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Abstract

In this note, we find an asymptotic formula for the counting function of the set of totient
abundant numbers.

1. Introduction

Let φ(n) be the Euler function of the positive integer n. Put

k(n) = min{k ≥ 1 : φ(k)(n) = 1},

where f (k) denotes the kth fold iteration of the function f . Put

F (n) =
k(n)∑

k=1

φ(k)(n).

If σ(n) is the sum of divisors function, numbers n for which σ(n) = 2n are called perfect.
Results on perfect numbers are well documented; as of 2007, there are only 44 known perfect
numbers. By analogy, numbers n for which F (n) = n are called perfect totients. Their
distribution was studied in [4], [6], [9], [10] and [11]. Although there are infinitely many
perfect totients (for instance, 3k is a perfect totient for any k), it was shown in [11] that the
set of perfect totients has asymptotic density zero.

Abundant numbers are those for which σ(n) > 2n. Analogously, let us call a number
n to be totient abundant if F (n) > n and let us put A for the set of all totient abundant
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numbers. It is known that the abundant numbers have a positive density whose value is in
the interval [.2474, .2480] (see [1]). It follows from Theorem 2 in [6], that A is of asymptotic
density zero. The following table shows the frequency of the totient abundant numbers in
various intervals.

Interval Frequency Interval Frequency
[1, 103] 383 [109, 109 + 106] 330491
[1, 104] 3708 [1012, 1012 + 106] 323685
[1, 105] 35731 [1015, 1015 + 106] 319049
[1, 106] 347505 [1018, 1018 + 106] 315789
[1, 107] 3407290 [1021, 1021 + 106] 313195
[1, 108] 33579303 [1024, 1024 + 106] 310836

As the proportion of totient abundant numbers stays above 0.3 for quite large values of
n, it would seem interesting to find an asymptotic formula for #A(x) as x → ∞, where
A(x) = A ∩ [1, x], unraveling the slow convergence towards zero of this proportion. Our
result is the following (here, γ is the Euler constant):

Theorem 1. The estimate

#A(x) = (e−γ + o(1))
x

log log log log x
(1)

holds as x→∞.

2. The Proof

Throughout this proof, we write c1, c2, . . . for computable positive constants. We also write
logk x for the function defined recursively by the formula logk x = max{1, log(logk−1 x)},
where log is the natural logarithm. Note that logk x coincides with the kth fold iterate of
the natural logarithm function when x is large. When k = 1 we omit the subscript (but still
assume that all logarithms that will appear are ≥ 1).

We start by eliminating a few subsets of positive integers n ≤ x whose counting functions
are much smaller than what is shown in the right hand side of estimate (1). On the set of
remaining n ≤ x, we then show that F (n) > n holds for a set of numbers n ≤ x of cardinality
as predicted by (1).

Lemma 2 in [7], with its proof, shows that all n ≤ x have the property that p | φ(n) for
all primes p < c1 log2 x/ log3 x holds with O(x/(log3 x)2) exceptions in n. Let A1(x) be the
set of these exceptional n ≤ x. From now on, we work with n ≤ x not in A1(x).

For a positive integer m and a positive real number z we put

ωz(m) =
∑

p≤z
p |m

1
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for the number of distinct prime factors p of m not exceeding z. When we omit the subscript
we mean the total number of distinct prime factors of m.

Put y = log2 x. Let A2(x) be the set of n ≤ x such that ω(φ(n)) > y2. It follows
from the results from [2] that #A2(x) & x/y. It also follows from the results from [2] (see
page 349 in [2], for example) that if we put A3(x) for the set of n such that ωy3(φ(n)) >
2 log2 x log2 y, then #A3(x) & x/y. From now on, we work with numbers n ≤ x not in
A1(x) ∪A2(x) ∪A3(x).

Let m = φ(n). We find upper and lower bounds for φ(m)/m. On the one hand, since
n (∈ A1(x), we have

φ(m)

m
≤

∏

p≤c1 log2 x/ log3 x

(
1− 1

p

)

= e−γ 1

log(c1 log2 x/ log3 x)

(
1 + O

(
1

log3 x

))

=
e−γ

log3 x

(
1 + O

(
log4 x

log3 x

))
, (2)

where we used Mertens’s estimate

∏

p≤t

(
1− 1

p

)
=

e−γ

log t

(
1 + O

(
1

log t

))

valid for all t ≥ 2. On the other hand,

φ(m)

m
=

∏

p |m
p≤y3

(
1− 1

p

) ∏

p |m
p>y3

(
1− 1

p

)
. (3)

The first product above contains at most % = +2 log2 x log2 y, primes since n (∈ A3(x). Letting
p1 < p2 < · · · < pk < · · · be the sequence of all the prime numbers, we get that

∏

p |m
p≤y3

(
1− 1

p

)
≥

"∏

i=1

(
1− 1

pi

)
>

∏

p≤log2 x(log3 x)2

(
1− 1

p

)

=
e−γ

log3 x

(
1 + O

(
log4 x

log3 x

))

for large x, where in the above inequalities we used the Prime Number Theorem to conclude
that the inequality p" < log2 x(log3 x)2 holds when x is large, as well as Mertens’s estimate.
As for the second product in (3), since n (∈ A2(x), we have that this product contains at
most y2 primes all exceeding y3 so

∏

p |m
p>y3

(
1− 1

p

)
>

(
1− 1

y3

)y2

= exp(O(1/y)) = 1 + O

(
1

y

)
.
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Thus,
φ(m)

m
≥ e−γ

log3 x

(
1 + O

(
log4 x

log3 x

))
, (4)

which together with (2) shows that

φ(m)

m
=

e−γ

log3 x

(
1 + O

(
log4 x

log3 x

))
.

Recall that a famous theorem of Linnik asserts that there exists a positive constant L such
that whenever a and b > 1 are coprime integers, the least prime number p in the arithmetic
progression a (mod b) satisfies the inequality p& bL. The best known L appears in Theorem
6 in [5] and its value is 5.5. In particular, since our m is divisible by all primes p ≤
c1 log2 x/ log3 x, it follows that for large x, φ(m) is divisible by all primes ≤ (log2 x)1/6.
Hence, by the Mertens’s formula once again,

φ(φ(m))

φ(m)
≤

∏

p≤(log2 x)1/6

(
1− 1

p

)
& 1

log3 x
.

Since φ(k)(m) is even for all k < k(n), it follows that φ(k+1)(m)/φ(k)(m) ≤ 1/2 for all
k < k(n). Hence,

k(n)∑

k=2

φ(k)(m) ≤ φ(φ(m))

(
1 +

1

2
+

1

4
+ · · ·

)
& φ(φ(m)),

therefore
k(n)∑

k=1

φ(k)(m) = φ(m) + O(φ(φ(m))) = φ(m)

(
1 + O

(
1

log3 x

))
,

so

F (n) = m + φ(m) + φ(φ(m)) + . . . = m + φ(m)

(
1 + O

(
1

log3 x

))

= m

(
1 +

e−γ

log3 x

(
1 + O

(
log4 x

log3 x

)))
. (5)

Hence, for n ≤ x not in A1(x) ∪A2(x) ∪A3(x) we have that

F (n) = φ(n)

(
1 +

e−γ

log3 x

(
1 + O

(
log4 x

log3 x

)))
.

Suppose now that F (n) > n. Then putting p(n) for the smallest prime factor of n, we have
that

1 +
e−γ

log3 x

(
1 + O

(
log4 x

log3 x

))
>

n

φ(n)
≥ 1 +

1

p(n)− 1
,
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giving p(n) ≥ c2 log3 x for large x, where one can take c2 to be any constant smaller than eγ.
Hence, n ≤ x is coprime to all primes p < c2 log3 x, and the number of such numbers is, via
Eratosthenes’s sieve and Mertens’s formula,

= (1 + o(1))x
∏

p<c2 log3 x

(
1− 1

p

)
= (e−γ + o(1))

x

log4 x
,

which proves the upper bound (1) on A(x). Finally, for the lower bound on the set A(x),
consider the set A4(x) of n ≤ x such that either ω(n) > 2y, or ωy2(n) > (log2 y)2. The
Túran-Kubilius inequalities (see, for example, [12]) assert that the estimate

∑

n≤x

(ω(n)− log2 t)2 = O(x log2 t)

holds uniformly in 2 ≤ t ≤ x. Applying this with t = x and t = y2, we get easily that

#A4(x) & x

y
+

x

(log2 y)3
& x

(log4 x)3
.

Put now z = log3 x. Consider numbers n ≤ x coprime to all primes p ≤ z(log z)10 which do
not belong to A1(x) ∪ A2(x) ∪ A3(x) ∪ A4(x). By the Eratosthenes’s sieve and Mertens’s
formula, the number of such numbers n is

≥ (1 + o(1))x
∏

p≤z(log z)10

(
1− 1

p

)
−

4∑

i=1

#Ai(x)

= (e−γ + o(1))
x

log4 x
+ O

(
x

(log4 x)3

)

= (e−γ + o(1))
x

log4 x
, as x→∞.

For such numbers,
n

φ(n)
=

∏

p≤y2

p |n

(
1 +

1

p− 1

) ∏

p>y2

p |n

(
1 +

1

p− 1

)
.

The first product contains at most (log2 y)2 < 2(log z)2 primes all exceeding z(log z)10,
therefore ∏

p≤y2

p |n

(
1 +

1

p− 1

)
< exp

(
2(log z)2

z(log z)10 − 1

)
< 1 +

5

z(log z)8

for large x, where we used the fact that 1 + t > et/2 when t ∈ (0, 1/2). The second product
contains at most 2y primes all exceeding y2 so

∏

p>y2

p |n

(
1 +

1

p− 1

)
< exp

(
2y

y2 − 1

)
< 1 +

5

y
.
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Thus,
n

φ(n)
<

(
1 +

5

z(log z)8

)(
1 +

5

y

)
< 1 +

1

log3 x log4 x

for large x, which together with estimate (5) shows that the numbers n such constructed are
indeed totient abundant. This completes the proof of our theorem.

3. Comments

Let F = {F (n) : n ∈ N} and put F(x) = F ∩ [1, x]. In [11], Shparlinski observed that since
the image of the map

Ψ : {φ(n) : n ∈ N} −→ N : v -→ v + φ(v) + · · · + φk(v)(v)

is the range of F , it follows that the order of magnitude of #F(x) is at most the order of
magnitude of the cardinality of the set of totients not exceeding x, which is known to be

x

log x
exp((c3 + o(1))(log log log x)2)

with some positive constant c3 (see [3] and [8]) as x→∞. Note that the above argument is
not enough to decide whether the series

∑

f∈F

1

f

is convergent or divergent, which is a problem we leave for the reader. It will also seem
interesting to give a sharp lower bound on #F(x). Pomerance, in a personal communication,
notes that since φ(n) = F (n) − F (φ(n)), it follows that #F(x) . x1/2+o(1) as x → ∞. It
would seem interesting to improve the exponent 1/2.
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metical functions φ and σ’, Colloq. Math. 92 (2002), 111–130.

[8] H. Maier and C. Pomerance, ‘On the number of distinct values of Euler’s φ-function’, Acta Arith. 49
(1988), 263–275.

[9] A. L. Mohan and D. Suryanarayana, ‘Perfect totient numbers’ in Number Theory (Proc. 3rd Matscience
Conf. Misore 1981), Lect. Notes in Math. 938, Springer-Verlag, New-York, 1982, 101–105.

[10] L. Perez Cacho, ‘Sobre la suma de indicadores de ordenes sucesivos’, Revista Matematica Hispano-
Americana 1 (1939), 45-50.

[11] I. E. Shparlinski, ‘On the sum of iterations of the Euler function’, J. Integer Seq., 9 (2006), Article
06.1.6.
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