ON TOTIENT ABUNDANT NUMBERS

Paul Loomis
Department of Mathematics, Bloomsburg University, Bloomsburg, PA 17815, USA
ploomis@bloomu.edu

Florian Luca
Instituto de Matemáticas, Universidad Nacional Autónoma de México, C.P. 58089, Morelia, Michoacán, México
fluca@matmor.unam.mx

Received: 10/4/07, Accepted: 1/25/08, Published: 2/6/08

Abstract

In this note, we find an asymptotic formula for the counting function of the set of totient abundant numbers.

1. Introduction

Let $\phi(n)$ be the Euler function of the positive integer n. Put

$$
k(n)=\min \left\{k \geq 1: \phi^{(k)}(n)=1\right\}
$$

where $f^{(k)}$ denotes the k th fold iteration of the function f. Put

$$
F(n)=\sum_{k=1}^{k(n)} \phi^{(k)}(n)
$$

If $\sigma(n)$ is the sum of divisors function, numbers n for which $\sigma(n)=2 n$ are called perfect. Results on perfect numbers are well documented; as of 2007, there are only 44 known perfect numbers. By analogy, numbers n for which $F(n)=n$ are called perfect totients. Their distribution was studied in [4], [6], [9], [10] and [11]. Although there are infinitely many perfect totients (for instance, 3^{k} is a perfect totient for any k), it was shown in [11] that the set of perfect totients has asymptotic density zero.

Abundant numbers are those for which $\sigma(n)>2 n$. Analogously, let us call a number n to be totient abundant if $F(n)>n$ and let us put \mathcal{A} for the set of all totient abundant
numbers. It is known that the abundant numbers have a positive density whose value is in the interval [.2474, .2480] (see [1]). It follows from Theorem 2 in [6], that \mathcal{A} is of asymptotic density zero. The following table shows the frequency of the totient abundant numbers in various intervals.

Interval	Frequency	Interval	Frequency
$\left[1,10^{3}\right]$	383	$\left[10^{9}, 10^{9}+10^{6}\right]$	330491
$\left[1,10^{4}\right]$	3708	$\left[10^{12}, 10^{12}+10^{6}\right]$	323685
$\left[1,10^{5}\right]$	35731	$\left[10^{15}, 10^{15}+10^{6}\right]$	319049
$\left[1,10^{6}\right]$	347505	$\left[10^{18}, 10^{18}+10^{6}\right]$	315789
$\left[1,10^{7}\right]$	3407290	$\left[10^{21}, 10^{21}+10^{6}\right]$	313195
$\left[1,10^{8}\right]$	33579303	$\left[10^{24}, 10^{24}+10^{6}\right]$	310836

As the proportion of totient abundant numbers stays above 0.3 for quite large values of n, it would seem interesting to find an asymptotic formula for $\# \mathcal{A}(x)$ as $x \rightarrow \infty$, where $\mathcal{A}(x)=\mathcal{A} \cap[1, x]$, unraveling the slow convergence towards zero of this proportion. Our result is the following (here, γ is the Euler constant):
Theorem 1. The estimate

$$
\begin{equation*}
\# \mathcal{A}(x)=\left(e^{-\gamma}+o(1)\right) \frac{x}{\log \log \log \log x} \tag{1}
\end{equation*}
$$

holds as $x \rightarrow \infty$.

2. The Proof

Throughout this proof, we write c_{1}, c_{2}, \ldots for computable positive constants. We also write $\log _{k} x$ for the function defined recursively by the formula $\log _{k} x=\max \left\{1, \log \left(\log _{k-1} x\right)\right\}$, where \log is the natural $\operatorname{logarithm}$. Note that $\log _{k} x$ coincides with the k th fold iterate of the natural logarithm function when x is large. When $k=1$ we omit the subscript (but still assume that all logarithms that will appear are ≥ 1).

We start by eliminating a few subsets of positive integers $n \leq x$ whose counting functions are much smaller than what is shown in the right hand side of estimate (1). On the set of remaining $n \leq x$, we then show that $F(n)>n$ holds for a set of numbers $n \leq x$ of cardinality as predicted by (1).

Lemma 2 in [7], with its proof, shows that all $n \leq x$ have the property that $p \mid \phi(n)$ for all primes $p<c_{1} \log _{2} x / \log _{3} x$ holds with $O\left(x /\left(\log _{3} x\right)^{2}\right)$ exceptions in n. Let $\mathcal{A}_{1}(x)$ be the set of these exceptional $n \leq x$. From now on, we work with $n \leq x$ not in $\mathcal{A}_{1}(x)$.

For a positive integer m and a positive real number z we put

$$
\omega_{z}(m)=\sum_{\substack{p \leq z \\ p \backslash m}} 1
$$

for the number of distinct prime factors p of m not exceeding z. When we omit the subscript we mean the total number of distinct prime factors of m.

Put $y=\log _{2} x$. Let $\mathcal{A}_{2}(x)$ be the set of $n \leq x$ such that $\omega(\phi(n))>y^{2}$. It follows from the results from [2] that $\# \mathcal{A}_{2}(x) \ll x / y$. It also follows from the results from [2] (see page 349 in [2], for example) that if we put $\mathcal{A}_{3}(x)$ for the set of n such that $\omega_{y^{3}}(\phi(n))>$ $2 \log _{2} x \log _{2} y$, then $\# \mathcal{A}_{3}(x) \ll x / y$. From now on, we work with numbers $n \leq x$ not in $\mathcal{A}_{1}(x) \cup \mathcal{A}_{2}(x) \cup \mathcal{A}_{3}(x)$.

Let $m=\phi(n)$. We find upper and lower bounds for $\phi(m) / m$. On the one hand, since $n \notin \mathcal{A}_{1}(x)$, we have

$$
\begin{align*}
\frac{\phi(m)}{m} & \leq \prod_{p \leq c_{1} \log _{2} x / \log _{3} x}\left(1-\frac{1}{p}\right) \\
& =e^{-\gamma} \frac{1}{\log \left(c_{1} \log _{2} x / \log _{3} x\right)}\left(1+O\left(\frac{1}{\log _{3} x}\right)\right) \\
& =\frac{e^{-\gamma}}{\log _{3} x}\left(1+O\left(\frac{\log _{4} x}{\log _{3} x}\right)\right) \tag{2}
\end{align*}
$$

where we used Mertens's estimate

$$
\prod_{p \leq t}\left(1-\frac{1}{p}\right)=\frac{e^{-\gamma}}{\log t}\left(1+O\left(\frac{1}{\log t}\right)\right)
$$

valid for all $t \geq 2$. On the other hand,

$$
\begin{equation*}
\frac{\phi(m)}{m}=\prod_{\substack{p \mid m \\ p \leq y^{3}}}\left(1-\frac{1}{p}\right) \prod_{\substack{p \mid m \\ p>y^{3}}}\left(1-\frac{1}{p}\right) \tag{3}
\end{equation*}
$$

The first product above contains at most $\ell=\left\lfloor 2 \log _{2} x \log _{2} y\right\rfloor$ primes since $n \notin \mathcal{A}_{3}(x)$. Letting $p_{1}<p_{2}<\cdots<p_{k}<\cdots$ be the sequence of all the prime numbers, we get that

$$
\begin{aligned}
\prod_{\substack{p \mid m \\
p \leq y^{3}}}\left(1-\frac{1}{p}\right) & \geq \prod_{i=1}^{\ell}\left(1-\frac{1}{p_{i}}\right)>\prod_{p \leq \log _{2} x\left(\log _{3} x\right)^{2}}\left(1-\frac{1}{p}\right) \\
& =\frac{e^{-\gamma}}{\log _{3} x}\left(1+O\left(\frac{\log _{4} x}{\log _{3} x}\right)\right)
\end{aligned}
$$

for large x, where in the above inequalities we used the Prime Number Theorem to conclude that the inequality $p_{\ell}<\log _{2} x\left(\log _{3} x\right)^{2}$ holds when x is large, as well as Mertens's estimate. As for the second product in (3), since $n \notin \mathcal{A}_{2}(x)$, we have that this product contains at most y^{2} primes all exceeding y^{3} so

$$
\prod_{\substack{p \mid m \\ p>y^{3}}}\left(1-\frac{1}{p}\right)>\left(1-\frac{1}{y^{3}}\right)^{y^{2}}=\exp (O(1 / y))=1+O\left(\frac{1}{y}\right) .
$$

Thus,

$$
\begin{equation*}
\frac{\phi(m)}{m} \geq \frac{e^{-\gamma}}{\log _{3} x}\left(1+O\left(\frac{\log _{4} x}{\log _{3} x}\right)\right) \tag{4}
\end{equation*}
$$

which together with (2) shows that

$$
\frac{\phi(m)}{m}=\frac{e^{-\gamma}}{\log _{3} x}\left(1+O\left(\frac{\log _{4} x}{\log _{3} x}\right)\right) .
$$

Recall that a famous theorem of Linnik asserts that there exists a positive constant L such that whenever a and $b>1$ are coprime integers, the least prime number p in the arithmetic progression $a(\bmod b)$ satisfies the inequality $p \ll b^{L}$. The best known L appears in Theorem 6 in [5] and its value is 5.5. In particular, since our m is divisible by all primes $p \leq$ $c_{1} \log _{2} x / \log _{3} x$, it follows that for large $x, \phi(m)$ is divisible by all primes $\leq\left(\log _{2} x\right)^{1 / 6}$. Hence, by the Mertens's formula once again,

$$
\frac{\phi(\phi(m))}{\phi(m)} \leq \prod_{p \leq\left(\log _{2} x\right)^{1 / 6}}\left(1-\frac{1}{p}\right) \ll \frac{1}{\log _{3} x}
$$

Since $\phi^{(k)}(m)$ is even for all $k<k(n)$, it follows that $\phi^{(k+1)}(m) / \phi^{(k)}(m) \leq 1 / 2$ for all $k<k(n)$. Hence,

$$
\sum_{k=2}^{k(n)} \phi^{(k)}(m) \leq \phi(\phi(m))\left(1+\frac{1}{2}+\frac{1}{4}+\cdots\right) \ll \phi(\phi(m))
$$

therefore

$$
\sum_{k=1}^{k(n)} \phi^{(k)}(m)=\phi(m)+O(\phi(\phi(m)))=\phi(m)\left(1+O\left(\frac{1}{\log _{3} x}\right)\right)
$$

so

$$
\begin{align*}
F(n) & =m+\phi(m)+\phi(\phi(m))+\ldots=m+\phi(m)\left(1+O\left(\frac{1}{\log _{3} x}\right)\right) \\
& =m\left(1+\frac{e^{-\gamma}}{\log _{3} x}\left(1+O\left(\frac{\log _{4} x}{\log _{3} x}\right)\right)\right) \tag{5}
\end{align*}
$$

Hence, for $n \leq x$ not in $\mathcal{A}_{1}(x) \cup \mathcal{A}_{2}(x) \cup \mathcal{A}_{3}(x)$ we have that

$$
F(n)=\phi(n)\left(1+\frac{e^{-\gamma}}{\log _{3} x}\left(1+O\left(\frac{\log _{4} x}{\log _{3} x}\right)\right)\right)
$$

Suppose now that $F(n)>n$. Then putting $p(n)$ for the smallest prime factor of n, we have that

$$
1+\frac{e^{-\gamma}}{\log _{3} x}\left(1+O\left(\frac{\log _{4} x}{\log _{3} x}\right)\right)>\frac{n}{\phi(n)} \geq 1+\frac{1}{p(n)-1}
$$

giving $p(n) \geq c_{2} \log _{3} x$ for large x, where one can take c_{2} to be any constant smaller than e^{γ}. Hence, $n \leq x$ is coprime to all primes $p<c_{2} \log _{3} x$, and the number of such numbers is, via Eratosthenes's sieve and Mertens's formula,

$$
=(1+o(1)) x \prod_{p<c_{2} \log _{3} x}\left(1-\frac{1}{p}\right)=\left(e^{-\gamma}+o(1)\right) \frac{x}{\log _{4} x},
$$

which proves the upper bound (1) on $\mathcal{A}(x)$. Finally, for the lower bound on the set $\mathcal{A}(x)$, consider the set $\mathcal{A}_{4}(x)$ of $n \leq x$ such that either $\omega(n)>2 y$, or $\omega_{y^{2}}(n)>\left(\log _{2} y\right)^{2}$. The Túran-Kubilius inequalities (see, for example, [12]) assert that the estimate

$$
\sum_{n \leq x}\left(\omega(n)-\log _{2} t\right)^{2}=O\left(x \log _{2} t\right)
$$

holds uniformly in $2 \leq t \leq x$. Applying this with $t=x$ and $t=y^{2}$, we get easily that

$$
\# \mathcal{A}_{4}(x) \ll \frac{x}{y}+\frac{x}{\left(\log _{2} y\right)^{3}} \ll \frac{x}{\left(\log _{4} x\right)^{3}}
$$

Put now $z=\log _{3} x$. Consider numbers $n \leq x$ coprime to all primes $p \leq z(\log z)^{10}$ which do not belong to $\mathcal{A}_{1}(x) \cup \mathcal{A}_{2}(x) \cup \mathcal{A}_{3}(x) \cup \mathcal{A}_{4}(x)$. By the Eratosthenes's sieve and Mertens's formula, the number of such numbers n is

$$
\begin{aligned}
& \geq(1+o(1)) x \prod_{p \leq z(\log z)^{10}}\left(1-\frac{1}{p}\right)-\sum_{i=1}^{4} \# \mathcal{A}_{i}(x) \\
& =\left(e^{-\gamma}+o(1)\right) \frac{x}{\log _{4} x}+O\left(\frac{x}{\left(\log _{4} x\right)^{3}}\right) \\
& =\left(e^{-\gamma}+o(1)\right) \frac{x}{\log _{4} x}, \quad \text { as } x \rightarrow \infty .
\end{aligned}
$$

For such numbers,

$$
\frac{n}{\phi(n)}=\prod_{\substack{p \leq y^{2} \\ p \mid n}}\left(1+\frac{1}{p-1}\right) \prod_{\substack{p>y^{2} \\ p \mid n}}\left(1+\frac{1}{p-1}\right) .
$$

The first product contains at most $\left(\log _{2} y\right)^{2}<2(\log z)^{2}$ primes all exceeding $z(\log z)^{10}$, therefore

$$
\prod_{\substack{p \leq y^{2} \\ p \nmid n}}\left(1+\frac{1}{p-1}\right)<\exp \left(\frac{2(\log z)^{2}}{z(\log z)^{10}-1}\right)<1+\frac{5}{z(\log z)^{8}}
$$

for large x, where we used the fact that $1+t>e^{t / 2}$ when $t \in(0,1 / 2)$. The second product contains at most $2 y$ primes all exceeding y^{2} so

$$
\prod_{\substack{p>y^{2} \\ p \mid n}}\left(1+\frac{1}{p-1}\right)<\exp \left(\frac{2 y}{y^{2}-1}\right)<1+\frac{5}{y}
$$

Thus,

$$
\frac{n}{\phi(n)}<\left(1+\frac{5}{z(\log z)^{8}}\right)\left(1+\frac{5}{y}\right)<1+\frac{1}{\log _{3} x \log _{4} x}
$$

for large x, which together with estimate (5) shows that the numbers n such constructed are indeed totient abundant. This completes the proof of our theorem.

3. Comments

Let $\mathcal{F}=\{F(n): n \in \mathbb{N}\}$ and put $\mathcal{F}(x)=\mathcal{F} \cap[1, x]$. In [11], Shparlinski observed that since the image of the map

$$
\Psi:\{\phi(n): n \in \mathbb{N}\} \longrightarrow \mathbb{N}: \quad v \mapsto v+\phi(v)+\cdots+\phi^{k(v)}(v)
$$

is the range of \mathcal{F}, it follows that the order of magnitude of $\# \mathcal{F}(x)$ is at most the order of magnitude of the cardinality of the set of totients not exceeding x, which is known to be

$$
\frac{x}{\log x} \exp \left(\left(c_{3}+o(1)\right)(\log \log \log x)^{2}\right)
$$

with some positive constant c_{3} (see [3] and [8]) as $x \rightarrow \infty$. Note that the above argument is not enough to decide whether the series

$$
\sum_{f \in \mathcal{F}} \frac{1}{f}
$$

is convergent or divergent, which is a problem we leave for the reader. It will also seem interesting to give a sharp lower bound on $\# \mathcal{F}(x)$. Pomerance, in a personal communication, notes that since $\phi(n)=F(n)-F(\phi(n))$, it follows that $\# \mathcal{F}(x) \gg x^{1 / 2+o(1)}$ as $x \rightarrow \infty$. It would seem interesting to improve the exponent $1 / 2$.

References

[1] M. Deléglise, 'Bounds for the density of abundant integers', Exp. Math. 7 (1998), 137-143.
[2] P. Erdős and C. Pomerance, 'On the normal number of prime factors of $\phi(n)$ ', Rocky Mtn. J. Math. 15 (1985), 343-352.
[3] K. Ford, 'The distribution of totients', Paul Erdős (1913-1996) Ramanujan J. 2 (1998), 67-151.
[4] D. E. Iannucci, D. E. Moujie and G. L. Cohen, 'On perfect totient numbers', J. Integer Seq. 6 (2003), Article 03.4.5.
[5] D. R. Heath-Brown, 'Zero-free regions for Dirchlet L-functions and the least prime in an arithmetic progression' Proc. London Math. Soc. 64 (1991), 265-338.
[6] F. Luca, 'On the distribution of perfect totients', J. Integer Seq. 9 (2006), Article 06.4.4.
[7] F. Luca and C. Pomerance, 'On some problems of Ma̧kowski-Schinzel and Erdős concerning the arithmetical functions ϕ and σ^{\prime}, Colloq. Math. 92 (2002), 111-130.
[8] H. Maier and C. Pomerance, 'On the number of distinct values of Euler's ϕ-function', Acta Arith. 49 (1988), 263-275.
[9] A. L. Mohan and D. Suryanarayana, 'Perfect totient numbers' in Number Theory (Proc. 3rd Matscience Conf. Misore 1981), Lect. Notes in Math. 938, Springer-Verlag, New-York, 1982, 101-105.
[10] L. Perez Cacho, 'Sobre la suma de indicadores de ordenes sucesivos', Revista Matematica HispanoAmericana 1 (1939), 45-50.
[11] I. E. Shparlinski, 'On the sum of iterations of the Euler function', J. Integer Seq., 9 (2006), Article 06.1.6.
[12] P. Túran, 'On a theorem of Hardy and Ramanujan', J. London Math. Soc. 9 (1934), 274-276.

