v_{1}^{\prime}). Play then as in the previous case. This operation is not possible if $n=3$ and when the arrangement of the stones is the following:

Figure 13: Case 9: arrangements on Q_{3} (3)

Figure 14: Possible arrangements in case 10

Figure 15: Special instance of the case 10.2

In that case, if $\left(c, c^{\prime}\right) \neq(y, y)$, then consider the following succession of moves: v_{i+1}^{\prime} to v_{i+1}, v_{i}^{\prime} to $v_{2}^{\prime}, v_{1}^{\prime}$ to $v_{2}^{\prime}, v_{2}^{\prime}$ to v_{2}. Use then a Hamiltonian cycle of Q_{n}^{l} to conclude. If $\left(c, c^{\prime}\right)=(y, y)$, then play like this: Use a Hamiltonian cycle of Q_{n}^{r} to apply a $\left(1, v_{1}^{\prime}, \bar{y}\right)$-reduction. Then move from v_{2} to v_{1}, from v_{1}^{\prime} to v_{1}, and from v_{N} to v_{1}.

- CASE 3: Q_{n}^{l} is monochromatic of color y and \bar{y} is rare on some v_{i}^{\prime} of Q_{n}^{r}. This case is identical to the first case (note that $c=c^{\prime}=\bar{y}$ is not allowed since \bar{y} is rare on Q_{n}).
- CASE 4: Q_{n}^{l} is monochromatic of color y and y is rare on some v_{i}^{\prime}. Have v_{i}^{\prime} clobber all the vertices of Q_{n}^{r} except v_{i+1}^{\prime} and v_{i+2}^{\prime}, and end on v_{i+3}^{\prime}. Then play from v_{i+2}^{\prime} to v_{i+3}^{\prime}, from v_{i+3}^{\prime} to v_{i+3}, and from v_{i+1}^{\prime} to v_{i+1}. All the stones
of Q_{n}^{r} have been removed and both colors are now common on Q_{n}^{l}. Apply now a $\left(2, v_{1}, c, c^{\prime}\right)$-reduction of Q_{n}^{l}.

11. Assume that $c\left(v_{1}\right)=\bar{y}$ is rare on Q_{n}^{l} and that both colors are common on Q_{n}^{r}.

If Q_{n}^{r} is $\left(1, v_{N-1}^{\prime}, \bar{y}\right)$-reducible, then apply this reduction and move from v_{N-1}^{\prime} to v_{N-1}. Both colors are now common on Q_{n}^{l}, and we can conclude to the right result.

Otherwise, Q_{n}^{r} is 2-reducible on v_{N-1}^{\prime} with \bar{y}, and \bar{y} on some other vertex called v_{i}^{\prime}. Apply this reduction. If $v_{i}^{\prime} \neq v_{1}^{\prime}$, move from v_{N-1}^{\prime} to v_{N-1}, and from v_{i}^{\prime} to v_{i}. If $n>3$, then both colors are common on Q_{n}^{l}, and we can conclude the proof. If $n=3$, then y is rare on Q_{n}^{l}, and located either on v_{2}, or on v_{N}. Clobbering along the Hamiltonian cycle of Q_{n}^{l} permits a 2-reduction.
If $v_{i}^{\prime}=v_{1}^{\prime}$, we distinguish two cases. If $c=y$, then play from v_{2} to v_{1}, v_{1}^{\prime} to v_{1} and v_{N} to v_{1}. Then have v_{N-1}^{\prime} clobber v_{N-1} and follow a Hamiltonian cycle of Q_{n}^{l} to leave the last stone of color c^{\prime}. If $c=\bar{y}$, then play from v_{N} to v_{1}, and from v_{1}^{\prime} to v_{1}. Have v_{N-1}^{\prime} clobber v_{N-1} and use a Hamiltonian cycle of Q_{n}^{l} to leave the last stone of color c^{\prime}.

This theorem ensures that hypercubes are 2-reducible. Besides, as next proposition shows, non 1-reducible configurations exist. We use to prove it the invariant δ given by Demaine et al. in [2], defined below.

Proposition 6. For each integer n, there exists a non-monochromatic configuration on Q_{n} which is not 1-reducible.

Proof. We prove this result thanks to the invariant defined by Demaine et al. in [2]. On a bipartite graph G, vertices of both partitions are respectively labeled ' 0 ' and ' 1 '. Now consider a game configuration C of Solitaire Clobber on G, with stones labeled ' 0 ' and ' 1 '. A stone is said to be "clashing" if its label differs from the label of the vertex it occupies. Denote by $\delta(C)$ the following quantity:

$$
\delta(C)=\text { number of stones plus number of clashing stones. }
$$

In their paper, Demaine et al. proved that $\delta(C)(\bmod 3)$ never changes during the game.

Let $n>1$ and consider $Q_{n}=Q_{n-1} \square K_{2}$. As previously, denote by Q_{n}^{l} and Q_{n}^{r} both copies of Q_{n-1}. Hypercubes are bipartite graphs. Choose a bipartition of Q_{n} such that half the vertices of Q_{n}^{l} are labeled ' 0 ', and the other ones are labeled ' 1 '. Ditto for Q_{n}^{r}. Now choose an arrangement of the stones on Q_{n} such that all the stones labeled '0' belong to Q_{n}^{l}, and all the stones labeled ' 1 ' belong to Q_{n}^{r}. In that case, we have

$$
\delta(C)=2^{n}+2^{n-1}=3 \cdot 2^{n-1}
$$

Hence $\delta(C)(\bmod 3)=0$. Since a single stone configuration never satisfies $\delta(C)(\bmod 3)=0$ (see [2]), this concludes the proof.

Proposition 6 shows that our result is sharp. Nevertheless, it is still an open problem to determine if a given configuration in a hypercube satisfying $\delta=1$ is 1 -reducible.

4. On the Other Hamming Graphs

Hypercubes are strongly 2-reducible. In this section, we prove that almost all the other Hamming graphs are strongly 1-reducible. This induction is initialized by Lemmas 10 and 11 , and the property is proved to be hereditary by Theorem 8.

In the following, we prove that the cartesian product of a strongly 1-reducible graph G with a clique K_{n} is strongly 1-reducible. This product contains n copies of G, that we denote by G_{1}, \ldots, G_{n}. For any vertex v of G, we denote by v_{i} the corresponding vertex in the copy G_{i}. Then, denote by v_{1} any vertex of G_{1}.
Lemma 7. Let G be a strongly 1-reducible graph containing at least 4 vertices. $K_{2} \square G$ is strongly 1-reducible.

Proof. Let G be a strongly 1-reducible graph with at least 4 vertices. Without loss of generality, assume that the vertex on which we will leave the last stone is v_{1}. Let c be any color in $\{0,1\}$. We consider any arrangement of the stones on $K_{2} \square G$ such that $K_{2} \square G \backslash v_{1}$ is not monochromatic. Let us prove that $K_{2} \square G$ is $\left(1, v_{1}, c\right)$-reducible. We split the problem into three cases.

1. G_{2} is not monochromatic.

Since G is of size at least 4, there exist 2 vertices of the same color in $G_{1} \backslash v_{1}$. We denote them by a_{1} and b_{1}. Similarly, $c\left(a_{2}\right)$ or $c\left(b_{2}\right)$ (or both) is common in G_{2}. Without loss of generality, we suppose $c\left(a_{2}\right)$ is. One applies a $\left(1, a_{2}, \overline{c\left(a_{1}\right)}\right)$-reduction of G_{2}, and then have a_{2} clobber $a_{1} . G_{2}$ is now empty. a_{1} and b_{1} are now of different colors on G_{1}, so we can apply a $\left(1, v_{1}, c\right)$-reduction of G_{1}.
2. G_{2} is monochromatic of color y and $G_{1} \backslash v_{1}$ is not monochromatic.

This means that G_{1} is $\left(1, v_{1}, c\right)$-reducible. We consider two cases:

- Suppose that when one applies a $\left(1, v_{1}, c\right)$-reduction of G_{1}, there exists a vertex a_{1} colored in \bar{y} clobbering another vertex b_{1} of color y. We then choose to apply this reduction, and when the time comes to play from a_{1} to b_{1}, play to a_{2} instead. We then apply a $\left(1, b_{2}, \bar{y}\right)$-reduction of $Q_{2} . b_{2}$ then clobbers b_{1} and we can continue the $\left(1, v_{1}, c\right)$-reduction of G_{1}.
- Otherwise, there is exactly one vertex a_{1} colored in y in G_{1}. Since there are at least 4 vertices in G_{1}, a_{1} has to clobber consecutively 2 vertices during the ($1, v_{1}, c$)reduction of G_{1}. Denote them by b_{1} and c_{1}. We replace these two consecutive moves by these ones: b_{1} clobbers a_{1} and then a_{2}. We then apply a $\left(1, c_{2}, y\right)$ reduction of G_{2}. It finally suffices to play from c_{2} to c_{1}, and continue the $\left(1, v_{1}, c\right)$ reduction of G_{1}.

3. G_{2} is monochromatic of color y and $G_{1} \backslash v_{1}$ is monochromatic.

Since $K_{2} \square G \backslash v_{1}$ is not monochromatic, $G_{1} \backslash v_{1}$ is necessarily colored \bar{y}. Let a_{1} be any vertex of G_{1} different from v_{1}. Act now as if a_{1} was colored y. We can thus consider a ($1, v_{1}, c$)-reduction of G_{1}. The first step of such a reduction would be " a_{1} clobbers some vertex b_{1}." We use this reduction, replacing this step by " a_{1} (which is actually colored \bar{y}) clobbers a_{2}, then we do a $\left(1, b_{2}, y\right)$-reduction of G_{2}, followed by b_{2} clobbers b_{1} ".

Theorem 8. Let G be a strongly 1-reducible graph containing at least 4 vertices. Then for any positive integer n, $K_{n} \square G$ is strongly 1-reducible.

Proof. Let G be a strongly 1-reducible graph with at least 4 vertices. We prove the theorem by induction on n. If $n=2$, see Lemma 7 . Suppose $n \geq 3$ and $K_{n-1} \square G$ is strongly 1reducible. Without loss of generality, assume that the vertex on which we will leave the last stone is v_{1}. Let c be any color in $\{0,1\}$. We consider any arrangement of the stones on $K_{2} \square G$ such that $K_{2} \square G \backslash v_{1}$ is not monochromatic. Let us give a ($1, v_{1}, c$)-reduction of $K_{n} \square G$.

We consider 3 different cases:

1. There exists $i \in[2 \ldots n]$ such that G_{i} is not monochromatic.

Since G contains at least 4 vertices, there are 2 vertices a_{i} and b_{i} such that $G_{i} \backslash\left\{a_{i}, b_{i}\right\}$ is not monochromatic. For the same reasons, in any other copy $G_{j}, c\left(a_{j}\right)$ or $c\left(b_{j}\right)$ (or both) is not rare. Without loss of generality, we can suppose that $c\left(a_{j}\right)$ is common on G_{j}. Start by applying a $\left(1, a_{i}, \overline{c\left(a_{j}\right)}\right)$-reduction of G_{i}, and then play from a_{i} to a_{j}. We can proceed with a $\left(1, v_{1}, c\right)$-reduction of the remaining non monochromatic $K_{n-1} \square G$.
2. For all $i \in[2 \ldots n], G_{i}$ is monochromatic of color y.

If G_{n} is deleted from the graph, then the configuration is $\left(1, v_{1}, c\right)$-reductible according to the induction hypothesis. In this reduction, there exists a move from some a_{i} to some b_{i} of color y, where $1<i<n$. When considering the graph with G_{n}, we apply the $\left(1, v_{1}, c\right)$-reduction as if G_{n} was not there. And when the time comes to play from a_{i} to b_{i}, we play to a_{n} instead. We then do a $\left(1, b_{n}, \bar{y}\right)$-reduction of G_{n} and have b_{n} clobber b_{i}. We can finally continue the execution of the $\left(1, v_{1}, c\right)$-reduction.
3. For all $i \in[2 \ldots n], G_{i}$ is monochromatic, but all the copies do not have the same color.
Let y be the color of some vertex of $G_{1} \backslash v_{1}$. Let $G_{i}(i>1)$ be a copy of color y and $G_{j}(j>1)$ a copy of color \bar{y}. We start by having all the vertices of G_{j} clobber the corresponding vertices of G_{i}. Hence there remains a $K_{n-1} \square G$ where $K_{n-1} \square G \backslash v_{1}$ is not monochromatic. We can apply the induction hypothesis to conclude the proof.

With these results, we can assert that any Hamming graph containing a K_{4} is strongly 1-reducible. What about Hamming graphs that are the product of K_{2} and K_{3} only?

We begin by studying configurations on $K_{2} \square K_{3}$. Such a graph will be considered as two adjacent copies G_{1} and G_{2} of K_{3}.

Lemma 9. Let $G=K_{3} \square K_{2}$ and $i \in\{1,2\}$. For any vertex a_{i} of G, for any color $c \in\{0,1\}$ and for any configuration C on G such that: (i) $c\left(a_{i}\right)$ is not rare on G_{i} and (ii) $K_{3} \square K_{2} \backslash a_{i}$ is not monochromatic, C is $\left(1, a_{i}, c\right)$-reducible.

Proof. For $i \in\{1,2\}$, let v_{i}, u_{i}, and w_{i} be the vertices of each copy G_{i}. Without loss of generality, assume that we will leave the last stone on v_{1}. By (i), one may assume that v_{1} and u_{1} have the same color y. Let $c \in\{0,1\}$. Our goal is now to prove that any configuration satisfying (i) and (ii) is ($1, v_{1}, c$)-reducible. We consider several cases:

- $c\left(w_{1}\right)=y$ and G_{2} is not monochromatic. By Proposition $1, G_{2}$ is either $\left(1, u_{2}, \bar{y}\right)$ reducible, or $\left(1, w_{2}, \bar{y}\right)$-reducible. Without loss of generality, suppose that G_{2} is $\left(1, u_{2}, \bar{y}\right)$-reducible. Apply this reduction and play from u_{2} to u_{1}. The conditions are now fulfilled on the clique G_{1} to apply a $\left(1, v_{1}, c\right)$-reduction.
- $c\left(w_{1}\right)=y$ and G_{2} is monochromatic. From (ii), G_{2} is monochromatic of color \bar{y}. According to c, play as shown on diagrams $(a)(c=y)$ or $(b)(c=\bar{y})$ of Figure 16.
- $c\left(w_{1}\right)=\bar{y}$ and G_{2} is $\left(1, v_{2}, \bar{y}\right)$-reducible. Apply this reduction, and then play from v_{2} to v_{1}. Now G_{1} is $\left(1, v_{1}, c\right)$-reducible by Proposition 1 .
- $c\left(w_{1}\right)=\bar{y}$ and G_{2} is monochromatic. Play according to Figure 16. On diagrams (c) and (e), we have $c=y$. On diagrams (d) and (f), we end with the color $c=\bar{y}$.
- $c\left(w_{1}\right)=\bar{y}$ and $c\left(v_{2}\right)$ is rare on G_{2}. In both cases, we play from v_{2} either to u_{2} or to w_{2}, such that $c\left(u_{2}\right) \neq c\left(u_{1}\right)$ and $c\left(w_{2}\right) \neq c\left(w_{1}\right)$ after this operation. We then play from u_{2} to u_{1}, and from w_{2} to w_{1}. Use Proposition 1 to apply a $\left(1, v_{1}, c\right)$-reduction of G_{1}.

Figure 16: reduction of $K_{2} \square K_{3}$

Lemma 10. $K_{3} \square K_{3}$ is strongly 1-reducible.

Proof. Let us consider the graph $K_{3} \square K_{3}, v_{1}$ being any vertex of it. Assume that we will leave the last stone on v_{1}. Let $c \in\{0,1\}$. We consider any arrangement of the stones such that $K_{3} \square K_{3} \backslash v_{1}$ is not monochromatic. Let us prove that this configuration is ($1, v_{1}, c$)-reducible.

Among the six copies of K_{3} constituting the product $K_{3} \square K_{3}$ (three horizontal and three vertical), one of them is not monochromatic and does not contain v_{1} : call it G_{3}. Denote by G_{1} the parallel copy of G_{3} containing v_{1}, and G_{2} the last parallel copy. G_{3} is then 1-reducible with any color on two possible vertices: a_{3} and b_{3}. At least one of these is different from v_{3} (v_{3} being the copy of v_{1} in G_{3}). Without loss of generality, assume $a_{3} \neq v_{3}$.

If $G_{1} \backslash v_{1}$ is not monochromatic, we apply a $\left(1, a_{3}, \overline{c\left(a_{2}\right)}\right)$-reduction of G_{3} and then play from a_{3} to a_{2}. Otherwise, we apply a $\left(1, a_{3}, \overline{c\left(a_{1}\right)}\right)$-reduction of G_{3} and then play from a_{3} to a_{1}. In both cases, we finally get a configuration on $K_{2} \square K_{3}$ that we can reduce from Lemma 9 .

Lemma 11. $K_{3} \square K_{2} \square K_{2}$ is strongly 1-reducible.

Proof. Consider the graph $K_{3} \square K_{2} \square K_{2}$. Let v_{1} be any vertex of it and let c be any color. Assume that we will leave the last stone on v_{1}. We consider any arrangement of the stones such that $K_{3} \square K_{2} \square K_{2} \backslash v_{1}$ is not monochromatic.

Let G_{1} be the copy of K_{3} containing v_{1}. We call G_{2}, G_{3}, and G_{4} the other copies of K_{3}, G_{3} being the copy containing no neighbour of v_{1}. We distinguish two cases:

- The graph without G_{1} is not monochromatic

There exists a non monochromatic copy of $K_{2} \square K_{3}$ that does not contain G_{1}. Without loss of generality, suppose it is the one made of G_{3} and G_{4}. We can 1-reduce it to various places.
We first suppose that both vertices a_{1} and b_{1} of $G_{1} \backslash v_{1}$ have the same color. At least one of the corresponding vertex a_{4} and b_{4} in G_{4} has a common color in G_{4}. Assume it is the case of a_{4}. The conditions of Lemma 9 are fulfilled so that we are able to apply a $\left(1, a_{4}, \overline{c\left(a_{1}\right)}\right)$-reduction of $G_{3} \cup G_{4}$; then we have a_{4} clobber a_{1}. Now, $G_{1} \cup G_{2} \backslash v_{1}$ is not monochromatic, and $c\left(v_{1}\right)$ is common on G_{1}. By Lemma $9, G_{1} \cup G_{2}$ is ($\left.1, v_{1}, c\right)$ reducible.

Suppose now that the vertices a_{1} and b_{1} of $G_{1} \backslash v_{1}$ have different colors. At least one vertex of a_{3} and b_{3} has a common color in G_{3}. Assume it is a_{3}. The conditions of Lemma 9 are fulfilled to apply a $\left(1, a_{3}, \overline{c\left(a_{2}\right)}\right)$-reduction of $G_{3} \cup G_{4}$; then have a_{3} clobber a_{2}. Now, $G_{1} \cup G_{2} \backslash v_{1}$ is not monochromatic, and $c\left(v_{1}\right)$ is common on G_{1}. By Lemma $9, G_{1} \cup G_{2}$ is ($1, v_{1}, c$)-reducible.

- The graph without G_{1} is monochromatic of color y

Then $G_{1} \backslash v_{1}$ contains a stone of color \bar{y}. Denote by z the initial color of v_{1}. We describe the way to play on Figure 17.

Figure 17: 1-reduction of $K_{3} \square K_{2} \square K_{2}$

In cases (a) and (c), we have $c=\bar{z}$. We execute the moves described by the figure, leaving v_{1} and a copy of $K_{2} \square K_{3}$. We can apply a $\left(1, v_{2}, \bar{z}\right)$-reduction of this copy (from Lemma 9), and conclude by playing from v_{2} to v_{1}. In cases (b) and (d), we have $c=z$. Just follow the moves on the figure as soon as they are possible.

From all these results, we can deduce the following theorem about Hamming graphs.
Theorem 12. Any Hamming graph that is neither $K_{2} \square K_{3}$ nor a hypercube is strongly 1reducible.

Note that $K_{2} \square K_{3}$ is 1-reducible for any coloration, and is also strongly 1-reducible joker.

References

[1] Michael H. Albert, J. P. Grossman, Richard J. Nowakowski, and David Wolfe, An introduction to Clobber, Integers 5 (2005).
[2] Erik D. Demaine, Martin L. Demaine, and Rudolf Fleischer, Solitaire Clobber, Theor. Comput. Sci. 313 (2004), 325-338.
[3] L. Beaudou, E. Duchêne, L. Faria and S. Gravier, Solitaire Clobber played on graphs, submitted.
[4] Ivars Peterson, Getting Clobbered, Science News 161 (2002), http://www.sciencenews.org/articles/ 20020427/mathtrek.asp.

[^0]: ${ }^{1}$ Universit Joseph Fourier
 ${ }^{2}$ Postdoc in Universit de Lige
 ${ }^{3}$ CNRS

