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Abstract

An identity involving multiplicative orders is obtained by elementary combinatorial methods. Several
classic and new results are obtained as direct consequences, including a characterization of the Mersenne
primes.

–Dedicated to Dan Daianu

1. Introduction

Throughout this paper, a,m, n are positive integers, (a,m) denotes the greatest common divisor of
a,m and φ stands for Euler’s totient function. If X is a finite set, |X| denotes the cardinality of X.

When (a,m) = 1, let am denote, for strictly typographical purposes, the multiplicative order of a

modulo m. That is, am is the smallest positive integer k such that m|ak − 1. Lagrange’s theorem
implies that am divides φ(m) and therefore ia(m) :=

∑
d|m

φ(d)
ad

is an integer.

When p is a prime and (a, p) = 1, then ia(p) = 1 + p−1
ap

. The well-known conjecture of E. Artin,
asserting that whenever a is not a square and a "= −1 there exist infinitely many primes p such that
ap = p − 1 can be elegantly stated in terms of ia(m): it states that there are infinitely many primes p

satisfying ia(p) = 2.

The quantity ia(m) has an interesting number theoretical interpretation in a special case: when p

is a prime and (m, p) = 1, then ipk(m) is the number of (distinct) irreducible factors of the polynomial
Xm − 1 over the field GF (pk) – see Lemma 5 of [4].

The quantity ia(m) has gained in interest recently due to an interesting result of D. Ulmer – see
Th. 9.2 of [8]: ia(m) is involved in the formulae for the ranks of certain elliptic equations over function
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fields. A forthcoming paper of C. Pomerance and I.E. Shparlinski [5], obtainable from C. Pomerance’s
site, studies ia(m) on average by using analytical methods. For more examples showing the rôle of
ia(m) in other contexts, see also [6,9]. Since ia(m) involves a function as irregular as the multiplicative
order, it is desirable to relate it to much more regular functions.

The aim of this note is to express ia(m) when a > 1 and m ≥ 1 are arbitrary coprime integers in
terms of the divisors of am. This is done by using a versatile combinatorial tool:

Cauchy-Frobenius identity. Let X be a finite nonempty set, let G be a group of permutations acting
on X and for g ∈ G denote by CX(g) the set of fixed points of g in X. Then

t|G| =
∑

g∈G

|CX(g)|,

where t is the number of orbits of the action of G on X.

When X is a finite group and when G is a group of automorphisms of X, then by Lagrange’s theorem
the integers |CX(g)| are divisors of |X| for all g ∈ G. The simplest situation is that of X and G both
being cyclic groups, for the algebraic structure of these groups is very well understood. However, the
humble cyclic groups encapsulate a lot of interesting number – theoretical information and one may
hope to uncover some of it by applying the Cauchy-Frobenius identity coupled with elementary group
– theoretical considerations. This approach is not new, for a recent example see Isaacs and Pournaki
[2]. We are going here a bit further, with the precise goal of obtaining explicit identities.

The main result of this paper is an identity expressing ia(m) in a somewhat more convenient way:

Theorem. If a > 1,m ≥ 1 and (a,m) = 1, then
∑

d|am

φ(
am

d
)(m,ad − 1) = amia(m). (1)

It is apparent from (1) that ia(m) depends in fact essentially on the divisors of am, which is a
number much smaller than m when m is composite.

The most natural proof is presented here, in the sense that it gives an interpretation to the quantity
ia(m). It shows that ia(m) is the number of orbits in the action of a cyclic group of automorphisms
acting on a cyclic group – this observation already appears (implicitly and independently) in the proof
of Th. 9.2 of [8].

T. Ward has proofs of various divisibility results by using the theory of dynamical systems – his
home page contains many downloadable papers related to the interplay between dynamical systems and
number theory and J.H. Silverman’s new book [7] is a good introduction to this field. Orbit counting
for various actions is a very active field of research.
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2. Proof of the Theorem

Let Zm = Z/mZ denote the ring of residue classes modulo m. By a slight abuse of notation,
Zm = {k|0 ≤ k ≤ m − 1} and it is understood that addition and multiplication are performed modulo
m. The group of units of Zm is U = {u ∈ Zm|(u,m) = 1}, |U | = φ(m) and since by hypothesis
(a,m) = 1 we see that a ∈ U . Multiplication by a induces an automorphism α of the additive group
Zm: α(k) = ak for all k ∈ Zm. For simplicity of notation, write am = n, so that |α| = am = n.

The group G = 〈α〉 acts as a permutation group on Zm and |G| = n. For d|n, the order of αd is
n
d . Let CZm(αd) = {k ∈ Zm|adk = k} denote the fixed point subgroup of αd in Zm. Then CZm(αd) =
{k ∈ Zm| m|k(ad − 1)} = {k ∈ Zm| m

(m,ad−1) |k} = 〈 m
(m,ad−1) 〉 and therefore |CZm(αd)| = (m,ad − 1).

There are exactly φ(n
d ) elements of G of order n

d and if t denotes the number of orbits of the action
of G on Zm then, by the Cauchy-Frobenius identity, one obtains that

tn =
∑

d|n

φ(
n

d
)(m,ad − 1). (2)

What we have to do now is to express the value of t in a different way. For every divisor d of m,
consider the set Xd of all elements of order d of the cyclic (additive) group Zm. Then |Xd| = φ(d) and
clearly Xd is left invariant by the action of G. For x ∈ Xd, consider the orbit O(x) = {aix|1 ≤ i ≤ n}
of x under the action of G. Then |O(x)| is the least positive integer s such that x = asx. For this s we
have (in Zm) that (as − 1)x = 0, whence d = |x| divides as − 1. But by the definition of s it follows
that in fact |O(x)| = ad is just the multiplicative order of a modulo d.

Thus, for every x ∈ Xd we have |O(x)| = ad and therefore G has exactly φ(d)
ad

orbits in Xd. Finally,
sum up over the set of all divisors of m to get

t =
∑

d|m

φ(d)
ad

. (3)

Since the statement follows now from (2) and (3), the proof is complete.

3. Applications

The general identity (1) is the source of many interesting consequences. Let a > 1, n ≥ 1. Then
(a, an − 1) = 1 and a(an−1) = n, so taking m := an − 1 in (1) gives at once:

Corollary 1. If a > 1 and n ≥ 1, then
∑

d|n

φ(
n

d
)(ad − 1) = nia(an − 1) = n

∑

d|an−1

φ(d)
ad

. (4)

Remarks. (1) By taking n = 1 in (4) one obtains Gauss’ identity: if a > 1, then a − 1 =
∑

d|a−1 φ(d);
(2) Fermat’s ”little” theorem follows from (4) if one takes n to be a prime.
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Corollary 2. If a > 1,m ≥ 1 are coprime, then (m,a − 1) divides amia(m).

Proof. It suffices to observe that in the left hand side of (1) we have
(m,a − 1) | (m,ad − 1) for every divisor d of am. !

Corollary 3. Let a,m > 1 and let p be a prime such that ap ≡ 1 (mod m). Then m ≡ (m,a − 1)
(mod p).

Proof. It is clear that am ∈ {1, p}. When am = 1, one obtains by (1) that m ≡ (m,a−1) = m (mod p).
When am = p, one derives from (1) that p | (p − 1)(m,a − 1) + m, whence the result. !

A well-known result of MacMahon [3] - see also [1], p. 192, - states that for a, n > 0 we have
n|

∑
d|n φ(n

d )ad. The next result implies at once MacMahon’s result and says a bit more:

Corollary 4. If a > 1, n ≥ 1 , then
∑

d|n φ(n
d )ad = n(1 + ia(an − 1)).

Proof. This follows at once from (4) and from Gauss’ identity n =
∑

d|n φ(n
d ). !

In fact, the identity in the above corollary makes it possible to obtain another type of divisibility
result, one that shows that a (and not n) divides a certain sum.

Corollary 5. Let a, n > 1 be coprime. Then a|
∑

d|an−1,d!a−1
φ(d)
ad

.

Proof. Use first Corollary 4 to get a | n(1+ ia(an −1)), then use the fact that (a, n) = 1 to derive a|1+
ia(an−1). Now 1+ ia(an−1) = 1+

∑
d|a−1

φ(d)
ad

+
∑

d|an−1,d!a−1
φ(d)
ad

= 1+(a−1)+
∑

d|an−1,d!a−1
φ(d)
ad

and the result follows. !

Remark. Corollary 5 does not always hold if (a, n) > 1: just take a = 4, n = 2.

A Mersenne prime is a prime of the form an−1 where a, n > 1. Elementary considerations show that
in fact one must have a = 2 and n a prime. The following result is perhaps the first characterization
of the Mersenne primes by a number theoretical property.

Corollary 6. If a, n > 1, then

∑

d|n

φ(
n

d
)(ad − 1) ≥

∑

d|n

n

d
φ(ad − 1)

and the equality holds if and only if an − 1 is a Mersenne prime.
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Proof. Let D(k) denote the set of all positive divisors of k. Write D(an − 1) = A ∪ B, where A =
{ad − 1 | d|n} and B = D(an − 1) \ A. Observe that for ad − 1 ∈ A we have φ(ad−1)

a(ad−1)
= φ(ad−1)

d .

Next, write the right hand side sum in (4) as S1 + S2, where S1 is the sum taken over the divisors
of an − 1 belonging to A and S2 corresponds to the divisors of an − 1 belonging to B. Thus, the right
hand side of the identity (4) now reads nS1 + nS2 and by the above remarks nS1 =

∑
d|n

n
d φ(ad − 1).

Hence
∑

d|n φ(n
d )(ad − 1) −

∑
d|n

n
d φ(ad − 1) = nS2 ≥ 0, proving the stated inequality.

Equality holds exactly when S2 = 0, i.e., when B = ∅. By elementary arguments one can see that
this happens precisely when |D(an − 1)| = |D(n)|. This last equality occurs if and only if an − 1 is a
(Mersenne) prime and the proof is complete. !
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