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Abstract

Berlekamp asked the question “What is the habitat of ∗2?” We generalize this to ask: For a
game G, what is the largest n such that ∗n is a position in G? and answer this for konane
by presenting a method to construct any nimber.

1. Introduction

In combinatorial game theory, games can be expressed recursively as G = {GL |GR} where
GL are the Left options and GR are the Right options of G. An example of a combinatorial
game is the classic game of nim, first studied by C. Bouton [3]. This game is played with
piles of stones. On his turn, each player can remove any number of stones from any pile. The
winner is the player who takes the last stone. Many variants of nim have been studied (see
[2] for several). nim is an example of an impartial game: Left options and Right options are
the same for the game and all its followers. The values involved in nim are called nimbers
(stars):

∗k = {0, ∗, ..., ∗(k − 1) | 0, ∗, ..., ∗(k − 1)}

It is a surprising fact that all impartial games take only nimbers as values (see [1, 2]).

Many combinatorial games have GL #= GR, i.e. the two players have different moves, like in
chess or go. These games are are called partizan. Berlekamp, [6] problem 45, asks which
partizan game have the position ∗2. We generalize this to ask which impartial games appear
in a partizan games? Or: Given a partizan game, which nimbers occur in the game?

If all nimbers up to ∗2n have been found in a game then the disjunctive sum allows con-
struction of all nimbers up to ∗(2n+1 − 1). This motivates us to define a Nim-dimension.
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Definition 1. A combinatorial game has Nim-dimension n if it contains a position ∗2n−1

but not ∗2n. A game has infinite nim-dimension if all the nimbers can be constructed. It has
null, or ∅, nim-dimension if ∗ cannot be constructed.

In the game of shove, a player shoves one of his pieces and all other pieces on the left, to
the left one square, possibly off the end of the board. For example,

col is played on a graph with uncolored vertices; a player colors a vertex in their color
but cannot color two adjacent vertices the same. toppling dominoes is played with a row
of black and white dominoes. A player topples, to the left or right, one of their dominoes
and it topples all the dominoes in that direction. For example,

• NimDimension(shove) = ∅ since all the values are numbers (see [1]);

• NimDimension(col) = 0 since all the values are numbers or numbers plus ∗ (see [2]);

• NimDimension(toppling dominoes) = ∞ since it is easy to show that

We note that even for impartial games, determining the Nim-dimension is still an active
question. In all octal games — heaps games like nim except a heap may also be split, see
[1, 2]) — is the Nim-dimension finite? (See [6] problem 2.)

In [6] problem 44, Berlekamp and Ernst ask for any further analysis of konane. Indeed,
only two mathematical papers [5, 4] have appeared. The first paper restricted the moves to
single jumps. The second looked at 1-dimensional boards.

konane is an hawaiian game. In the starting position the checkered board is filled in such
a way that no two stones of the same color occupy adjacent squares. In the opening, two
adjacent pieces of the board are removed. After this, a player moves by taking one of his
stones and jumping orthogonally over an opposing stone into an empty square. The jumped
stone is removed. A player can make multiple jumps on his turn but cannot change direction
mid-turn. Multiple jumps are not mandatory. The winner is the player who makes the last
move. konane is a very rich combinatorial game with many interesting values. We can see
some in the following figure (in this paper, Left plays with black stones):
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This paper is about the construction of arbitrary nimbers in Konane and thereby proving

Theorem 2. Nim-dimension(konane)= ∞.

Although we prove that konane has infinite nim dimension we do not attempt to find the
smallest board size on which ∗n first occurs. For instance

has value ∗2, but it is not useful in our construction of ∗3 (see the next section).

2. Constructing Nimbers in Konane

We will see that konane has infinite Nim-dimension. To understand the idea behind the
process to construct nimbers in konane, let us start with the analysis of 2 positions:
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In the left position, if Left plays D3-D7 then he goes to a position with value ∗. If Left plays
D3-F3 then he goes to a position with value 0. More interesting is the move D3-D5. This
option is dominated, because the position after D3-D5 is negative (the position after D3-D5
is {∗ | 0} =↓). The Right options are easy: E3-C3 or D4-D2 goes to 0 and E3-A3 goes to ∗.
So, the position in the left diagram is a ∗2:

{D3− F3, D3−D7 |E3− C3 (or D4−D2), E3−A3} = {0, ∗ | 0, ∗} = ∗2

In the right diagram, Left has a supplementary option. However, like D3-D5 in previous
example, the option is dominated. So the right position is also a ∗2. If we want we can join
any number of stones to the column without changing the game value. With this kind of
idea we have a process to gain space on the board.

If we look at left position, all Left moves must be made by the stone at D3. In similar cases
we will say that D3 is the focal point and the stone at D3 the focal stone.

2.1. Algorithm to Construct a ∗n in konane

We will construct a ∗n using the previous ∗(n− 1). Let ∗2 be realized by the left diagram in
the previous figure. The dimension of the board is 7× 6 and the focal point has coordinates
(5, 4).

Let ln × cn be the dimensions of the ∗n’s board and (an, bn) be the coordinates of the ∗n’s
focal point. The base case is the ∗2 (l2 = 7, c2 = 6, a2 = 5, b2 = 4). The construction of the
∗n is described as follows.

Board dimension

1. ln = ln−1 + cn−1 + 2;

2. cn = ln−1 + 3;

Transformation of previous nimber

3. In the ∗(n−1), remove the black stone from the focal point and add joining white stones
in squares with coordinates (an−1 + 2k − 1, bn−1), k ! 1 and an−1 + 2k − 1 " ln−1.
This suppresses all possible moves (item 7 will estipulate the new focal point);

Laying down the pieces

4. Put the position obtained in 3 on the ∗n’s area (see 1 and 2) on the rectangle with
vertices (1, cn − cn−1 + 1), (1, cn), (ln−1, cn − cn−1 + 1), (ln−1, cn);

5. Turn black in white and white in black in the position obtained in 3. Rotate 90◦ and
put this on the ∗n’s rectangle with vertices (ln−1 +2, 1), (ln−1 +2, ln−1), (ln−1, 1), (ln−
1, ln−1);
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Linking the pieces together

6. Put white stones at

(ln−1 + 1, cn − 2), (ln−1 + 3, cn − 2), (ln−1 + 4, cn − 1);

7. Put a black stone at (ln−1 + 4, cn − 2) and this is the new focal point
(an = ln−1 + 4; bn = cn − 2);

8. The ln th line is empty.

To illustrate the algorithm consider the following figure:
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Iteration

2.2. Proof (correctness of the algorithm)

Let’s analyze the Left options (the argument for the Right options is similar). The first move
must be made from the focal point. Suppose we move the focal stone to a square (x, bn) with
x " an−1. Then, by induction, we are in a known situation, because the rectangle defined in
the item 4 becomes independent of the rest of the position. By construction, for all n, the
last line and the last column are empty, so, there are 3 empty lines between the rectangle
and the rest of position (which is sterile) and this justifies the independence. The initial
position is fuzzy, so the dominated negative options in the ∗(n− 1) are still dominated.
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The mentioned move must go to ∗(n− 1) when it goes to (an−1, bn) or to ∗, ∗2, ..., ∗(n− 2)
(previous ∗(n− 1) options).

Now, suppose we move the focal stone to a square (x, bn) with x > an−1, as Left loses the
opportunity to take right, the value becomes negative. So these options are also dominated.

Finally, in the initial position, if Left goes right, then he goes to a position with value 0.
The undominated options are 0, ∗, ..., ∗(n− 1). #

An example of a position with value ∗4:

*4
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