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ON N | ϕ(N)D(N) + 2 AND N | ϕ(N)σ(N) + 1
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Abstract

For any positive integer n, let ϕ(n) denote the Euler totient function, σ(n) denote the
sum of the positive divisors of n and d(n) denote the number of positive divisors of n. It is
clear that if n > 4 is an integer such that either n | ϕ(n)d(n) + 2 or n | ϕ(n)σ(n) + 1, then
n is squarefree. The following results are proved: (1) Let t and n be two positive integers
with t ≥ 2 and n|ϕ(n)d(n) + 2. If n has exactly t prime factors p1 < p2 < · · · < pt, then
pi < (t · 2t−1)2i−1

(1 ≤ i ≤ t). (2) If n is composite and n|ϕ(n)σ(n) + 1, then n has at least
three distinct prime factors.

1. Introduction

For any positive integer n, let ϕ(n) denote the Euler totient function, σ(n) denote the sum
of the positive divisors of n and d(n) denote the number of positive divisors of n. Obviously,
if n is prime, then it divides ϕ(n)d(n)+2. Is this true for any composite n other than n = 4?
The question was posed in [1, B37]. Jud McCranie finds no others with n < 1010 (see [1,
B37]). It is easy to see that if such n exists, then n is squarefree. In this paper, we prove
the following result.

Theorem 1. Let t and n be two positive integers with t ≥ 2 and n|ϕ(n)d(n) + 2. If n has
exactly t prime factors p1 < p2 < · · · < pt, then pi < (t · 2t−1)2i−1

(1 ≤ i ≤ t).

Remark. In fact, similarly to the proof of Theorem 1, we can get a more precise inequality
pi < 2t−1(t − i + 1)(p1 − 1) · · · (pi−1 − 1) for 2 ≤ i ≤ t. By using this we have proved that
there are no integers n with 2 ≤ t ≤ 4 and n | ϕ(n)d(n) + 2.
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Note that if n is prime, then it divides ϕ(n)σ(n) + 1. Now we consider the question:
Does there exist any composite n with n | ϕ(n)σ(n) + 1? It is clear that if such an integer
n exists, it must be squarefree. For this question, we prove that:

Theorem 2. If n is composite and n|ϕ(n)σ(n) + 1, then n has at least three distinct prime
factors.

Remark. If n | ϕ(n)d(n) + 2 and n | ϕ(n)σ(n) + 1, then we have n | ϕ(n)(2σ(n) − d(n)).
By n | ϕ(n)σ(n) + 1 we have (n,ϕ(n)) = 1 and n is squarefree. Thus n | 2σ(n)− d(n). It is
not difficult to prove that there are no squarefree composite n with n | 2σ(n)− d(n) except
for n = 70. But 70 ! ϕ(70)d(70) + 2. So there is no composite n with n | ϕ(n)d(n) + 2 and
n | ϕ(n)σ(n) + 1. We pose the following question.

Question. Determine all composite numbers such that n | 2σ(n)− d(n).

Remark. There are only 14 such n < 108, namely 18, 70, 88, 132, 780, 11096, 17816,
518656, 1713592, 9928792, 11547352, 13499120, 17999992 and 89283592. It is easy to prove
that if 2k+1 − k − 2 is prime, then 2k(2k+1 − k − 2) is such an integer. We have found that
2k+1−k−2 is prime for k = 3, 9, 13, 15, 25, 49, 55, 69, 115. We pose the following conjectures.

Conjecture 1. There are infinitely many primes of the form 2k+1 − k − 2, where k is a
positive integer.

Conjecture 2. There are no odd composite n such that

n | 2σ(n)− d(n).

2. Proof of the Theorems

Proof of Theorem 1. We use induction on i to prove

pi < (t · 2t−1)2i−1
(1 ≤ i ≤ t). (1)

By n | ϕ(n)d(n)+2 we have p1p2 · · · pt | 2t(p1−1)(p2−1) · · · (pt−1)+2. Now we consider the
case p1 ≥ 3. Then p1p2 · · · pt | 2t−1(p1 − 1)(p2 − 1) · · · (pt − 1) + 1. So there exists a positive
integer k such that

2t−1(p1 − 1)(p2 − 1) · · · (pt − 1) + 1 = kp1p2 · · · pt. (2)

If k ≥ 2t−1, then by (2) we have 2t−1(p1 − 1)(p2 − 1) · · · (pt − 1) + 1 ≥ 2t−1p1p2 · · · pt. Thus,
2t−1(p1p2 · · · pt − (p1 − 1)(p2 − 1) · · · (pt − 1)) ≤ 1. Obviously, this is impossible for t ≥ 2.
Hence, k ≤ 2t−1 − 1. By (2) we have

2t−1(1− 1

p1
)(1− 1

p2
) · · · (1− 1

pt
) +

1

p1p2 · · · pt
= k. (3)



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (2008), #A07 3

So

2t−1 − 1 ≥ k > 2t−1(1− 1

p1
)t ≥ 2t−1(1− t

p1
).

The last inequality is based on the fact that (1 − x)α ≥ 1 − αx for 0 < x < 1 and α ≥ 1.
Hence p1 < t2t−1. Now suppose that (1) is true for i < j ≤ t. Since

k = 2t−1(1− 1

p1
) · · · (1− 1

pt
) +

1

p1p2 · · · pt

= 2t−1(1− 1

p1
) · · · (1− 1

pj−1
)(1− 1

pj
) · · · (1− 1

pt
) +

1

p1p2 · · · pt

≤ 2t−1(1− 1

p1
) · · · (1− 1

pj−1
)(1− 1

pj
) +

1

p1p2 · · · pj

= 2t−1(1− 1

p1
) · · · (1− 1

pj−1
)
(
1− 1

pj
+

1

2t−1(p1 − 1) · · · (pj−1 − 1)pj

)

< 2t−1(1− 1

p1
) · · · (1− 1

pj−1
),

we have

2t−1(1− 1

p1
) · · · (1− 1

pj−1
)− k > 0.

Since the left-side of the above inequality is a positive rational number, it is at least as large
as 1/(p1p2 · · · pj−1). Thus

2t−1(1− 1

p1
) · · · (1− 1

pj−1
)− k ≥ 1

p1p2 · · · pj−1
.

Hence

k ≤ 2t−1(1− 1

p1
) · · · (1− 1

pj−1
)

(
1− 1

2t−1(p1 − 1)(p2 − 1) · · · (pj−1 − 1)

)
. (4)

By (3) we have

k = 2t−1(1− 1

p1
)(1− 1

p2
) · · · (1− 1

pt
) +

1

p1p2 · · · pt

> 2t−1(1− 1

p1
) · · · (1− 1

pj−1
)(1− 1

pj
)t

≥ 2t−1(1− 1

p1
) · · · (1− 1

pj−1
)(1− t

pj
).

Combining the above inequality with (4), we have

1− t

pj
< 1− 1

2t−1(p1 − 1)(p2 − 1) · · · (pj−1 − 1)
.

Thus, by the induction hypothesis, we have

pj < 2t−1t(p1 − 1) · · · (pj−1 − 1) < (t2t−1)(t2t−1)1+2+···+2j−2
= (t2t−1)2j−1

.
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So when p1 ≥ 3 we have proved that pi < (t2t−1)2i−1
for all 1 ≤ i ≤ t. Now, we consider the

case p1 = 2. By n | ϕ(n)d(n) + 2, we have 2p2 · · · pt | 2t(p2 − 1) · · · (pt − 1) + 2. That is,

p2 · · · pt | 2t−1(p2 − 1) · · · (pt − 1) + 1.

Similarly to the case p1 ≥ 3, we can prove that pi < (t2t−1)2i−1
(1 ≤ i ≤ t) when p1 = 2. !

Before the proof of Theorem 2, we first introduce a lemma.

Lemma. There do not exist positive integers a, b with a > 1 and b > 1 such that ab|a2+b2−2.

Proof of the lemma. Without loss of generality, we may assume that a ≤ b. Now we use
induction on b to prove the lemma.

It is easy to see that ab ! a2 + b2 − 2 when b = 2. Suppose that the lemma is true for
b < k. Now we consider the case b = k. Suppose that there is an integer a with k ≥ a ≥ 2
and ak | a2 + k2 − 2. Then there exists a positive integer l with

a2 + k2 − 2 = lak. (5)

By the Euclidean algorithm, there exist nonnegative integers q, r with 0 ≤ r < a such that
k = aq + r. By (5) we have

l =
a2 + k2 − 2

ak
=

a2 + (aq + r)2 − 2

a(aq + r)
= q +

r(aq + r) + a2 − 2

a(aq + r)
.

Since

0 <
r(aq + r) + a2 − 2

a(aq + r)
< 2

and by the above equation it is an integer, we have

r(aq + r) + a2 − 2

a(aq + r)
= 1 (6)

and l = q + 1. By (6) and l = q + 1 we have

la(a− r) = a2 + (a− r)2 − 2. (7)

If r = 0, then by (7) we have a2 | 2, a contradiction with a > 1. So r > 0 and k = aq+r > a.
By (7) and the induction hypothesis, we have a− r = 1. Thus by (7) we have la = a2 − 1.
Hence a | 1, which is impossible for a > 1. !

Proof of Theorem 2. Assume that n = p1p2, where p1, p2 are distinct primes. By n |
ϕ(n)σ(n) + 1 we have p1p2 | (p2

1 − 1)(p2
2 − 1) + 1. Hence, p1p2 | p2

1 + p2
2 − 2. Now Theorem 2

follows from the lemma. !
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