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Abstract

Let k ≥ 2 and α1,β1, . . . ,αk,βk be reals such that the αi’s are irrational and greater than 1.
Suppose further that some ratio αi/αj is irrational. We study the representations of an
integer n in the form p1 + p2 + · · · + pk = n, where pi is a prime from the Beatty sequence
Bi = {n ∈ N : n = [αim + βi] for some m ∈ Z} .

1. Introduction

Ever since the days of Euler and Goldbach, number-theorists have been fascinated by additive
representations of the integers as sums of primes. The most famous result in this field is I.M.
Vinogradov’s three primes theorem [7], which states that every sufficiently large odd integer
is the sum of three primes. Over the years, a number of authors have studied variants of
the three primes theorem with prime numbers restricted to various sequences of arithmetic
interest. For instance, a recent work by Banks, Güloğlu and Nevans [1] studies the question
of representing integers as sums of primes from a Beatty sequence. Suppose that α and β
are real numbers, with α > 1 and irrational. The Beatty sequence Bα,β is defined by

Bα,β = {n ∈ N : n = [αm + β] for some m ∈ Z} .

(Henceforth, [θ] represents the integer part of the real number θ.) Banks et al. proved that
if k ≥ 3, then every sufficiently large integer n ≡ k (mod 2) can be expressed as the sum of
k primes from the sequence Bα,β, provided that α < k and α “has a finite type” (see below).
In their closing remarks, the authors of [1] note that their method can be used to extend the
main results of [1] to representations of an integer n in the form

p1 + p2 + · · · + pk = n, (1)

where pi ∈ Bα,βi . However, they remark that “for a sequence α1, . . . ,αk of irrational numbers
greater than 1, it appears to be much more difficult to estimate the number of representations
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of n ≡ k (mod 2) in the form (1), where pi lies in the Beatty sequence Bαi,βi .” The main
purpose of the present note is to address the latter question in the case when at least one of
the ratios αi/αj, 1 ≤ i, j ≤ k, is irrational.

Let α1,β1, . . . ,αk,βk, k ≥ 2, be real numbers, and suppose that α1, . . . ,αk are irrational
and greater than 1. For i = 1, . . . , k, we denote by Bi the Beatty sequence Bαi,βi . We write

R(n) = R(n; α,β) =
∑

p1+···+pk=n
pi∈Bi

(log p1) · · · (log pk), (2)

where the summation is over the solutions of (1) in prime numbers p1, . . . , pk such that
pi ∈ Bi. Similarly to [1], we shall use the Hardy–Littlewood circle method to obtain an
asymptotic formula for R(n). The circle method requires some quantitative measure of the
irrationality of the αi’s in the form of hypotheses on the rational approximations to the αi’s.
Let ‖θ‖ denote the distance from the real number θ to the nearest integer. We say that an
s-tuple θ1, . . . , θs of real numbers is of a finite type, if there exists a real number η such that
the inequality

‖q1θ1 + · · · + qsθs‖ < max(1, |q1|, . . . , |qs|)−η (3)

has only finitely many solutions in q1, . . . , qs ∈ Z. In particular, the reals in an s-tuple of
a finite type are irrational and linearly independent over Q. Our main result can now be
stated as follows.

Theorem 1. Let k ≥ 3 and let α1,β1, . . . ,αk,βk be real numbers, with α1, . . . ,αk > 1.
Suppose that each individual αi is of a finite type and that at least one pair α−1

i ,α−1
j is also

of a finite type. Then, for any fixed A > 0 and any sufficiently large integer n, one has

R(n; α,β) =
Sk(n)nk−1

α1 · · ·αk(k − 1)!
+ O

(
nk−1(log n)−A

)
, (4)

where R(n; α,β) is the quantity defined in (2) and Sk(n) is given by

Sk(n) =
∏

p|n

(
1 +

(−1)k

(p− 1)k−1

)∏

p!n

(
1 +

(−1)k+1

(p− 1)k

)
. (5)

The implied constant in (4) depends at most on A,α,β.

Since 1 ' Sk(n) ' 1 when n ≡ k (mod 2), Theorem 1 has the following direct conse-
quence.

Corollary 1. Let k ≥ 3 and suppose that α1,β1, . . . ,αk,βk are real numbers subject to
the hypotheses of Theorem 1. Then, every sufficiently large integer n ≡ k (mod 2) can be
represented in the form (1) with pi ∈ Bi, 1 ≤ i ≤ k.

After some standard adjustments, the techniques used in the proof of Theorem 1 yield
also the following result on sums of two Beatty primes.
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Theorem 2. Suppose that α1,β1,α2,β2 are real numbers, with α1,α2 > 1. Suppose further
that the pair α−1

1 ,α−1
2 is of a finite type. Then, for any fixed A > 0, and all but O(x(log x)−A)

integers n ≤ x, one has

R(n; α,β) = (α1α2)
−1S2(n)n + O

(
n(log n)−A

)
,

where R(n; α,β) is the quantity defined in (2) and S2(n) is given by (5) with k = 2. The
implied constants depend at most on A,α,β.

Since for even n, 1 ' S2(n) ' log log n, we have the following corollary to Theorem 2.

Corollary 2. Suppose that α1,β1,α2,β2 are real numbers subject to the hypotheses of The-
orem 2. Then, for any fixed A > 0, all but O(x(log x)−A) even integers n ≤ x can be
represented as sums of a prime p1 ∈ B1 and a prime p2 ∈ B2.

By making some adjustments in the proof of Theorem 2, we can call upon a celebrated
theorem by Montgomery and Vaughan [5] to improve on Corollary 2.

Corollary 3. Suppose that α1,β1,α2,β2 are real numbers subject to the hypotheses of Theo-
rem 2. Then there exists an ε = ε(α) > 0 such that all but O(x1−ε) even integers n ≤ x can
be represented as sums of a prime p1 ∈ B1 and a prime p2 ∈ B2.

Comparing Theorems 1 and 2 with the main results in [1], one notes that our theorems
include no hypotheses similar to the condition α < k required in [1]. The latter condition
is necessary in the case α1 = · · · = αk = α, if all large integers n ≡ k (mod 2) are to be
represented. However, it can be dispensed with when some pair αi,αj is linearly independent
over Q.

It seems that the natural hypotheses for the above theorems are that all αi’s and some
ratio αi/αj be irrational, but such generality is beyond the reach of our method. The finite
type conditions above approximate these natural hypotheses without being too restrictive.
For example, by a classical theorem of Khinchin’s [4], almost all (in the sense of Lebesgue
measure) real numbers are of a finite type.

2. Preliminaries

2.1. Notation

For a real number θ, [θ], {θ} and ‖θ‖ denote, respectively, the integer part of θ, the fractional
part of θ and the distance from θ to the nearest integer; also, e(θ) = e2πiθ. For integers a and
b, we write (a, b) and [a, b] for the greatest common divisor and the least common multiple
of a and b. The letter p, with or without indices, is reserved for prime numbers. Finally, if
x = (x1, . . . , xs), we write |x| = max(|x1|, . . . , |xs|).
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2.2.

For i = 1, . . . , k, we set γi = α−1
i and δi = α−1

i (1− βi). It is not difficult to see that m ∈ Bi

if and only if 0 < {γim + δi} < γi. Thus, the characteristic function of the Beatty sequence
Bi is gi(γim + δi), where gi is the 1-periodic extension of the characteristic function of the
interval (0, γi).

Our analysis will require smooth approximations to gi. Suppose that 1 ≤ i ≤ k and ∆ is
a real such that

0 < ∆ < 1
4 min(γi, 1− γi).

Then there exist 1-periodic C∞-functions g±i such that:

i) 0 ≤ g−i (x) ≤ gi(x) ≤ g+
i (x) ≤ 1 for all real x;

ii) g±i (x) = gi(x) when ∆ ≤ x ≤ γi −∆ or γi + ∆ ≤ x ≤ 1−∆;

iii)

∣∣∣∣
drg±i (x)

dxr

∣∣∣∣ 'r ∆−r for r = 1, 2, . . . .

Furthermore, the Fourier coefficients ĝ±i (m) of g±i satisfy the bounds

ĝ±i (0) = γi + O(∆), |ĝ±i (m)|'r
∆1−r

(1 + |m|)r
(r = 1, 2, . . . ), (6)

where the latter bound follows from ii) and iii) above via partial integration.

2.3.

The proofs of Theorems 1 and 2 use the following generalization of the classical bound for
exponential sums over primes in Vaughan [6, Theorem 3.1].

Lemma 1. Suppose that α is real and a, q are integers, with (a, q) = 1 and q ≤ N . Then
∑

p≤N

(log p)e(αp) '
(
Nq−1/2 + N4/5 + (Nq)1/2

) (
1 + q2|θ|

)
(log 2N)4,

where θ = α− a/q.

The proof of the above lemma is essentially the same as that of [6, Theorem 3.1], which
is the case |θ| ≤ q−2. The only adjustment one needs to make in the argument in [6] is to
replace [6, Lemma 2.2] by the following variant.

Lemma 2. Suppose that α, X, Y are real with X ≥ 1, Y ≥ 1, and a, q are integers with
(a, q) = 1. Then

∑

x≤X

min
(
XY x−1, ‖αx‖−1

)
'

(
XY q−1 + X + q

) (
1 + q2|θ|

)
(log 2Xq),

where θ = α− a/q.
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2.4.

In the next lemma, we use the finite type of an s-tuple θ1, . . . , θs to obtain rational approx-
imations to linear combinations of θ1, . . . , θs.

Lemma 3. Suppose that the s-tuple θ1, . . . , θs has a finite type and let η > 1 be such that
(3) has finitely many solutions. Let 0 < ε < (2η)−1, let Q be sufficiently large, and let
m = (m1, . . . ,ms) ∈ Zs, with 0 < |m| ≤ Qε. Then there exist integers a and q such that

|q(m1θ1 + · · · + msθs)− a| ≤ Q−1, Qε ≤ q ≤ Q, (a, q) = 1.

Proof. Since the sum m1θ1 + · · · + msθs is irrational, it has an infinite continued fraction.
Let q and q′ be the denominators of two consecutive convergents to that continued fraction,
such that q ≤ Q < q′. By the properties of continued fractions,

‖q(m1θ1 + · · · + msθs)‖ ≤ (q′)−1 < Q−1.

If 1 ≤ q ≤ Qε, then Q−1 ≤ (q|m|)−1/(2ε), and hence

‖q(m1θ1 + · · · + msθs)‖ < (q|m|)−1/(2ε)

which contradicts the choice of η and ε. This completes the proof.

3. Proof of Theorem 1

Without loss of generality, we may assume that the pair of a finite type in the hypotheses
of the theorem is α−1

1 ,α−1
2 . We also note that if αi has a finite type, then so does γi = α−1

i .
Indeed, let q be a sufficiently large solution of ‖qγi‖ < q−η and let a be the nearest integer
to qγi. Then q ' a ' q and

|aαi − q| < αiq
−η ' a−η < a−η+ε.

Thus, if ‖qγi‖ < q−η has an infinite number of solutions in positive integers q, then so does
‖qαi‖ < q−η+ε.

Recall the functions gi and g±i described in §2.2. We shall use those functions with ∆
given by

∆ = (log n)−A. (7)

We have

R(n) =
∑

p1+···+pk=n

(log p1) · · · (log pk)g1(γ1p1 + δ1) · · · gk(γkpk + δk),
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so by the construction of g±i ,
R−(n) ≤ R(n) ≤ R+(n), (8)

where
R±(n) =

∑

p1+···+pk=n

(log p1) · · · (log pk)g
±
1 (γ1p1 + δ1) · · · g±k (γkpk + δk).

We now proceed to evaluate the sums R+(n) and R−(n). We shall focus on R+(n), the
evaluation of R−(n) being similar.

Substituting the Fourier expansions of g+
1 , . . . , g+

k into the definition of R+(n), we obtain

R+(n) =
∑

m∈Zk

ĝ+
1 (m1) · · · ĝ+

k (mk)e(δ1m1 + · · · + δkmk)R(n,m), (9)

where m = (m1, . . . ,mk) and

R(n,m) =
∑

p1+···+pk=n

(log p1) · · · (log pk)e(γ1m1p1 + · · · + γkmkpk).

We note for the record that when m = 0, we have

R(n,0) =
Sk(n)nk−1

(k − 1)!
+ O

(
nk−1(log n)−A

)
. (10)

When k = 3, this is due to Vinogradov [7] (see also Vaughan [6, Theorem 3.4]), and the
result for k ≥ 4 can be proved similarly (see Hua [3]).

We now set
M = ∆−1(log n) = (log n)A+1. (11)

Combining (6), (7), (9) and (10), we deduce that

R+(n) =
γ1 · · · γk

(k − 1)!
Sk(n)nk−1 + O

(
nk−1(log n)−A

)
+ O(Σ1 + Σ2), (12)

where

Σ1 =
∑

0<|m|≤M

|ĝ+
1 (m1) · · · ĝ+

k (mk)||R(n,m)|,

Σ2 =
∑

|m|>M

|ĝ+
1 (m1) · · · ĝ+

k (mk)||R(n,m)|.

We may use (6) to estimate Σ2. It follows easily from the second bound in (6) that

∑

m∈Z

|ĝ+
i (m)|'

∑

|m|≤M

1

1 + |m| +
∑

|m|>M

∆−1

(1 + |m|)2
' log M. (13)
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Hence, by (10), (11) and (6) with r = [A] + 3,

Σ2 ' R(n,0)(log M)k−1
∑

1≤i≤k

∑

|m|>M

|ĝ+
i (m)| (14)

' nk−1(log n)(∆M)1−r ' nk−1(log n)−A.

Next, we use a variant of the circle method to bound |R(n,m)| when 0 < |m| ≤ M .
Define the exponential sum

S(ξ) =
∑

p≤n

(log p)e(ξp).

By orthogonality,

R(n,m) =

∫ 1

0

S(ξ + γ1m1) · · ·S(ξ + γkmk)e(−nξ) dξ. (15)

Put
P = (log n)2A+12, Q = nP−1. (16)

For j = 1, . . . , k, we write λj = λj(m) = γjmj − γ1m1. Then

R(n,m) = e(γ1m1n)

∫ 1+1/Q

1/Q

S(ξ)S(ξ + λ2) · · ·S(ξ + λk)e(−nξ) dξ.

We partition the interval [1/Q, 1+1/Q) into Farey arcs of order Q and write M(q, a) for the
arc containing the Farey fraction a/q: if a′/q′ and a′′/q′′ are, respectively, the left and right
neighbors of a/q in the Farey sequence, then

M(q, a) =

[
a + a′

q + q′
,
a + a′′

q + q′′

)
.

Thus,

|R(n,m)| ≤
∑

q≤Q

∑

1≤a≤q
(a,q)=1

∫

M(q,a)

|S(ξ)S(ξ + λ2) · · ·S(ξ + λk)| dξ. (17)

When ξ ∈ M(q, a), with P < q ≤ Q, Lemma 1 yields

S(ξ) ' nP−1/2(log n)4 ' n(log n)−A−2.

Inserting this bound into the right side of (17), we obtain

|R(n,m)| ≤
∑

q≤P

∑

1≤a≤q
(a,q)=1

∫

M(q,a)

|S(ξ)S(ξ + λ2) · · ·S(ξ + λk)| dξ + Σ3, (18)
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where

Σ3 ' n(log n)−A−2
∑

P<q≤Q

∑

1≤a≤q
(a,q)=1

∫

M(q,a)

|S(ξ + λ2) · · ·S(ξ + λk)| dξ (19)

' nk−2(log n)−A−2

∫ 1

0

|S(ξ + λ2)S(ξ + λ3)| dξ.

By the Cauchy–Schwarz inequality and Parseval’s identity,
∫ 1

0

|S(ξ + λi)S(ξ + λj)| dξ ' n(log n) (1 ≤ i, j ≤ k), (20)

so we deduce from (19) that
Σ3 ' nk−1(log n)−A−1. (21)

To estimate the remaining sum on the right side of (18), we consider separately the cases
m1 = 0 and m1 (= 0.

Case 1: m1 = 0. Since m (= 0, we have mi (= 0 for some i = 2, . . . , k. By Lemma 3 with
s = 1 and θ1 = γi, there exist an ε > 0 and integers b and r such that

∣∣r(miγi)− b
∣∣ < Q−1/2, Qε ≤ r ≤ Q1/2, (b, r) = 1.

Suppose that ξ ∈ M(q, a), where 1 ≤ q ≤ P . It follows that
∣∣∣∣ξ + λi −

a

q
− b

r

∣∣∣∣ ≤
1

qQ
+

1

rQ1/2
≤ 2

rQ1/2
.

Let the integers a1, q1 be such that

a1

q1
=

a

q
+

b

r
, (a1, q1) = 1.

Then q1 divides [q, r] and is divisible by [q, r]/(q, r), so
∣∣∣∣ξ + λi −

a1

q1

∣∣∣∣ ≤
2P

q1Q1/2
, rP−1 ≤ q1 ≤ rP, (a1, q1) = 1.

Thus, Lemma 1 yields

S(ξ + λi) '
(
nq−1/2

1 + n4/5 + (nq1)
1/2

) (
1 + q1PQ−1/2

)
(log n)4 (22)

'
(
nq−1/2

1 + n4/5P
)
(log n)4 ' n1−ε/3.

Combining (22) and (20), we easily get

∑

q≤P

∑

1≤a≤q
(a,q)=1

∫

M(q,a)

|S(ξ)S(ξ + λ2) · · ·S(ξ + λk)| dξ ' nk−1−ε/4. (23)
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Case 2: m1 (= 0. Then we apply Lemma 3 to the pair γ1, γ2. It follows that there exist an
ε > 0 and integers b and r such that

∣∣r(m2γ2 −m1γ1)− b
∣∣ < Q−1/2, Qε ≤ r ≤ Q1/2, (b, r) = 1.

Suppose that ξ ∈ M(q, a), where 1 ≤ q ≤ P . Arguing similarly to Case 1, we find that there
exist integers a1, q1 such that

∣∣∣∣ξ + λ2 −
a1

q1

∣∣∣∣ ≤
2P

q1Q1/2
, rP−1 ≤ q1 ≤ rP, (a1, q1) = 1.

Using this rational approximation to ξ + λ2, we can now apply Lemma 1 to show that

S(ξ + λ2) '
(
nq−1/2

1 + n4/5P
)
(log n)4 ' n1−ε/3.

We then derive (23) in a similar fashion to Case 1.

We conclude that (23) holds for all vectors m with 0 < |m| ≤ M . Together, (18), (21)
and (23) yield

|R(n,m)|' nk−1(log n)−A−1

for all 0 < |m| ≤ M , whence

Σ1 ' nk−1(log n)−A−1(log M)k ' nk−1(log n)−A. (24)

Finally, from (12), (14) and (24),

R+(n) =
γ1 · · · γk

(k − 1)!
Sk(n)nk−1 + O

(
nk−1(log n)−A

)
.

Since an analogous asymptotic formula holds for R−(n), the conclusion of the theorem follows
from (8).

4. Sketch of the Proof of Theorem 2

Let R+(n) and R−(n) be the quantities defined in §3 with k = 2. To prove Theorem 2 it
suffices to establish the inequality

∑

n≤x

∣∣R±(n)− γ1γ2S2(n)n
∣∣2 ' x3(log x)−3A. (25)

As in the proof of Theorem 1, we focus on the proof of the inequality for R+(n), the proof
of the other inequality being similar.

We use the notation introduced in §3 with k = 2 and A replaced by 2A+1. When k = 2,
the asymptotic formula (10) is not known, but we do have the upper bound (see [2])

R(n,0) ' n
∏

p|n

(
p

p− 1

)
' n log log n.
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This bound suffices to show similarly to (9)–(14) that

R+(n) = γ1γ2R(n,0) + O
(
n(log n)−2A + Σ1

)
.

Furthemore, by [6, Theorem 3.7],
∑

n≤x

|R(n,0)−S2(n)n|2 ' x3(log x)−3A.

Thus, (25) for R+(n) follows from the inequality

∑

n≤x

∣∣∣∣
∑

0<|m|≤M

|ĝ+
1 (m1)ĝ

+
2 (m2)||R(n,m)|

∣∣∣∣
2

' x3(log x)−3A. (26)

By (13) and Cauchy’s inequality, the left side of (26) is

' (log M)4 max
0<|m|≤M

∑

n≤x

|R(n,m)|2,

so it suffices to show that ∑

n≤x

|R(n,m)|2 ' x(log x)−3A−1 (27)

for all m, 0 < |m| ≤ M . By (15) and Bessel’s inequality,

∑

n≤x

|R(n,m)|2 ≤
∫ 1

0

|S(ξ + γ1m1)S(ξ + γ2m2)|2 dξ, (28)

where the definition of the exponential sum S(ξ) has been altered to

S(ξ) =
∑

p≤x

(log p)e(ξp).

We set
P = (log x)3A+10, Q = xP−1, (29)

and obtain similarly to (17) that
∫ 1

0

|S(ξ + γ1m1)S(ξ + γ2m2)|2 dξ ≤
∑

q≤Q

∑

1≤a≤q
(a,q)=1

∫

M(q,a)

|S(ξ)S(ξ + λ2)|2 dξ. (30)

As in §3,
min (|S(ξ)|, |S(ξ + λ2)|) ' xP−1/2(log x)4

for all ξ, so we deduce from (20), (29) and (30) that
∫ 1

0

|S(ξ + γ1m1)S(ξ + γ2m2)|2 dξ ' x3P−1(log x)9 ' x2(log x)−3A−1.

Inserting the last bound into (28), we obtain (27).
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5. Closing Remarks

In the proof of Theorem 1, we essentially showed that

R(n) = γ1 · · · γkR(n,0) + error terms, (31)

and then chose the parameters ∆,M, P,Q so that the error terms were ' nk−1(log n)−A.
It is possible to alter the above choices so that the error terms in (31) are ' nk−1−ε for
some ε > 0 which depends only on the αi’s. For example, if η > 1 is such that each of the
inequalities

‖q1α
−1
1 + q2α

−1
2 ‖ < max(1, |q1|, |q2|)−η, ‖qαi‖ < |q|−η (1 ≤ i ≤ k),

has finitely many solutions, then one may choose

∆ = nε, M = ∆−1nε = n2ε, P = n3ε, Q = nP−1,

with 0 < ε < (20η)−1. Thus, the quality of the error term in (4) is determined solely by the
quality of the error term in the asymptotic formula (10) for the number of representations
of an integer n as the sum of k primes. However, since no improvements on (10) are known,
the improved bounds for the error terms in (31) have no effect on Theorem 1.

Similarly, when k = 2, a slight alteration of our choices in §4 yields the bound

R(n) = γ1γ2R(n,0) + O
(
n1−ε

)
(32)

for all but O(x1−ε) values of n ≤ x. In this case, however, such a variation has a tangible
effect: it yields Corollary 3. Indeed, by a well-known result of Montgomery and Vaughan [5],
there is an absolute constant ω < 1 such that the right side of (32) is positive for all but
O(xω) even integers n ≤ x.

Finally, a comment regarding our finite type hypotheses. We say that an s-tuple θ1, . . . , θs

of real numbers is of subexponential type, if for each fixed η > 0, the inequality

‖q1θ1 + · · · + qsθs‖ < exp(−|q|η)

has only finitely many solutions q = (q1, . . . , qs) ∈ Zs. Clearly, every s-tuple of a finite type
is also of subexponential type, but not vice versa. It takes little effort to check that in the
arguments in §3 and §4, it suffices to assume that each αi and some pair α−1

i ,α−1
j are of

subexponential type. Thus, our method reaches some Beatty sequences Bα,β with α of an
infinite type. On the other hand, under the weaker subexponential type hypotheses, we no
longer have the improved remainder estimates in (31) and (32). In particular, we no longer
have Corollary 3 (at least, not by the simple argument sketched above). This seems to be
too steep a price to pay for such a modest gain in generality.
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