
INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (2008), #A61

RESOLUTION OF THE MIXED SIERPIŃSKI PROBLEM
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Abstract

Recent progress on the Sierpiński problem has resulted in the proof of the following theorem:
78557 is the smallest positive odd integer k such that both k ·2n +1 and k+2n are composite
for any positive integer n. An algorithmic enhancement to the fast Fourier transform routines
used in this research is described. Prospects for the eventual resolution of both the original
and the dual Sierpiński problems are estimated.

1. The Sierpiński Problem

In 1960, Waclaw Sierpiński proved that there are an infinite number of odd positive integers
k such that k · 2n + 1 is composite for any integer n ≥ 1, and posed the problem of finding
the smallest such k [22]. Such a k value is now known as a Sierpiński number. In 1962, John
Selfridge proved that k = 78557 possesses this property (unpublished), a result which follows
from the observation that for any value of n, at least one of the seven primes in the covering
set {3, 5, 7, 13, 19, 37, 73} must divide 78557 · 2n + 1 depending upon the value of n modulo
36. No smaller Sierpiński numbers have been discovered, and it is now widely believed that
78557 is indeed the smallest number [11]. Attempts to verify this conjecture by systematic
search for a prime value of k · 2n + 1 for each k < 78557 were carried out by Selfridge,
Baillie, Cormack, Williams, Jaeschke, Keller, Buell, and Young [1, 2, 5, 6, 14, 15, 16, 21]. In
1997, Keller and Ballinger organized a distributed search on the remaining candidates using
software written by Gallot, and by 2002, the status of only 17 k values less than 78557 was
still unknown [3]. In that year, the distributed computing project Seventeen or Bust was
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started by Helm and Norris to work on the remaining candidates. To date, this project has
eliminated 11 more potential Sierpiński number candidates with the discovery of 11 large
primes, leaving the following 6 unresolved k values [12]:

10223 21181 22699
24737 55459 67607.

Table 1: Remaining k for Sierpiński Problem

2. Dual Sierpiński Problem

Replacing the exponent n in the above expression with a negative integer leads to the ex-
pression k · 2−n + 1 = (k + 2n)/2n. It is easily verified that for k = 78557, the numerator is
divisible by at least one of the seven primes in the same covering set {3, 5, 7, 13, 19, 37, 73}
again depending upon the residue class of n mod 36. This leads to the consideration of
the dual Sierpiński problem: whether or not k = 78557 is the smallest value of k with the
property that k + 2n is always composite. Covering set arguments had been used previously
by Erdős [8] and Schinzel, and Sierpiński included in his paper the proof of Schinzel that a
finite covering set of the form k + 2n must also be a covering set of the form k · 2n + 1. The
converse implication is also easily proven. Sierpiński also noted that Schinzel had proven
that there are an infinite number of values of k with the property that k +2n is always com-
posite, similar to the analogous property for Sierpiński numbers. Despite this similarity, the
solution of one problem does not necessarily imply the solution of the other. Selfridge noted
that a covering set of one sequence could contain a prime element of the other sequence, as
noted in the corrigendum to Sierpiński’s paper [22]. An even more fundamental problem is
that we are not able to rule out the possible existence of infinite covering sets. Guy reports
that Erdős had conjectured that all Sierpiński numbers must have finite covering sets [11],
but Izotov in 1995 constructed a family of Sierpiński numbers which appear likely to have
infinite covering sets. He used the identity 4y4 + 1 = (2y2 + 2y + 1)(2y2 − 2y + 1) and
chose k = x4 so that k · 2n + 1 is composite by the above identity for n ≡ 2 mod 4. Then
x was chosen so that k · 2n + 1 is covered by the set {3, 17, 257, 65537, 641, 6700417} for n
not congruent to 2 mod 4. If we also take x divisible by 5 so that 5 does not cover the case
n ≡ 2 mod 4, then there do not appear to be any obvious small finite covering sets. Filaseta,
Finch, and Kozek [9] give further examples for this type of covering, including the smallest
example with the covering set {3, 17, 97, 241, 257, 673}, and produce numerical evidence that
no small finite covering sets exist. They also prove a conjecture of Chen that for each positive
integer r, there are infinitely many Sierpinski numbers that are perfect rth powers, and they
conjecture that if k is not a perfect power, then k can only be a Sierpiński number when a
finite covering set exists. None of the values currently under investigation in either of these
problems is a perfect power.
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The dual problem initially appears to be somewhat easier than the original problem, as
more values of k are eliminated at small values of n. For example, 31 = 29 + 21 = 23 + 23

eliminates two values of k from the dual problem, whereas no two k values can be eliminated
from the original problem by the same prime. A few values of k < 78557, however, still need
searches to large values of n to uncover primes. A complete solution of the dual problem
appears to be quite difficult, not only because of the increasing difficulty of searching for
larger n, but also because a large probable prime of the form k + 2n is not easily proven to
be a genuine prime. On the other hand though, the elimination of a k value from the dual
problem with a large prime or probable prime value can at least be looked upon as strong
circumstantial evidence that such a k value is probably not a Sierpiński number. In 1983
Jaeschke searched for primes of the form k+2n for all unresolved k < 78557 from the original
problem and all n ≤ 100, thereby generating a list of exactly sixteen values of k for which
no prime of either form was known [14]. This problem of identifying the smallest value of k
for which both k · 2n + 1 and k + 2n are always composite has become known as the mixed
Sierpiński problem.

In 2001 and 2002, Samidoost encouraged investigation of the dual Sierpiński problem,
coordinating his own findings with those of other investigators [18]. As a result, a large
number of primes of the form k + 2n were discovered [20]. Although more k values are
eliminated at small values of n than in the original problem, the dual investigation suffers
from the difficulty noted above that the larger discoveries are only known to be probable
primes. Whereas large numbers of the form k ·2n+1 can easily be proven prime using Proth’s
criterion, there is currently no known practical method of proving primality for large numbers
of the dual form. Samidoost’s August 2002 discovery of 19249+2551542 with 166,031 decimal
digits was in fact the largest known probable prime at that time. As a result, Samidoost
identified k = 28433 as the only value of k < 78557 for which neither a prime of the form
k ·2n +1 nor a prime or probable prime of the form k+2n had been discovered, and therefore
the only remaining unknown case in the mixed Sierpiński conjecture if one allows probable
primes in place of proven primes.

3. Recent Results Establishing the Mixed Sierpiński Theorem

The Seventeen or Bust project has performed over one million probable primality tests over
the last 6 years. Many candidates have also been eliminated from primality testing by a
distributed sieving effort using a variety of sieving programs. The prime 28433 · 27830451 + 1
was discovered on December 30, 2004, essentially establishing the mixed Sierpiński conjecture
in the weaker sense of allowing probable primes. Recently, this result was strengthened by
the discovery of the prime 19249 · 213018586 + 1 by Seventeen or Bust member Konstantin
Agafonov. At 3,918,990 digits, this number is currently the largest known non-Mersenne
prime. For the remaining six unresolved k values from the original Sierpiński problem, the
following dual primes are known:
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10223 + 219 21181 + 228 22699 + 226

24737 + 217 55459 + 214 67607 + 216389.

Table 2: Known Dual Primes

Of the five smallest numbers in this list, none exceed 9 digits and all are easily verified to
be genuine primes by trial division. The largest number, discovered in 2002 by Fougeron, has
4934 decimal digits and was recently verified to be prime using the Elliptic Curve Primality
Proof (ECPP) program Primo.exe by Martin [17]. The run on a 3000 MHz Pentium IV
processor required 26 days. The primality certificate was then verified by Fougeron’s program
Cert Val after 27 hours of computation. As a result, the mixed Sierpiński conjecture is now
a theorem.

4. FFT Multiplication Optimization

Since this new theoretical result was made possible by the computational progress of Sev-
enteen or Bust [12], one might reasonably ask how the project was able to test so many
large prime candidates so quickly. Beyond having over 10,000 volunteers in SB’s distributed
network, the rate of progress was also accelerated by previously unpublished optimizations
in the software’s FFT multiplication routines. Seventeen or Bust runs a probable prime test
with Irrational Base Discrete Weighted Transform (IBDWT) multiplication code written by
Woltman [23] and based on work of Crandall and Fagin [7]. This code is also used in the
pfgw.exe client for the dual Sierpiǹski search. The multiplication routines contain highly
optimized assembly code and take advantage of cache structure to minimize memory access
bottlenecks. Woltman also expanded on the recent work of Percival [19] in adapting his
routines to efficiently do computations modulo numbers of the form k · 2n ± c, thus making
his routines of particular value to Seventeen or Bust as well as the dual search. Treatment of
the ±c term essentially follows the scheme of Percival, but the k ·2n term is treated in a way
that allows use of smaller FFT sizes for many exponents than those required by Percival’s
method. This new scheme involves performing a Mersenne-like DWT on 2n+log k ± c with
weights ranging from 1 to 2 rather than using Percival’s weights for k in the FFT word which
range from 1 to k, saving approximately log2 k bits of weighting data, which become 2 log2 k
bits in the inverse FFT word after point-wise squaring. The complication of this scheme is
that the “wrap around” data is now divided by k, which is dealt with by multiplying each
result word by k before rounding to an integer. Carry out of the top word is done very care-
fully, but is not a major problem. The procedure creates a result that has been multiplied by
k, which is circumvented by dealing with numbers in x/k mod (k ·2n± c) format. Therefore,
to square x, the transform of x/k is computed and squared component-wise, after which
the inverse transform is taken, giving a result x2/k still in the same format, easily adapted
to a long series of squarings such as is performed in a probable prime or Proth test. At
the conclusion of the computation, a final multiplication by k converts the result back into
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the desired form. The net savings in each inverse FFT word amounts to the equivalent of
(log2 k)/2 bits in the original input FFT word, allowing in many cases for the use of smaller
FFT sizes for the k values under investigation.

5. Prospects for Resolution of the Sierpiński and Dual Problems

The dual Sierpiński problem is presently concerned with the following five k values for which
not even a probable prime is known:

2131 28433 40291
41693 75353.

Table 3: Remaining k for Dual Sierpiński

Search limits for n on these numbers are currently (Oct. 2008) at 1,400,000, and a dis-
tributed search is being coordinated at www.mersenneforum.org. We have recently certified
all of the least dual primes for each k value which are smaller than 67607 + 216389 to be
prime, leaving just 28 k values less than 78557 for which only probable primes are known.
The probable primes are presented in the following table:

77899 + 221954 63691 + 222464 62029 + 224910 22193 + 225563

57083 + 226795 77783 + 226827 34429 + 228978 20273 + 229727

29333 + 231483 19081 + 231544 4471 + 233548 47269 + 238090

26213 + 256363 39079 + 256366 21661 + 261792 10711 + 273360

14717 + 273845 17659 + 2103766 7013 + 2104095 48527 + 2105789

35461 + 2139964 60443 + 2148227 60947 + 2176177 64133 + 2304015

37967 + 2308809 19249 + 2551542 60451 + 2983620 8543 + 21191375

Table 4: Known Probable Primes

The two largest and the fourth largest probable primes in the table were discovered by the
authors in a recent extension of the search, and the largest is now the largest known probable
prime. We have also performed strong probable prime tests on each of these 28 candidates to
at least 10 different bases. F. Morain has recently proven a 20562 digit number to be prime
via ECPP on a distributed network, so an extensive effort would probably suffice to certify
the smallest 17 of these 28 numbers as definitely prime. The 11 larger probable primes will
most likely have to wait for new breakthroughs in primality testing, to say nothing of the 5
undiscovered probable primes corresponding to the k values in Table 3 presumably waiting
to be found.
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Figure 1: Remaining Sierpiński/Dual Candidates as n Increases
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The accompanying figure shows the number of remaining candidates at each power of
two for both the original and dual problems, illustrating the relative advantage of the dual
problem in eliminating more candidates at low values of n. Interestingly, the dual problem
seems to possess a strong advantage for n near 26 where the dual problem possesses only 32%
of the candidates of the original problem, but this advantage seems to diminish at higher
n, where this ratio rises to 63% for n = 216. The investigators do not have an explanation
for this phenomenon. As the current dual problem search limits are considerably lower than
those for the original problem, it would be interesting to see what discoveries might result
from even a relatively modest further search effort.

Although full covering sets are unknown and in fact considered unlikely, the remaining k
values in both problems possess partial covering sets which cause most values of n to result
in composite values of the respective sequences. This tendency can be quantified by the
concept of Proth weight, a measure of the asymptotic expected density of primes of the form
k · 2n + 1 as compared to random numbers of the same magnitude, normalized so that the
average of the Proth weight over all odd values of k equals 1 [4, 18]. Because of the close
correspondence between covering sets in the two problems, this measure also applies to the
sequences of the dual form. As most members of these sequences are eliminated by small
prime divisors, a maximum prime cutoff value can be used in computing the Proth weight.
The data computed by Brennan’s Proth weight applet agree with the data of Seventeen or
Bust on the remaining primality candidates for each sequence after sieving. Typical k values
have Proth weights on the order of unity, while Sierpiński numbers have Proth weight 0. The
Proth weights of the remaining k values in the original Sierpiński problem range from .03540
(k = 67607) to .14102 (k = 55459), with similar ranges for the dual problem, quantifying
the extent to which we would expect primes in these sequences to be rare. Gallot has used
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this idea to compute the probabilities of solving the Sierpiński problem given certain bounds
on the exponent n [10]. (Note that his weights differ by a factor of 2 from those given by
Brennan because of a different normalization.) We have applied Gallot’s methods to our
current knowledge of these two problems to compute the expected n values to which we
would have to search in order to estimate a 10% chance, a 50% chance, and a 90% chance
of solving each problem. Our results are presented in the following table:

Probability 10% 50% 90%
Sierpiński Problem 4.1× 109 3.4× 1012 1.2× 1019

Dual Problem 1.0× 108 1.1× 1010 7.2× 1013

Table 5: Search Limits on n for Given Probabilities of Solution

The probabilities for the Sierpiński problem indicate a modest but distinct improvement
over earlier estimates, due primarily to the fortunate elimination of several low-weight k
values. Although the dual problem is expected to be significantly easier, it is still expected
to be a difficult problem. The wide range of predicted maximum n values with the varying
percentages indicates that the solution of either of these problems with our current level of
technology and resources will require some considerable luck!
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[3] R. Ballinger, W. Keller The Sierpiński Problem: Definition and Status, http://www.prothsearch.net/
sierp.html

[4] J. Brennen Proth weight applet, http://www.brennen.net/primes/ProthWeight.html

[5] D. A. Buell, J. Young Some large primes and the Sierpiński problem, SRC Technical Report 88-004,
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