$$
\text { ON } N \mid \varphi(N) D(N)+2 \text { AND } N \mid \varphi(N) \sigma(N)+1
$$

Yong-Gao Chen ${ }^{1}$
Department of Mathematics, Nanjing Normal University, Nanjing 210097, P. R. China
ygchen@njnu.edu.cn
Jin-Hui Fang ${ }^{1}$
Department of Mathematics, Nanjing Normal University, Nanjing 210097, P. R. China
fangjinhui1114@163.com

Received: 8/21/07, Accepted: 1/26/08, Published: 2/6/08

Abstract

For any positive integer n, let $\varphi(n)$ denote the Euler totient function, $\sigma(n)$ denote the sum of the positive divisors of n and $d(n)$ denote the number of positive divisors of n. It is clear that if $n>4$ is an integer such that either $n \mid \varphi(n) d(n)+2$ or $n \mid \varphi(n) \sigma(n)+1$, then n is squarefree. The following results are proved: (1) Let t and n be two positive integers with $t \geq 2$ and $n \mid \varphi(n) d(n)+2$. If n has exactly t prime factors $p_{1}<p_{2}<\cdots<p_{t}$, then $p_{i}<\left(t \cdot 2^{t-1}\right)^{2^{i-1}}(1 \leq i \leq t)$. (2) If n is composite and $n \mid \varphi(n) \sigma(n)+1$, then n has at least three distinct prime factors.

1. Introduction

For any positive integer n, let $\varphi(n)$ denote the Euler totient function, $\sigma(n)$ denote the sum of the positive divisors of n and $d(n)$ denote the number of positive divisors of n. Obviously, if n is prime, then it divides $\varphi(n) d(n)+2$. Is this true for any composite n other than $n=4$? The question was posed in [1, B37]. Jud McCranie finds no others with $n<10^{10}$ (see [1, B37]). It is easy to see that if such n exists, then n is squarefree. In this paper, we prove the following result.

Theorem 1. Let t and n be two positive integers with $t \geq 2$ and $n \mid \varphi(n) d(n)+2$. If n has exactly t prime factors $p_{1}<p_{2}<\cdots<p_{t}$, then $p_{i}<\left(t \cdot 2^{t-1}\right)^{2^{i-1}}(1 \leq i \leq t)$.

Remark. In fact, similarly to the proof of Theorem 1, we can get a more precise inequality $p_{i}<2^{t-1}(t-i+1)\left(p_{1}-1\right) \cdots\left(p_{i-1}-1\right)$ for $2 \leq i \leq t$. By using this we have proved that there are no integers n with $2 \leq t \leq 4$ and $n \mid \varphi(n) d(n)+2$.

[^0]Note that if n is prime, then it divides $\varphi(n) \sigma(n)+1$. Now we consider the question: Does there exist any composite n with $n \mid \varphi(n) \sigma(n)+1$? It is clear that if such an integer n exists, it must be squarefree. For this question, we prove that:

Theorem 2. If n is composite and $n \mid \varphi(n) \sigma(n)+1$, then n has at least three distinct prime factors.

Remark. If $n \mid \varphi(n) d(n)+2$ and $n \mid \varphi(n) \sigma(n)+1$, then we have $n \mid \varphi(n)(2 \sigma(n)-d(n))$. By $n \mid \varphi(n) \sigma(n)+1$ we have $(n, \varphi(n))=1$ and n is squarefree. Thus $n \mid 2 \sigma(n)-d(n)$. It is not difficult to prove that there are no squarefree composite n with $n \mid 2 \sigma(n)-d(n)$ except for $n=70$. But $70 \nmid \varphi(70) d(70)+2$. So there is no composite n with $n \mid \varphi(n) d(n)+2$ and $n \mid \varphi(n) \sigma(n)+1$. We pose the following question.

Question. Determine all composite numbers such that $n \mid 2 \sigma(n)-d(n)$.
Remark. There are only 14 such $n<10^{8}$, namely $18,70,88,132,780,11096,17816$, $518656,1713592,9928792,11547352,13499120,17999992$ and 89283592 . It is easy to prove that if $2^{k+1}-k-2$ is prime, then $2^{k}\left(2^{k+1}-k-2\right)$ is such an integer. We have found that $2^{k+1}-k-2$ is prime for $k=3,9,13,15,25,49,55,69,115$. We pose the following conjectures.

Conjecture 1. There are infinitely many primes of the form $2^{k+1}-k-2$, where k is a positive integer.

Conjecture 2. There are no odd composite n such that

$$
n \mid 2 \sigma(n)-d(n)
$$

2. Proof of the Theorems

Proof of Theorem 1. We use induction on i to prove

$$
\begin{equation*}
p_{i}<\left(t \cdot 2^{t-1}\right)^{2^{i-1}}(1 \leq i \leq t) \tag{1}
\end{equation*}
$$

By $n \mid \varphi(n) d(n)+2$ we have $p_{1} p_{2} \cdots p_{t} \mid 2^{t}\left(p_{1}-1\right)\left(p_{2}-1\right) \cdots\left(p_{t}-1\right)+2$. Now we consider the case $p_{1} \geq 3$. Then $p_{1} p_{2} \cdots p_{t} \mid 2^{t-1}\left(p_{1}-1\right)\left(p_{2}-1\right) \cdots\left(p_{t}-1\right)+1$. So there exists a positive integer k such that

$$
\begin{equation*}
2^{t-1}\left(p_{1}-1\right)\left(p_{2}-1\right) \cdots\left(p_{t}-1\right)+1=k p_{1} p_{2} \cdots p_{t} \tag{2}
\end{equation*}
$$

If $k \geq 2^{t-1}$, then by (2) we have $2^{t-1}\left(p_{1}-1\right)\left(p_{2}-1\right) \cdots\left(p_{t}-1\right)+1 \geq 2^{t-1} p_{1} p_{2} \cdots p_{t}$. Thus, $2^{t-1}\left(p_{1} p_{2} \cdots p_{t}-\left(p_{1}-1\right)\left(p_{2}-1\right) \cdots\left(p_{t}-1\right)\right) \leq 1$. Obviously, this is impossible for $t \geq 2$. Hence, $k \leq 2^{t-1}-1$. By (2) we have

$$
\begin{equation*}
2^{t-1}\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdots\left(1-\frac{1}{p_{t}}\right)+\frac{1}{p_{1} p_{2} \cdots p_{t}}=k . \tag{3}
\end{equation*}
$$

So

$$
2^{t-1}-1 \geq k>2^{t-1}\left(1-\frac{1}{p_{1}}\right)^{t} \geq 2^{t-1}\left(1-\frac{t}{p_{1}}\right)
$$

The last inequality is based on the fact that $(1-x)^{\alpha} \geq 1-\alpha x$ for $0<x<1$ and $\alpha \geq 1$. Hence $p_{1}<t 2^{t-1}$. Now suppose that (1) is true for $i<j \leq t$. Since

$$
\begin{aligned}
k & =2^{t-1}\left(1-\frac{1}{p_{1}}\right) \cdots\left(1-\frac{1}{p_{t}}\right)+\frac{1}{p_{1} p_{2} \cdots p_{t}} \\
& =2^{t-1}\left(1-\frac{1}{p_{1}}\right) \cdots\left(1-\frac{1}{p_{j-1}}\right)\left(1-\frac{1}{p_{j}}\right) \cdots\left(1-\frac{1}{p_{t}}\right)+\frac{1}{p_{1} p_{2} \cdots p_{t}} \\
& \leq 2^{t-1}\left(1-\frac{1}{p_{1}}\right) \cdots\left(1-\frac{1}{p_{j-1}}\right)\left(1-\frac{1}{p_{j}}\right)+\frac{1}{p_{1} p_{2} \cdots p_{j}} \\
& =2^{t-1}\left(1-\frac{1}{p_{1}}\right) \cdots\left(1-\frac{1}{p_{j-1}}\right)\left(1-\frac{1}{p_{j}}+\frac{1}{2^{t-1}\left(p_{1}-1\right) \cdots\left(p_{j-1}-1\right) p_{j}}\right) \\
& <2^{t-1}\left(1-\frac{1}{p_{1}}\right) \cdots\left(1-\frac{1}{p_{j-1}}\right),
\end{aligned}
$$

we have

$$
2^{t-1}\left(1-\frac{1}{p_{1}}\right) \cdots\left(1-\frac{1}{p_{j-1}}\right)-k>0
$$

Since the left-side of the above inequality is a positive rational number, it is at least as large as $1 /\left(p_{1} p_{2} \cdots p_{j-1}\right)$. Thus

$$
2^{t-1}\left(1-\frac{1}{p_{1}}\right) \cdots\left(1-\frac{1}{p_{j-1}}\right)-k \geq \frac{1}{p_{1} p_{2} \cdots p_{j-1}} .
$$

Hence

$$
\begin{equation*}
k \leq 2^{t-1}\left(1-\frac{1}{p_{1}}\right) \cdots\left(1-\frac{1}{p_{j-1}}\right)\left(1-\frac{1}{2^{t-1}\left(p_{1}-1\right)\left(p_{2}-1\right) \cdots\left(p_{j-1}-1\right)}\right) . \tag{4}
\end{equation*}
$$

By (3) we have

$$
\begin{aligned}
k & =2^{t-1}\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdots\left(1-\frac{1}{p_{t}}\right)+\frac{1}{p_{1} p_{2} \cdots p_{t}} \\
& >2^{t-1}\left(1-\frac{1}{p_{1}}\right) \cdots\left(1-\frac{1}{p_{j-1}}\right)\left(1-\frac{1}{p_{j}}\right)^{t} \\
& \geq 2^{t-1}\left(1-\frac{1}{p_{1}}\right) \cdots\left(1-\frac{1}{p_{j-1}}\right)\left(1-\frac{t}{p_{j}}\right) .
\end{aligned}
$$

Combining the above inequality with (4), we have

$$
1-\frac{t}{p_{j}}<1-\frac{1}{2^{t-1}\left(p_{1}-1\right)\left(p_{2}-1\right) \cdots\left(p_{j-1}-1\right)}
$$

Thus, by the induction hypothesis, we have

$$
p_{j}<2^{t-1} t\left(p_{1}-1\right) \cdots\left(p_{j-1}-1\right)<\left(t 2^{t-1}\right)\left(t 2^{t-1}\right)^{1+2+\cdots+2^{j-2}}=\left(t 2^{t-1}\right)^{2^{j-1}}
$$

So when $p_{1} \geq 3$ we have proved that $p_{i}<\left(t 2^{t-1}\right)^{2^{i-1}}$ for all $1 \leq i \leq t$. Now, we consider the case $p_{1}=2$. By $n \mid \varphi(n) d(n)+2$, we have $2 p_{2} \cdots p_{t} \mid 2^{t}\left(p_{2}-1\right) \cdots\left(p_{t}-1\right)+2$. That is,

$$
p_{2} \cdots p_{t} \mid 2^{t-1}\left(p_{2}-1\right) \cdots\left(p_{t}-1\right)+1 .
$$

Similarly to the case $p_{1} \geq 3$, we can prove that $p_{i}<\left(t 2^{t-1}\right)^{2^{i-1}}(1 \leq i \leq t)$ when $p_{1}=2$.
Before the proof of Theorem 2, we first introduce a lemma.
Lemma. There do not exist positive integers a, b with $a>1$ and $b>1$ such that $a b \mid a^{2}+b^{2}-2$.
Proof of the lemma. Without loss of generality, we may assume that $a \leq b$. Now we use induction on b to prove the lemma.

It is easy to see that $a b \nmid a^{2}+b^{2}-2$ when $b=2$. Suppose that the lemma is true for $b<k$. Now we consider the case $b=k$. Suppose that there is an integer a with $k \geq a \geq 2$ and $a k \mid a^{2}+k^{2}-2$. Then there exists a positive integer l with

$$
\begin{equation*}
a^{2}+k^{2}-2=l a k . \tag{5}
\end{equation*}
$$

By the Euclidean algorithm, there exist nonnegative integers q, r with $0 \leq r<a$ such that $k=a q+r$. By (5) we have

$$
l=\frac{a^{2}+k^{2}-2}{a k}=\frac{a^{2}+(a q+r)^{2}-2}{a(a q+r)}=q+\frac{r(a q+r)+a^{2}-2}{a(a q+r)} .
$$

Since

$$
0<\frac{r(a q+r)+a^{2}-2}{a(a q+r)}<2
$$

and by the above equation it is an integer, we have

$$
\begin{equation*}
\frac{r(a q+r)+a^{2}-2}{a(a q+r)}=1 \tag{6}
\end{equation*}
$$

and $l=q+1$. By (6) and $l=q+1$ we have

$$
\begin{equation*}
l a(a-r)=a^{2}+(a-r)^{2}-2 \tag{7}
\end{equation*}
$$

If $r=0$, then by (7) we have $a^{2} \mid 2$, a contradiction with $a>1$. So $r>0$ and $k=a q+r>a$. By (7) and the induction hypothesis, we have $a-r=1$. Thus by (7) we have $l a=a^{2}-1$. Hence $a \mid 1$, which is impossible for $a>1$.

Proof of Theorem 2. Assume that $n=p_{1} p_{2}$, where p_{1}, p_{2} are distinct primes. By $n \mid$ $\varphi(n) \sigma(n)+1$ we have $p_{1} p_{2} \mid\left(p_{1}^{2}-1\right)\left(p_{2}^{2}-1\right)+1$. Hence, $p_{1} p_{2} \mid p_{1}^{2}+p_{2}^{2}-2$. Now Theorem 2 follows from the lemma.

Acknowledgment We would like to thank the referee for his/her suggestions.

Reference

[1] Richard K.Guy, Unsolved Problems in Number Theory, First Edition, Springer-Verlag, 1981; Third Edition, Springer-Verlag, 2004.

[^0]: ${ }^{1}$ Supported by the National Natural Science Foundation of China, Grant No. 10771103.

