ON THE CONGRUENCE $N \equiv A(\bmod \varphi(N))$

William D. Banks ${ }^{1}$
Department of Mathematics, University of Missouri, Columbia, MO 65211 USA
bbanks@math.missouri.edu
Ahmet M. Güloğlu
Department of Mathematics, University of Missouri, Columbia, MO 65211 USA
ahmet@math.missouri.edu
C. Wesley Nevans
Department of Mathematics, University of Missouri, Columbia, MO 65211 USA
nevans@math.missouri.edu

Received: 4/1/08, Revised: 9/30/08, Accepted: 10/15/08, Published: 12/23/08

Abstract

D. H. Lehmer asked whether there are any composite integers for which $\varphi(n) \mid n-1$, where φ is the Euler function. In this paper, we show that the number of such integers $n \leqslant x$ is $o\left(x^{1 / 2}\right)$ as $x \rightarrow \infty$.

1. Introduction

Let $\varphi(n)$ be the Euler function, which is defined as usual by

$$
\varphi(n)=n \prod_{p \mid n}\left(1-p^{-1}\right) \quad(n \in \mathbb{N})
$$

In 1932, D. H. Lehmer [4] asked whether there are any composite numbers n for which $\varphi(n) \mid n-1$, and the answer to this question is still unknown.

In what follows, for any set $\mathcal{S} \subseteq \mathbb{N}$ we put $\mathcal{S}(x)=\mathcal{S} \cap[1, x]$ for all $x \geqslant 1$. In a series of papers (see $[5,6,7]$) C. Pomerance considered the problem of bounding the cardinality of $\mathcal{L}(x)$, where \mathcal{L} is the (possibly empty) set of composite numbers n such that $\varphi(n) \mid n-1$.

[^0]In his third paper, Pomerance [7] established the bound

$$
\begin{equation*}
\# \mathcal{L}(x) \ll x^{1 / 2}(\log x)^{3 / 4} \tag{1.1}
\end{equation*}
$$

and remarked:

There is still clearly a wide gap between the possibility that $\mathcal{L}=\varnothing$ and (1.1), for the latter does not even establish that the members of \mathcal{L} are as scarce as squares!

Refinements of the underlying method of [7] led to subsequent improvements of the bound (1.1):

$$
\begin{aligned}
& \# \mathcal{L}(x) \ll x^{1 / 2}(\log x)^{1 / 2}(\log \log x)^{-1 / 2} \quad \text { (Shan [8]) } \\
& \# \mathcal{L}(x) \ll x^{1 / 2}(\log \log x)^{1 / 2} \quad \text { (Banks and Luca [1]). }
\end{aligned}
$$

In the present note, we use similar techniques to show that the members of \mathcal{L} are scarcer than squares, i.e., that $\# \mathcal{L}(x)=o\left(x^{1 / 2}\right)$ as $x \rightarrow \infty$. More precisely, we prove the following:

Theorem 1. For any fixed $\varepsilon>0$ the bound

$$
\# \mathcal{L}(x) \ll \frac{x^{1 / 2}}{(\log x)^{\Theta-\varepsilon}}
$$

holds, where $\Theta=0.129398 \cdots$ is the least positive solution to the equation

$$
\begin{equation*}
2 \Theta(\log \Theta-1-\log \log 2)=-\log 2 \tag{1.2}
\end{equation*}
$$

As in the earlier papers $[1,5,6,7,8]$ where bounds on the cardinality of $\mathcal{L}(x)$ are given, Theorem 1 admits a natural generalization. For an arbitrary integer a, let

$$
\mathcal{L}_{a}=\{n \in \mathbb{N}: n \equiv a \quad(\bmod \varphi(n))\}
$$

and put

$$
\mathcal{L}_{a}^{\prime}=\left\{n \in \mathcal{L}_{a}: n \neq p a \text { for } p \text { prime, } p \nmid a\right\} .
$$

Since $\mathcal{L}_{1}^{\prime}=\mathcal{L} \cup\{1\}$, Theorem 1 is the special case $a=1$ of the following:
Theorem 2. Let $a \in \mathbb{Z}$ and $\varepsilon>0$ be fixed. Then,

$$
\# \mathcal{L}_{a}^{\prime}(x) \ll \frac{x^{1 / 2}}{(\log x)^{\Theta-\varepsilon}},
$$

where Θ is the least positive solution to the equation (1.2).

We remark that for $a=0$ one has $\# \mathcal{L}_{0}^{\prime}(x) \asymp(\log x)^{2}$, which follows from the result of Sierpiński [9, p. 232]:

$$
\mathcal{L}_{0}^{\prime}=\{1\} \cup\left\{2^{i} 3^{j}: i \geqslant 1, j \geqslant 0\right\} .
$$

Hence, we shall assume that $a \neq 0$ in the sequel.

2. Preliminaries

According to [7, Lemma 1] the inequality

$$
\# \mathcal{L}_{a}^{\prime}(x) \leqslant 4 a^{2}+\sum_{d \mid a} \# \mathcal{L}_{a / d}^{\prime \prime}(x / d)
$$

holds, where

$$
\mathcal{L}_{a}^{\prime \prime}=\left\{n \in \mathcal{L}_{a}^{\prime}: n \text { is square-free }\right\}
$$

Thus, to prove Theorem 2 it suffices to show that

$$
\begin{equation*}
\# \mathcal{L}_{a}^{\prime \prime}(x) \ll \frac{x^{1 / 2}}{(\log x)^{\Theta-\varepsilon}} \tag{2.1}
\end{equation*}
$$

The following result is due to Pomerance [7, Theorem 1]:
Lemma 1. Suppose that $n \geqslant 16 a^{2}, n \in \mathcal{L}_{a}^{\prime \prime}$, and $K=\omega(n)$. Let the prime factorization of n be $p_{1} \cdots p_{K}$, where $p_{1}>\cdots>p_{K}$. Then, for $1 \leqslant i \leqslant K$ we have

$$
p_{i}<(i+1)\left(1+\prod_{j=i+1}^{K} p_{j}\right)
$$

We also need the following lemma from [8]:
Lemma 2. Suppose that $\delta \geqslant 0, a_{1} \geqslant \cdots \geqslant a_{t}=0$, and $a_{i} \leqslant \delta+\sum_{j=i+1}^{t} a_{j}$ for $1 \leqslant i \leqslant t-1$. Then, for any real number ρ such that $0 \leqslant \rho<\sum_{i=1}^{t} a_{i}$, there is a subset \mathcal{I} of $\{1, \ldots, t\}$ such that $\rho-\delta<\sum_{i \in \mathcal{I}} a_{i} \leqslant \rho$.

Our principal tool is the next lemma, which is a simplified and weakened version of [2, Proposition 3]. For convenience, our lemma is stated in terms of $\log \log n$ rather than $\log \log x$ as in [2], but this change is easily justified in view of the term $(\log x)^{o(1)}$ that we include in our estimates.

Lemma 3. For fixed $0<\lambda<1$, the counting function of the set

$$
\mathcal{V}_{\lambda}=\{n: \omega(n)<\lambda \log \log n\}
$$

satisfies the bound

$$
\# \mathcal{V}_{\lambda}(x) \leqslant \frac{x}{(\log x)^{1+\lambda \log (\lambda / e)+o(1)}} \quad(x \rightarrow \infty)
$$

For fixed $\lambda>1$, the counting function of the set

$$
\mathcal{W}_{\lambda}=\{n: \omega(n)>\lambda \log \log n\}
$$

satisfies the bound

$$
\# \mathcal{W}_{\lambda}(x) \leqslant \frac{x}{(\log x)^{1+\lambda \log (\lambda / e)+o(1)}} \quad(x \rightarrow \infty)
$$

Finally, we recall the well-known inequality of Landau [3]:

$$
\begin{equation*}
\frac{n}{\varphi(n)} \ll \log \log n \quad(n \geqslant 3) . \tag{2.2}
\end{equation*}
$$

3. Proof of Theorem 2

We write the bound of [1] in the form:

$$
\begin{equation*}
\# \mathcal{L}_{a}^{\prime \prime}(x) \leqslant \# \mathcal{L}_{a}^{\prime}(x) \leqslant x^{1 / 2}(\log x)^{o(1)} \quad(x \rightarrow \infty) \tag{3.1}
\end{equation*}
$$

Let $\varepsilon>0$ be a small fixed parameter. Let α and β be fixed real numbers such that

$$
\Theta-\varepsilon<\alpha / 2<\beta<\Theta
$$

where Θ is defined as in Theorem 1, and put

$$
A=(\log x)^{\alpha} \quad \text { and } \quad B=(\log x)^{\beta} .
$$

Note that (3.1) implies

$$
\# \mathcal{L}_{a}^{\prime \prime}(x / A) \leqslant x^{1 / 2}(\log x)^{-\alpha / 2+o(1)} \quad(x \rightarrow \infty)
$$

and since $\alpha / 2>\Theta-\varepsilon$ it follows that

$$
\begin{equation*}
\# \mathcal{L}_{a}^{\prime \prime}(x / A) \ll x^{1 / 2}(\log x)^{-\Theta+\varepsilon} \tag{3.2}
\end{equation*}
$$

Now let $n \in \mathcal{L}_{a}^{\prime \prime}$ be fixed with $16 a^{2} \leqslant x / A<n \leqslant x$. Put $K=\omega(n)$, and factor $n=p_{1} \cdots p_{K}$ where $p_{1}>\ldots>p_{K}$. By Lemma 1 we have

$$
\log p_{i}<\log (2 K)+\sum_{j=i+1}^{K} \log p_{j} \quad(1 \leqslant i \leqslant K)
$$

Applying Lemma 2 with $\delta=\log (2 K), t=K+1, a_{i}=\log p_{i}$ for $1 \leqslant i \leqslant K, a_{t}=0$, and $\rho=\log \left(x^{1 / 2} / B\right)$, we conclude that n has a positive divisor d such that $\rho-\delta<\log d \leqslant \rho$; in other words,

$$
\begin{equation*}
\frac{x^{1 / 2}}{2 \omega(n) B} \leqslant d \leqslant \frac{x^{1 / 2}}{B} \tag{3.3}
\end{equation*}
$$

Setting $m=n / d$, it is also clear that

$$
\begin{equation*}
\frac{x^{1 / 2} B}{A} \leqslant m \leqslant 2 \omega(n) B x^{1 / 2} . \tag{3.4}
\end{equation*}
$$

First, suppose that $n \in \mathcal{W}_{20}$. Since n is square-free we have

$$
\omega(d)+\omega(m)=\omega(d m)=\omega(n)>20 \log \log n
$$

hence either $d \in \mathcal{W}_{10}$ or $m \in \mathcal{W}_{10}$. Using the trivial bound $\omega(n) \leqslant 2 \log x$ and the inequality $A \leqslant B^{2}$, we see that n has a divisor $k \in \mathcal{W}_{10}$ such that

$$
\frac{x^{1 / 2}}{4 B \log x} \leqslant k \leqslant 4 B x^{1 / 2} \log x .
$$

Note that $\operatorname{gcd}(k, \varphi(k)) \mid a$ since $k \mid n$ and $n \equiv a(\bmod \varphi(n))$. On the other hand, if k is fixed with the above properties, and n is a number in \mathcal{L}_{a} that is divisible by k, then

$$
n \equiv 0 \quad(\bmod k) \quad \text { and } \quad n \equiv a \quad(\bmod \varphi(k))
$$

By the Chinese Remainder Theorem, we see that n is uniquely determined modulo $\operatorname{lcm}[k, \varphi(k)]$. Hence, the number of integers $n \leqslant x$ with $n \in \mathcal{L}_{a}^{\prime \prime} \cap \mathcal{W}_{20}$ and $k \mid n$ does not exceed

$$
1+\frac{x}{\operatorname{lcm}[k, \varphi(k)]} \leqslant 1+\frac{x a}{k \varphi(k)} \ll 1+\frac{x \log \log x}{k^{2}},
$$

where we have used (2.2) in the last step. Put $y=x^{1 / 2} /(4 B \log x)$ and $z=4 B x^{1 / 2} \log x$. Summing the contributions over all such integers k, we derive that

$$
\begin{aligned}
\#\left\{n \in \mathcal{L}_{a}^{\prime \prime} \cap \mathcal{W}_{20}: x / A \leqslant n \leqslant x\right\} & \ll \sum_{\substack{y \leqslant k \leqslant z \\
k \in \mathcal{W}_{10}}}\left(1+\frac{x \log \log x}{k^{2}}\right) \\
& \leqslant \sum_{\substack{k \leqslant z \\
k \in \mathcal{W}_{10}}} 1+x \log \log x \sum_{\substack{k \geqslant y \\
k \in \mathcal{W}_{10}}} \frac{1}{k^{2}} \\
& \ll \frac{z}{(\log z)^{14}}+\frac{x \log \log x}{y(\log y)^{14}} .
\end{aligned}
$$

Here, we have used Lemma 3, the inequality $1+10 \log (10 / e)>14$, and the estimate

$$
\sum_{\substack{k>y \\ k \in \mathcal{W}_{\lambda}}} \frac{1}{k^{2}} \ll \frac{1}{y(\log y)^{1+\lambda \log (\lambda / e)+o(1)}} \quad(y \rightarrow \infty)
$$

which follows from Lemma 3 by partial summation. Inserting the definitions of y, z and B into the bound above, and noting that $\beta<\Theta<1$, we derive that

$$
\begin{align*}
\#\left\{n \in \mathcal{L}_{a}^{\prime \prime} \cap \mathcal{W}_{20}: x / A \leqslant n \leqslant x\right\} & \ll \frac{B x^{1 / 2} \log \log x}{(\log x)^{13}} \\
& \ll x^{1 / 2}(\log x)^{\beta-12} \tag{3.5}\\
& \ll x^{1 / 2}(\log x)^{-\Theta}
\end{align*}
$$

Next, we consider the case that $n \notin \mathcal{W}_{20}$. Since $\omega(n) \leqslant 20 \log \log x$, the inequalities (3.3) and (3.4) can be replaced by

$$
\begin{equation*}
\frac{x^{1 / 2}}{40 B \log \log x} \leqslant d \leqslant \frac{x^{1 / 2}}{B} \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{x^{1 / 2} B}{A} \leqslant m \leqslant 40 B x^{1 / 2} \log \log x \tag{3.7}
\end{equation*}
$$

respectively. Let \mathcal{T} be the collection of pairs (d, m) of natural numbers such that $d m \in \mathcal{L}_{a}^{\prime \prime}$ and the inequalities (3.6) and (3.7) hold. Then,

$$
\begin{equation*}
\#\left\{n \in \mathcal{L}_{a}^{\prime \prime} \backslash \mathcal{W}_{20}: x / A \leqslant n \leqslant x\right\} \leqslant \# \mathcal{T} \tag{3.8}
\end{equation*}
$$

Lemma 4. If x is sufficiently large, then for every integer m there is at most one integer d such that $(d, m) \in \mathcal{T}$.

Proof. Suppose $\left(d_{1}, m\right)$ and $\left(d_{2}, m\right)$ both lie in \mathcal{T}. Since $d_{1} m$ and $d_{2} m$ are numbers in $\mathcal{L}_{a}^{\prime \prime}$, we have

$$
\varphi(m) \mid d_{1} m-a \quad \text { and } \quad \varphi(m) \mid d_{2} m-a
$$

Hence it follows that

$$
\begin{equation*}
d_{1} \equiv d_{2} \quad(\bmod \varphi(m) / \mu), \tag{3.9}
\end{equation*}
$$

where $\mu=\operatorname{gcd}(m, \varphi(m))$; note that $\mu \ll 1$ since $\mu \mid a$. By (3.6) we have the bound

$$
\max \left\{d_{1}, d_{2}\right\} \leqslant \frac{x^{1 / 2}}{B}=x^{1 / 2}(\log x)^{-\beta}
$$

whereas by (2.2) and (3.7) we have

$$
\frac{\varphi(m)}{\mu} \gg \frac{m}{\log \log m} \geqslant x^{1 / 2}(\log x)^{\beta-\alpha+o(1)} \quad(x \rightarrow \infty)
$$

Since $\beta>\alpha / 2$, it follows that for all sufficiently large x, both d_{1} and d_{2} are smaller than the modulus in (3.9), so the congruence becomes an equality $d_{1}=d_{2}$. This completes the proof.

From now on, we assume that x is large enough to yield the conclusion of Lemma 4. Let \mathcal{M} denote the set of integers m such that $(d, m) \in \mathcal{T}$ for some integer d. By Lemma 4 , the map $(d, m) \mapsto m$ provides a bijection $\mathcal{T} \stackrel{\sim}{\longleftrightarrow}$; in particular, $\# \mathcal{T}=\# \mathcal{M}$, and (3.8) can be restated as

$$
\begin{equation*}
\#\left\{n \in \mathcal{L}_{a}^{\prime \prime} \backslash \mathcal{W}_{20}: x / A \leqslant n \leqslant x\right\} \leqslant \# \mathcal{M} \tag{3.10}
\end{equation*}
$$

Let $\vartheta=0.373365 \cdots$ be the unique solution in the interval $(0,1)$ to the equation

$$
1+\vartheta \log (\vartheta / e)=\vartheta \log 2 .
$$

From (1.2) it follows that

$$
\begin{equation*}
2 \Theta=1+\vartheta \log (\vartheta / e)=\vartheta \log 2 . \tag{3.11}
\end{equation*}
$$

We now express \mathcal{M} as a disjoint union $\mathcal{M}_{1} \cup \mathcal{M}_{2}$, where

$$
\mathcal{M}_{1}=\mathcal{M} \cap \mathcal{V}_{\vartheta} \quad \text { and } \quad \mathcal{M}_{2}=\mathcal{M} \backslash \mathcal{V}_{\vartheta}
$$

Using Lemma 3, (3.7) and (3.11) we derive the bound

$$
\# \mathcal{M}_{1} \leqslant \# \mathcal{V}_{\vartheta}\left(40 B x^{1 / 2} \log \log x\right)=x^{1 / 2}(\log x)^{\beta-2 \Theta+o(1)} \quad(x \rightarrow \infty)
$$

Since $\beta<\Theta$, it follows that

$$
\begin{equation*}
\# \mathcal{M}_{1} \ll x^{1 / 2}(\log x)^{-\Theta} \tag{3.12}
\end{equation*}
$$

Lemma 5. If x is sufficiently large, then for every integer d there is at most one integer $m \in \mathcal{M}_{2}$ such that $(d, m) \in \mathcal{T}$.

Proof. Suppose $\left(d, m_{1}\right)$ and $\left(d, m_{2}\right)$ both lie in \mathcal{T}, where $m_{1}, m_{2} \in \mathcal{M}_{2}$. From the lower bound of (3.7) we see that both numbers m_{1} and m_{2} have at least $\kappa=\left\lfloor\vartheta \log \log \left(x^{1 / 2} B / A\right)\right\rfloor$ distinct odd prime divisors; hence both integers $\varphi\left(m_{1}\right)$ and $\varphi\left(m_{2}\right)$ are divisible by 2^{κ}. Since $d m_{1}$ and $d m_{2}$ are numbers in $\mathcal{L}_{a}^{\prime \prime}$, we can write

$$
d m_{1}=a+2^{\kappa} \varphi(d) s_{1} \quad \text { and } \quad d m_{2}=a+2^{\kappa} \varphi(d) s_{2}
$$

for some natural numbers s_{1}, s_{2}. Hence it follows that

$$
\begin{equation*}
m_{1} \equiv m_{2} \quad\left(\bmod 2^{\kappa} \varphi(d) / \mu\right) \tag{3.13}
\end{equation*}
$$

where $\mu=\operatorname{gcd}\left(d, 2^{\kappa} \varphi(d)\right)$; as before we have $\mu \ll 1$ since $\mu \mid a$. By (3.7) we have the bound

$$
\max \left\{m_{1}, m_{2}\right\} \leqslant 40 B x^{1 / 2} \log \log x=x^{1 / 2}(\log x)^{\beta+o(1)} \quad(x \rightarrow \infty)
$$

On the other hand, since $\kappa=(\vartheta+o(1)) \log \log x$ as $x \rightarrow \infty$, using (2.2), (3.6) and (3.11) we derive the lower bound

$$
\frac{2^{\kappa} \varphi(d)}{\mu} \gg \frac{d \cdot 2^{\kappa}}{\log \log d} \geqslant \frac{x^{1 / 2}(\log x)^{\vartheta \log 2+o(1)}}{B(\log \log x)^{2}}=x^{1 / 2}(\log x)^{2 \Theta-\beta+o(1)}
$$

Since $\beta<\Theta$, it follows that $2^{\kappa} \varphi(d) / \mu>\max \left\{m_{1}, m_{2}\right\}$ once x is sufficiently large. The congruence (3.13) then becomes an equality $m_{1}=m_{2}$, which finishes the proof.

We now assume that x is large enough to yield the conclusion of Lemma 5. Let \mathcal{D} denote the set of integers d such that $(d, m) \in \mathcal{T}$ for some integer $m \in \mathcal{M}_{2}$. Applying Lemma 5 and using the upper bound of (3.6), we see that

$$
\# \mathcal{M}_{2}=\# \mathcal{D} \leqslant \frac{x^{1 / 2}}{B}=x^{1 / 2}(\log x)^{-\beta}
$$

Since $\beta>\Theta-\varepsilon$ we obtain

$$
\begin{equation*}
\# \mathcal{M}_{2} \leqslant x^{1 / 2}(\log x)^{-\Theta+\varepsilon} . \tag{3.14}
\end{equation*}
$$

Combining (3.2), (3.5), (3.10), (3.12) and (3.14), and taking into account that $\# \mathcal{M}=$ $\# \mathcal{M}_{1}+\# \mathcal{M}_{2}$, we derive the bound (2.1), and this finishes the proof of Theorem 2.

References

[1] W. D. Banks and F. Luca, Composite integers n for which $\varphi(n) \mid n-1$, Acta Math. Sinica, English Series 23 (2007), no. 10, 1915-1918.
[2] P. Erdős and J.-L. Nicolas, Sur la fonction: nombre de facteurs premiers de N, Enseign. Math. (2) 27 (1981), no. 1-2, 3-27.
[3] E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Leipzig, 1909.
[4] D. H. Lehmer, On Euler's totient function, Bull. Amer. Math. Soc., 38 (1932), 745-757.
[5] C. Pomerance, On the congruences $\sigma(n) \equiv a(\bmod n)$ and $n \equiv a(\bmod \varphi(n))$, Acta Arith. $26(1974 / 75)$, no. 3, 265-272.
[6] C. Pomerance, On composite n for which $\varphi(n) \mid n-1$, Acta Arith. 28 (1975/76), no. 4, 387-389.
[7] C. Pomerance, On composite n for which $\varphi(n) \mid n-1$, II, Pacific J. Math. 69 (1977), no. 1, 177-186.
[8] Z. Shan, On composite n for which $\varphi(n) \mid n-1$, J. China Univ. Sci. Tech., 15 (1985), 109-112.
[9] W. Sierpiński, Elementary Theory of Numbers, Warsaw, 1964.

[^0]: ${ }^{1}$ Corresponding author

