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Abstract

The function bk(n) is defined as the number of partitions of n that contain no summand
divisible by k. In this paper we study the 2-divisibility of b5(n) and the 2- and 3-divisibility
of b13(n). In particular, we give exact criteria for the parity of b5(2n) and b13(2n).

1. Introduction

A partition of a positive integer n is a non-increasing sequence of positive integers whose
sum is n. In other words,

n = λ1 + λ2 + · · · + λt

with λ1 ≥ λ2 ≥ · · · ≥ λt ≥ 1. For instance, the partitions of 4 are
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4, 3 + 1, 2 + 2, 2 + 1 + 1, and 1 + 1 + 1 + 1.

We denote the number of partitions of n by p(n). So, as shown above, p(4) = 5. Note that
p(n) = 0 if n is not a nonnegative integer, and we adopt the convention that p(0) = 1. The
generating function for the partition function is then given by the infinite product

∞∑

n=0

p(n)qn =
∞∏

n=1

1

(1− qn)
= 1 + q + 2q2 + 3q3 + 5q4 + 7q5 + · · · .

Let k be a positive integer. We say that a partition is k-regular if none of its summands
is divisible by k, and denote the number of k-regular partitions of n by bk(n). For example,
b3(4) = 4 because the partition 3 + 1 has a summand divisible by 3 and therefore is not
3-regular. Adopting the convention that bk(0) = 1, the generating function for the k-regular
partition function is then

∞∑

n=0

bk(n)qn =
∞∏

n=1
k!n

1

(1− qn)
=

∞∏

n=1

(1− qkn)

(1− qn)
. (1)

Note that b2(n) equals the number of partitions of n into odd parts, which Euler proved is
equal to the number of partitions of n into distinct parts.

The partition function satisfies the famous Ramanujan congruences

p(5n + 4) ≡ 0 (mod 5),

p(7n + 5) ≡ 0 (mod 7),

p(11n + 6) ≡ 0 (mod 11)

for every n ≥ 0. Ono [7] proved that such congruences for p(n) exist modulo every prime
≥ 5, and Ahlgren [1] extended this to include every modulus coprime to 6. Given these facts,
for a positive integer m it is natural to wonder for which values of n we have that p(n) is
divisible by m, or simply how often p(n) is divisible by m. By the results cited above,

lim inf
X→∞

#{1 ≤ n ≤ X | p(n) ≡ 0 (mod m)}/X > 0

for any m coprime to 6. The m = 2 and m = 3 cases, meanwhile, have proven elusive.

The state of knowledge for k-regular partition functions is better. For example, Gordon
and Ono [4] have shown that if p is prime, pv ‖ k and pv ≥

√
k, then for any j ≥ 1 the

arithmetic density of positive integers n such that bk(n) is divisible by pj is one. In certain
cases one can find even more specific information. As an illustration we consider the parity
of b2(n). Noting that

∞∑

n=0

b2(n)qn =
∞∏

n=1

(1− q2n)

(1− qn)
≡

∞∏

n=1

(1− qn)2

(1− qn)
≡

∞∏

n=1

(1− qn) (mod 2)
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by Euler’s Pentagonal Number Theorem it follows that

∞∑

n=0

b2(n)qn ≡
∞∑

!=−∞

q!(3!+1)/2 (mod 2),

and so b2(n) is odd if and only if n = "(3" + 1)/2 for some " ∈ Z. Thus, in contrast to
the case of p(n) we have a complete answer for the 2-divisibility of b2(n) (see [6] and [3] for
analogous results for the k-divisibility of bk(n) for k ∈ {3, 5, 7, 11}).

Now consider the m-divisibility of bk(n) when (m, k) = 1. In [2] Ahlgren and Lovejoy
prove that if p ≥ 5 is prime, then for any j ≥ 1 the arithmetic density of positive integers n
such that b2(n) ≡ 0 (mod pj) is at least p+1

2p (they also prove that b2(n) satisfies Ramanujan-

type congruences modulo pj). In [9] Penniston extended this to show that for distinct primes
k and p with 3 ≤ k ≤ 23 and p ≥ 5, the arithmetic density of positive integers n for which
bk(n) ≡ 0 (mod pj) is at least p+1

2p if p ! k − 1, and at least p−1
p if p | k − 1 (in [11] and

[12] Treneer has shown that divisibility and congruence results such as these hold for general
k). The latter result indicates that a special role may be played by the prime divisors of
k − 1, and we consider this here. Upon numerically investigating the m-divisibility of bk(n)
for small values of k and m not covered by the results above, the most striking and regular
patterns we found occurred for k = 5, m = 2 and for k = 13 and m ∈ {2, 3}.

Theorem 1. Let n be a nonnegative integer. Then b5(2n) is odd if and only if n = "(3"+1)
for some " ∈ Z. That is,

∞∑

n=0

b5(2n)q2n ≡
∞∑

!=−∞

q2!(3!+1) (mod 2).

Remark. By Euler’s Pentagonal Number Theorem, Theorem 1 is equivalent to

∞∑

n=0

b5(2n)q2n ≡
∞∏

n=1

(1− qn)4 (mod 2). (2)

Theorem 2. Let n be a nonnegative integer. Then b13(2n) is odd if and only if n = "(" + 1)
or n = 13"(" + 1) + 3 for some nonnegative integer ". That is,

∞∑

n=0

b13(2n)q2n ≡
∞∑

!=0

q2!(!+1) +
∞∑

!=0

q26!(!+1)+6 (mod 2).

Remark. Jacobi’s triple product formula yields

∞∏

n=1

(1− qn)3 =
∞∑

!=0

(−1)!(2" + 1)q!(!+1)/2,

and hence Theorem 2 is equivalent to

∞∑

n=0

b13(2n)q2n ≡
∞∏

n=1

(1− q4n)3 + q6 ·
∞∏

n=1

(1− q52n)3 (mod 2). (3)
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Theorems 1 and 2 yield infinitely many Ramanujan-type congruences modulo 2 for b5(n)
and b13(n) in even arithmetic progressions. It turns out that our proof of Theorem 1 yields
two congruences for b5(n) in odd arithmetic progressions.

Theorem 3. For every n ≥ 0,

b5(20n + 5) ≡ 0 (mod 2)

and b5(20n + 13) ≡ 0 (mod 2).

Finally, we make the following conjecture regarding the 3-divisibility of b13(n).

Conjecture 1. For any " ≥ 2,

b13

(
3!n +

5 · 3!−1 − 1

2

)
≡ 0 (mod 3)

for every n ≥ 0.

It turns out (see Proposition 2 below) that one can reduce the verification of each of the
congruences in Conjecture 1 to a finite computation. We have verified the conjecture for
each 2 ≤ " ≤ 6 (one can easily check that the conjecture does not hold for " = 1).

2. Modular Forms

We begin with some background on the theory of modular forms. Given a positive integer
N , let

Γ0(N) :=

{(
a b
c d

)
∈ SL2(Z) | c ≡ 0 (mod N)

}
.

Let H := {z ∈ C | ((z) > 0} be the complex upper half plane, and for γ =

(
a b
c d

)
∈

SL2(Z) and z ∈ H define γz := az+b
cz+d . Throughout, we let q := e2πiz.

Suppose k is a positive integer, f : H → C is holomorphic and χ is a Dirichlet character
modulo N . Then f is said to be a modular form of weight k on Γ0(N) with character χ if

f(γz) = χ(d)(cz + d)kf(z) (4)

for all γ =

(
a b
c d

)
∈ Γ0(N) and f is holomorphic at the cusps of Γ0(N). The modular

forms of weight k on Γ0(N) with character χ form a finite-dimensional complex vector space
which we denote by Mk(Γ0(N),χ) (we will omit χ from our notation when it is the trivial
character). For instance, if we denote by θ(z) the classical theta function

θ(z) :=
∞∑

n=−∞
qn2

= 1 + 2q + 2q4 + 2q9 + · · · ,
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then θ4(z) ∈M2(Γ0(4)) (see, for example, [5]).

A theorem of Sturm [10] provides a method to test whether two modular forms are
congruent modulo a prime. If f(z) =

∑∞
n=0 a(n)qn has integer coefficients and m is a

positive integer, let ordm(f(z)) be the smallest n for which a(n) *≡ 0 (mod m) (if there is no
such n, we define ordm(f(z)) :=∞).

Theorem 4. (Sturm) Suppose p is prime and f(z), g(z) ∈Mk(Γ0(N),χ) ∩ Z[[q]]. If

ordp(f(z)− g(z)) >
k

12
[SL2(Z) : Γ0(N)],

then f(z) ≡ g(z) (mod p), i.e., ordp(f(z)− g(z)) =∞.

We note here that [SL2(Z) : Γ0(N)] = N ·
∏(

!+1
!

)
, where the product is over the prime

divisors of N .

Hecke operators play a crucial role in the proofs of our results. If f(z) =
∑∞

n=0 a(n)qn ∈
Z[[q]] and p is prime, then the action of the Hecke operator Tp,k,χ on f(z) is defined by

(f | Tp,k,χ)(z) :=
∞∑

n=0

(a(pn) + χ(p)pk−1a(n/p))qn

(we follow the convention that a(x) = 0 if x /∈ Z). Notice that if k > 1, then

(f | Tp,k,χ)(z) ≡
∞∑

n=0

a(pn)qn (mod p). (5)

Moreover, if f(z) ∈ Mk(Γ0(N),χ), then (f |Tp,k,χ)(z) ∈ Mk(Γ0(N),χ). When k and χ are
clear from context, we will write Tp := Tp,k,χ.

The next proposition follows directly from (5) and the definition of Tp,k,χ.

Proposition 1. Suppose p is prime, g(z) ∈ Z[[q]], h(z) ∈ Z[[qp]] and k > 1. Then (gh |
Tp,k,χ)(z) ≡ (g | Tp,k,χ)(z) · h(z/p) (mod p).

We will construct modular forms using Dedekind’s eta function, which is defined by

η(z) := q
1
24

∞∏

n=1

(1− qn)

for z ∈ H. A function of the form

f(z) =
∏

δ|N

ηrδ(δz), (6)

where rδ ∈ Z and the product is over the positive divisors of N , is called an eta-quotient.
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From ([8], p. 18), if f(z) is the eta-quotient (6), k := 1
2

∑
δ|N rδ ∈ Z,

∑

δ|N

δrδ ≡ 0 (mod 24)

and
N

∑

δ|N

rδ

δ
≡ 0 (mod 24),

then f(z) satisfies the transformation property (4) for all γ ∈ Γ0(N). Here χ is given by

χ(d) :=
(

(−1)ks
d

)
, where s :=

∏
δ|N δrδ . Assuming that f satisfies these conditions, then

since η(z) is analytic and does not vanish on H, we have that f(z) ∈ Mk(Γ0(N),χ) if f(z)
is holomorphic at the cusps of Γ0(N). By ([8], Theorem 1.65) we have that if c and d are
positive integers with (c, d) = 1 and d | N , then the order of vanishing of f(z) at the cusp c

d

is
N

24d(d, N
d )

·
∑

δ|N

(d, δ)2rδ

δ
.

3. Proof of the Main Results

Proof of Theorem 1. We begin with the modular forms

f(z) :=
η5(5z)

η(z)
= q + q2 + 2q3 + 3q4 + 5q5 + · · ·

and

g(z) := η4(z)η4(5z) = q ·
∞∏

n=1

(1− qn)4(1− q5n)4. (7)

Define the character χm by χm(d) :=
(

m
d

)
. Using the results on eta-quotients cited above we

find that f(z) ∈M2(Γ0(5),χ5) and g(z) ∈M4(Γ0(5)). Next, recall that

θ4(z) = 1 + 8q + 24q2 + 32q3 + · · · ∈M2(Γ0(4)).

Notice that (θ4(z))2 ∈M4(Γ0(20)).

From (1) we have

f(z) =
η(5z)

η(z)
· η4(5z)

=
q5/24

∏∞
n=1(1− q5n)

q1/24
∏∞

n=1(1− qn)
· q20/24

∞∏

j=1

(1− q5j)4 (8)

≡
∞∑

n=0

b5(n)qn+1 ·
∞∏

j=1

(1− q20j) (mod 2). (9)
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It follows from Proposition 1 that

(f | T2)(z) ≡
∞∑

n=0

b5(2n + 1)qn+1 ·
∞∏

j=1

(1− q10j) (mod 2), (10)

and hence

h(z) := f(z)− (f | T2)(2z) ≡
∞∑

n=0

b5(2n)q2n+1 ·
∞∏

j=1

(1− q20j) (mod 2). (11)

Note that f(z) and (f | T2)(2z) are in M2(Γ0(10),χ5), and hence h(z) lies in this space
as well. It follows that h2(z)θ8(z) ∈ M8(Γ0(20)). Now, g2(z) ∈ M8(Γ0(20)), and one can
check that the forms h2(z)θ8(z) and g2(z) are congruent modulo 2 out to their q24 terms.
By Sturm’s theorem we conclude that these forms are congruent modulo 2. Since θ(z) ≡ 1
(mod 2), we have that h2(z) ≡ g2(z) (mod 2), and hence h(z) ≡ g(z) (mod 2). Then by
(11) and (7),

∞∑

n=0

b5(2n)q2n ·
∞∏

j=1

(1− q20j) ≡
∞∏

n=1

(1− qn)4(1− q5n)4 (mod 2). (12)

Since (1− q5n)4 ≡ 1− q20n (mod 2), (2) now follows from (12).

Proof of Theorem 2. To begin, we define

u(z) :=
η13(13z)

η(z)
∈M6(Γ0(13),χ13).

We will also use the following two forms in M12(Γ0(13)):

v(z) := η12(z)η12(13z) = q7 ·
∞∏

n=1

(1− qn)12(1− q13n)12 (13)

and

w(z) := η24(13z) = q13 ·
∞∏

n=1

(1− q13n)24. (14)

From (1) we have that

u(z) ≡
∞∑

n=0

b13(n)qn+7 ·
∞∏

j=1

(1− q52j)3 (mod 2).

Then

(u | T2)(z) ≡
∞∑

n=0

b13(2n + 1)qn+4 ·
∞∏

j=1

(1− q26j)3 (mod 2),
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and hence

m(z) := u(z)− (u | T2)(2z) ≡
∞∑

n=0

b13(2n)q2n+7 ·
∞∏

j=1

(1− q52j)3 (mod 2). (15)

Note that since u(z) and (u | T2)(2z) lie in M6(Γ0(26),χ13), so does m(z). Then since
θ24(z) ∈ M12(Γ0(52)), we have that m2(z)θ24(z) ∈ M24(Γ0(52)). Note that v2(z), w2(z) ∈
M24(Γ0(52)) as well, and one can check that the forms m2(z)θ24(z) and v2(z) + w2(z) are
congruent modulo 2 out to their q168 terms. By Sturm’s theorem we conclude that

m2(z)θ24(z) ≡ v2(z) + w2(z) (mod 2),

and therefore m(z)θ12(z) ≡ v(z) + w(z) (mod 2). Since θ(z) ≡ 1 (mod 2), we find that
m(z) ≡ v(z) + w(z) (mod 2). Then (15), (13) and (14) give

∞∑

n=0

b13(2n)q2n+7 ·
∞∏

j=1

(1− q13j)12 ≡ q7 ·
∞∏

n=1

(1− qn)12(1− q13n)12

+q13 ·
∞∏

n=1

(1− q13n)24 (mod 2),

which implies (3).

Proof of Theorem 3. We prove only the first congruence, as the second can be proved in a
similar way. Sturm’s theorem gives that f(z) and (f | T2)(z) are congruent modulo 2, which
by (10) yields

∞∑

n=0

b5(2n + 1)qn+1 ·
∞∏

j=1

(1− q10j) ≡ q ·
∞∏

n=1

(1− q5n)5

(1− qn)
(mod 2).

Then
∞∑

n=0

b5(2n + 1)qn+1 ·
∞∏

j=1

(1− q10j) ≡ q ·
∞∏

n=1

(1− q5n)

(1− qn)
·
∞∏

j=1

(1− q5j)4 (mod 2),

and hence
∞∑

n=0

b5(2n + 1)qn ≡
∞∑

!=0

b5(")q
! ·

∞∏

j=1

(1− q10j) (mod 2). (16)

Note that 2n + 1 has the form 20m + 5 if and only if n ≡ 2 (mod 10). Since the infinite
product on the right hand side of (16) only produces powers of q that are 0 modulo 10, it
suffices to show that

b5(10n + 2) ≡ 0 (mod 2) (17)

for all n ≥ 0. One can easily check that the congruence 6"2 + 2" ≡ 2 (mod 10) has no
solution, and so (17) follows from Theorem 1.
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With regard to Conjecture 1, we have the following elementary proposition.

Proposition 2. Let " ≥ 2. If the congruence

b13

(
3!n +

5 · 3!−1 − 1

2

)
≡ 0 (mod 3)

holds for all 0 ≤ n ≤ 7 · 3!−1 − 3, then it holds for all n ≥ 0.

Proof. The idea of our proof is to repeatedly apply the T3 operator to the modular form

P!(z) :=
η(13z)

η(z)
· ηe(13z),

where e := 4 · 3!. By the criteria for eta-quotients cited above, P!(z) ∈M e
2
(Γ0(13),χ13).

For each 1 ≤ t ≤ " let

δt :=
13 · 3t−1 + 1

2
.

Then

P!(z) =
∞∑

n=0

b13(n)qn+δ" ·
∞∏

j=1

(1− q13j)e.

Note that

P!(z) ≡
∞∑

n=0

b13(n)qn+δ" ·
∞∏

j=1

(1− q3"·13j)4 (mod 3).

Using Proposition 1 and the fact that δt ≡ 2 (mod 3) for 2 ≤ t ≤ ", an easy induction
argument gives that (P! | T s

3 )(z) is congruent modulo 3 to
∞∑

n=0

b13

(
3sn +

(
3s − 1

2

))
qn+δ"−s ·

∞∏

j=1

(1− q3"−s·13j)4

for any 1 ≤ s ≤ "− 1. In particular,

(P! | T !−1
3 )(z) ≡

∞∑

n=0

b13

(
3!−1n +

(
3!−1 − 1

2

))
qn+7 ·

∞∏

j=1

(1− q39j)4 (mod 3).

Then

(P!|T !
3)(z) ≡

∞∑

n=0

b13

(
3!−1(3n + 2) +

(
3!−1 − 1

2

))
q

(3n+2)+7
3 ·

∞∏

j=1

(1− q13j)4

≡
∞∑

n=0

b13

(
3!n +

5 · 3!−1 − 1

2

)
qn+3 ·

∞∏

j=1

(1− q13j)4 (mod 3).

Since (P! | T !
3)(z) ∈M e

2
(Γ0(13),χ13), by Sturm’s theorem we have that if ord3((P! | T !

3)(z)) >
7 · 3!−1, then (P! | T !

3)(z) ≡ 0 (mod 3). Therefore, if the congruence

b13

(
3!n +

5 · 3!−1 − 1

2

)
≡ 0 (mod 3)

holds for all 0 ≤ n ≤ 7 · 3!−1 − 3, then it holds for all n ≥ 0.
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