ON THE CONGRUENCE $N \equiv A \pmod{\varphi(N)}$

William D. Banks¹

Department of Mathematics, University of Missouri, Columbia, MO 65211 USA bbanks@math.missouri.edu

Ahmet M. Güloğlu

Department of Mathematics, University of Missouri, Columbia, MO 65211 USA ahmet@math.missouri.edu

C. Wesley Nevans Department of Mathematics, University of Missouri, Columbia, MO 65211 USA nevans@math.missouri.edu

Received: 4/1/08, Revised: 9/30/08, Accepted: 10/15/08, Published: 12/23/08

Abstract

D. H. Lehmer asked whether there are any composite integers for which $\varphi(n) \mid n-1$, where φ is the Euler function. In this paper, we show that the number of such integers $n \leq x$ is $o(x^{1/2})$ as $x \to \infty$.

1. Introduction

Let $\varphi(n)$ be the *Euler function*, which is defined as usual by

$$\varphi(n) = n \prod_{p \mid n} \left(1 - p^{-1} \right) \qquad (n \in \mathbb{N}).$$

In 1932, D. H. Lehmer [4] asked whether there are any *composite* numbers n for which $\varphi(n) \mid n-1$, and the answer to this question is still unknown.

In what follows, for any set $S \subseteq \mathbb{N}$ we put $S(x) = S \cap [1, x]$ for all $x \ge 1$. In a series of papers (see [5, 6, 7]) C. Pomerance considered the problem of bounding the cardinality of $\mathcal{L}(x)$, where \mathcal{L} is the (possibly empty) set of composite numbers n such that $\varphi(n) \mid n - 1$.

 $^{^{1}}$ Corresponding author

In his third paper, Pomerance [7] established the bound

$$#\mathcal{L}(x) \ll x^{1/2} (\log x)^{3/4} \tag{1.1}$$

and remarked:

There is still clearly a wide gap between the possibility that $\mathcal{L} = \emptyset$ and (1.1), for the latter does not even establish that the members of \mathcal{L} are as scarce as squares!

Refinements of the underlying method of [7] led to subsequent improvements of the bound (1.1):

$$\begin{aligned} \#\mathcal{L}(x) \ll x^{1/2} (\log x)^{1/2} (\log \log x)^{-1/2} & \text{(Shan [8])} \\ \#\mathcal{L}(x) \ll x^{1/2} (\log \log x)^{1/2} & \text{(Banks and Luca [1]).} \end{aligned}$$

In the present note, we use similar techniques to show that the members of \mathcal{L} are scarcer than squares, i.e., that $\#\mathcal{L}(x) = o(x^{1/2})$ as $x \to \infty$. More precisely, we prove the following:

Theorem 1. For any fixed $\varepsilon > 0$ the bound

$$\#\mathcal{L}(x) \ll \frac{x^{1/2}}{(\log x)^{\Theta - \varepsilon}}$$

holds, where $\Theta = 0.129398 \cdots$ is the least positive solution to the equation

$$2\Theta(\log \Theta - 1 - \log \log 2) = -\log 2. \tag{1.2}$$

As in the earlier papers [1, 5, 6, 7, 8] where bounds on the cardinality of $\mathcal{L}(x)$ are given, Theorem 1 admits a natural generalization. For an arbitrary integer a, let

$$\mathcal{L}_a = \{ n \in \mathbb{N} : n \equiv a \pmod{\varphi(n)} \},\$$

and put

$$\mathcal{L}'_a = \{ n \in \mathcal{L}_a : n \neq pa \text{ for } p \text{ prime}, p \nmid a \}.$$

Since $\mathcal{L}'_1 = \mathcal{L} \cup \{1\}$, Theorem 1 is the special case a = 1 of the following:

Theorem 2. Let $a \in \mathbb{Z}$ and $\varepsilon > 0$ be fixed. Then,

$$#\mathcal{L}'_a(x) \ll \frac{x^{1/2}}{(\log x)^{\Theta-\varepsilon}},$$

where Θ is the least positive solution to the equation (1.2).

We remark that for a = 0 one has $\# \mathcal{L}'_0(x) \asymp (\log x)^2$, which follows from the result of Sierpiński [9, p. 232]:

$$\mathcal{L}_0' = \{1\} \cup \{2^i \, 3^j : i \ge 1, \ j \ge 0\}.$$

Hence, we shall assume that $a \neq 0$ in the sequel.

2. Preliminaries

According to [7, Lemma 1] the inequality

$$#\mathcal{L}'_a(x) \leqslant 4a^2 + \sum_{d \mid a} #\mathcal{L}''_{a/d}(x/d)$$

holds, where

$$\mathcal{L}''_a = \big\{ n \in \mathcal{L}'_a : n \text{ is square-free} \big\}.$$

Thus, to prove Theorem 2 it suffices to show that

$$#\mathcal{L}_a''(x) \ll \frac{x^{1/2}}{(\log x)^{\Theta - \varepsilon}}.$$
(2.1)

The following result is due to Pomerance [7, Theorem 1]:

Lemma 1. Suppose that $n \ge 16a^2$, $n \in \mathcal{L}''_a$, and $K = \omega(n)$. Let the prime factorization of n be $p_1 \cdots p_K$, where $p_1 > \cdots > p_K$. Then, for $1 \le i \le K$ we have

$$p_i < (i+1)\left(1 + \prod_{j=i+1}^{K} p_j\right).$$

We also need the following lemma from [8]:

Lemma 2. Suppose that $\delta \ge 0$, $a_1 \ge \cdots \ge a_t = 0$, and $a_i \le \delta + \sum_{j=i+1}^t a_j$ for $1 \le i \le t-1$. Then, for any real number ρ such that $0 \le \rho < \sum_{i=1}^t a_i$, there is a subset \mathcal{I} of $\{1, \ldots, t\}$ such that $\rho - \delta < \sum_{i \in \mathcal{I}} a_i \le \rho$.

Our principal tool is the next lemma, which is a simplified and weakened version of [2, Proposition 3]. For convenience, our lemma is stated in terms of $\log \log n$ rather than $\log \log x$ as in [2], but this change is easily justified in view of the term $(\log x)^{o(1)}$ that we include in our estimates.

Lemma 3. For fixed $0 < \lambda < 1$, the counting function of the set

$$\mathcal{V}_{\lambda} = \left\{ n : \omega(n) < \lambda \log \log n \right\}$$

satisfies the bound

$$\#\mathcal{V}_{\lambda}(x) \leqslant \frac{x}{(\log x)^{1+\lambda\log(\lambda/e)+o(1)}} \qquad (x \to \infty).$$

For fixed $\lambda > 1$, the counting function of the set

$$\mathcal{W}_{\lambda} = \left\{ n : \omega(n) > \lambda \log \log n \right\}$$

satisfies the bound

$$#\mathcal{W}_{\lambda}(x) \leqslant \frac{x}{(\log x)^{1+\lambda \log(\lambda/e) + o(1)}} \qquad (x \to \infty).$$

Finally, we recall the well-known inequality of Landau [3]:

$$\frac{n}{\varphi(n)} \ll \log \log n \qquad (n \ge 3). \tag{2.2}$$

3. Proof of Theorem 2

We write the bound of [1] in the form:

$$#\mathcal{L}''_a(x) \leqslant #\mathcal{L}'_a(x) \leqslant x^{1/2} (\log x)^{o(1)} \qquad (x \to \infty).$$
(3.1)

Let $\varepsilon > 0$ be a small fixed parameter. Let α and β be fixed real numbers such that

$$\Theta - \varepsilon < \alpha/2 < \beta < \Theta,$$

where Θ is defined as in Theorem 1, and put

 $A = (\log x)^{\alpha}$ and $B = (\log x)^{\beta}$.

Note that (3.1) implies

$$#\mathcal{L}''_a(x/A) \leqslant x^{1/2} (\log x)^{-\alpha/2 + o(1)} \qquad (x \to \infty),$$

and since $\alpha/2 > \Theta - \varepsilon$ it follows that

$$#\mathcal{L}''_a(x/A) \ll x^{1/2} (\log x)^{-\Theta + \varepsilon}.$$
(3.2)

Now let $n \in \mathcal{L}''_a$ be fixed with $16a^2 \leq x/A < n \leq x$. Put $K = \omega(n)$, and factor $n = p_1 \cdots p_K$ where $p_1 > \ldots > p_K$. By Lemma 1 we have

$$\log p_i < \log(2K) + \sum_{j=i+1}^K \log p_j \qquad (1 \le i \le K).$$

Applying Lemma 2 with $\delta = \log(2K)$, t = K + 1, $a_i = \log p_i$ for $1 \leq i \leq K$, $a_t = 0$, and $\rho = \log(x^{1/2}/B)$, we conclude that n has a positive divisor d such that $\rho - \delta < \log d \leq \rho$; in other words,

$$\frac{x^{1/2}}{2\,\omega(n)B} \leqslant d \leqslant \frac{x^{1/2}}{B} \,. \tag{3.3}$$

Setting m = n/d, it is also clear that

$$\frac{x^{1/2}B}{A} \leqslant m \leqslant 2\,\omega(n)Bx^{1/2}.\tag{3.4}$$

First, suppose that $n \in \mathcal{W}_{20}$. Since n is square-free we have

$$\omega(d) + \omega(m) = \omega(dm) = \omega(n) > 20 \log \log n,$$

hence either $d \in \mathcal{W}_{10}$ or $m \in \mathcal{W}_{10}$. Using the trivial bound $\omega(n) \leq 2 \log x$ and the inequality $A \leq B^2$, we see that n has a divisor $k \in \mathcal{W}_{10}$ such that

$$\frac{x^{1/2}}{4B\log x} \leqslant k \leqslant 4Bx^{1/2}\log x$$

Note that $gcd(k, \varphi(k)) \mid a$ since $k \mid n$ and $n \equiv a \pmod{\varphi(n)}$. On the other hand, if k is fixed with the above properties, and n is a number in \mathcal{L}_a that is divisible by k, then

$$n \equiv 0 \pmod{k}$$
 and $n \equiv a \pmod{\varphi(k)}$.

By the Chinese Remainder Theorem, we see that n is uniquely determined modulo $\operatorname{lcm}[k, \varphi(k)]$. Hence, the number of integers $n \leq x$ with $n \in \mathcal{L}''_a \cap \mathcal{W}_{20}$ and $k \mid n$ does not exceed

$$1 + \frac{x}{\operatorname{lcm}[k,\varphi(k)]} \leqslant 1 + \frac{xa}{k\varphi(k)} \ll 1 + \frac{x\log\log x}{k^2},$$

where we have used (2.2) in the last step. Put $y = x^{1/2}/(4B\log x)$ and $z = 4Bx^{1/2}\log x$. Summing the contributions over all such integers k, we derive that

$$\# \left\{ n \in \mathcal{L}_a'' \cap \mathcal{W}_{20} : x/A \leqslant n \leqslant x \right\} \ll \sum_{\substack{y \leqslant k \leqslant z \\ k \in \mathcal{W}_{10}}} \left(1 + \frac{x \log \log x}{k^2} \right)$$
$$\leqslant \sum_{\substack{k \leqslant z \\ k \in \mathcal{W}_{10}}} 1 + x \log \log x \sum_{\substack{k \geqslant y \\ k \in \mathcal{W}_{10}}} \frac{1}{k^2}$$
$$\ll \frac{z}{(\log z)^{14}} + \frac{x \log \log x}{y (\log y)^{14}}.$$

Here, we have used Lemma 3, the inequality $1 + 10 \log(10/e) > 14$, and the estimate

$$\sum_{\substack{k \geqslant y \\ k \in \mathcal{W}_{\lambda}}} \frac{1}{k^2} \ll \frac{1}{y(\log y)^{1+\lambda \log(\lambda/e) + o(1)}} \qquad (y \to \infty),$$

which follows from Lemma 3 by partial summation. Inserting the definitions of y, z and B into the bound above, and noting that $\beta < \Theta < 1$, we derive that

$$\# \{ n \in \mathcal{L}_{a}^{"} \cap \mathcal{W}_{20} : x/A \leqslant n \leqslant x \} \ll \frac{Bx^{1/2} \log \log x}{(\log x)^{13}} \\ \ll x^{1/2} (\log x)^{\beta - 12} \\ \ll x^{1/2} (\log x)^{-\Theta}.$$
(3.5)

Next, we consider the case that $n \notin \mathcal{W}_{20}$. Since $\omega(n) \leq 20 \log \log x$, the inequalities (3.3) and (3.4) can be replaced by

$$\frac{x^{1/2}}{40B\log\log x} \leqslant d \leqslant \frac{x^{1/2}}{B} \tag{3.6}$$

and

$$\frac{x^{1/2}B}{A} \leqslant m \leqslant 40Bx^{1/2}\log\log x,\tag{3.7}$$

respectively. Let \mathcal{T} be the collection of pairs (d, m) of natural numbers such that $dm \in \mathcal{L}''_a$ and the inequalities (3.6) and (3.7) hold. Then,

$$#\{n \in \mathcal{L}''_a \setminus \mathcal{W}_{20} : x/A \leqslant n \leqslant x\} \leqslant \#\mathcal{T}.$$
(3.8)

Lemma 4. If x is sufficiently large, then for every integer m there is at most one integer d such that $(d, m) \in \mathcal{T}$.

Proof. Suppose (d_1, m) and (d_2, m) both lie in \mathcal{T} . Since d_1m and d_2m are numbers in \mathcal{L}''_a , we have

$$\varphi(m) \mid d_1m - a$$
 and $\varphi(m) \mid d_2m - a$.

Hence it follows that

$$d_1 \equiv d_2 \pmod{\varphi(m)/\mu},\tag{3.9}$$

where $\mu = \gcd(m, \varphi(m))$; note that $\mu \ll 1$ since $\mu \mid a$. By (3.6) we have the bound

$$\max\left\{d_1, d_2\right\} \leqslant \frac{x^{1/2}}{B} = x^{1/2} (\log x)^{-\beta},$$

whereas by (2.2) and (3.7) we have

$$\frac{\varphi(m)}{\mu} \gg \frac{m}{\log \log m} \geqslant x^{1/2} (\log x)^{\beta - \alpha + o(1)} \qquad (x \to \infty).$$

Since $\beta > \alpha/2$, it follows that for all sufficiently large x, both d_1 and d_2 are smaller than the modulus in (3.9), so the congruence becomes an equality $d_1 = d_2$. This completes the proof.

From now on, we assume that x is large enough to yield the conclusion of Lemma 4. Let \mathcal{M} denote the set of integers m such that $(d, m) \in \mathcal{T}$ for some integer d. By Lemma 4, the map $(d, m) \mapsto m$ provides a bijection $\mathcal{T} \xleftarrow{\sim} \mathcal{M}$; in particular, $\#\mathcal{T} = \#\mathcal{M}$, and (3.8) can be restated as

$$#\{n \in \mathcal{L}''_a \setminus \mathcal{W}_{20} : x/A \leqslant n \leqslant x\} \leqslant #\mathcal{M}.$$
(3.10)

Let $\vartheta = 0.373365\cdots$ be the unique solution in the interval (0,1) to the equation

$$1 + \vartheta \log(\vartheta/e) = \vartheta \log 2.$$

From (1.2) it follows that

$$2\Theta = 1 + \vartheta \log(\vartheta/e) = \vartheta \log 2. \tag{3.11}$$

We now express \mathcal{M} as a disjoint union $\mathcal{M}_1 \cup \mathcal{M}_2$, where

$$\mathcal{M}_1 = \mathcal{M} \cap \mathcal{V}_{artheta} \qquad ext{and} \qquad \mathcal{M}_2 = \mathcal{M} \setminus \mathcal{V}_{artheta}.$$

Using Lemma 3, (3.7) and (3.11) we derive the bound

$$#\mathcal{M}_1 \leqslant #\mathcal{V}_{\vartheta}(40Bx^{1/2}\log\log x) = x^{1/2}(\log x)^{\beta - 2\Theta + o(1)} \qquad (x \to \infty)$$

Since $\beta < \Theta$, it follows that

$$#\mathcal{M}_1 \ll x^{1/2} (\log x)^{-\Theta}.$$
 (3.12)

Lemma 5. If x is sufficiently large, then for every integer d there is at most one integer $m \in \mathcal{M}_2$ such that $(d, m) \in \mathcal{T}$.

Proof. Suppose (d, m_1) and (d, m_2) both lie in \mathcal{T} , where $m_1, m_2 \in \mathcal{M}_2$. From the lower bound of (3.7) we see that both numbers m_1 and m_2 have at least $\kappa = \lfloor \vartheta \log \log(x^{1/2}B/A) \rfloor$ distinct odd prime divisors; hence both integers $\varphi(m_1)$ and $\varphi(m_2)$ are divisible by 2^{κ} . Since dm_1 and dm_2 are numbers in \mathcal{L}''_a , we can write

$$dm_1 = a + 2^{\kappa}\varphi(d)s_1$$
 and $dm_2 = a + 2^{\kappa}\varphi(d)s_2$

for some natural numbers s_1, s_2 . Hence it follows that

$$m_1 \equiv m_2 \pmod{2^{\kappa} \varphi(d)/\mu}$$
 (3.13)

where $\mu = \gcd(d, 2^{\kappa}\varphi(d))$; as before we have $\mu \ll 1$ since $\mu \mid a$. By (3.7) we have the bound

$$\max\{m_1, m_2\} \leqslant 40Bx^{1/2} \log \log x = x^{1/2} (\log x)^{\beta + o(1)} \qquad (x \to \infty)$$

On the other hand, since $\kappa = (\vartheta + o(1)) \log \log x$ as $x \to \infty$, using (2.2), (3.6) and (3.11) we derive the lower bound

$$\frac{2^{\kappa}\varphi(d)}{\mu} \gg \frac{d \cdot 2^{\kappa}}{\log\log d} \geqslant \frac{x^{1/2}(\log x)^{\vartheta\log 2 + o(1)}}{B(\log\log x)^2} = x^{1/2}(\log x)^{2\Theta - \beta + o(1)}.$$

Since $\beta < \Theta$, it follows that $2^{\kappa}\varphi(d)/\mu > \max\{m_1, m_2\}$ once x is sufficiently large. The congruence (3.13) then becomes an equality $m_1 = m_2$, which finishes the proof.

We now assume that x is large enough to yield the conclusion of Lemma 5. Let \mathcal{D} denote the set of integers d such that $(d, m) \in \mathcal{T}$ for some integer $m \in \mathcal{M}_2$. Applying Lemma 5 and using the upper bound of (3.6), we see that

$$#\mathcal{M}_2 = #\mathcal{D} \leqslant \frac{x^{1/2}}{B} = x^{1/2} (\log x)^{-\beta}.$$

Since $\beta > \Theta - \varepsilon$ we obtain

$$#\mathcal{M}_2 \leqslant x^{1/2} (\log x)^{-\Theta + \varepsilon}. \tag{3.14}$$

Combining (3.2), (3.5), (3.10), (3.12) and (3.14), and taking into account that $\#\mathcal{M} = \#\mathcal{M}_1 + \#\mathcal{M}_2$, we derive the bound (2.1), and this finishes the proof of Theorem 2.

References

- [1] W. D. Banks and F. Luca, Composite integers n for which $\varphi(n) \mid n-1$, Acta Math. Sinica, English Series 23 (2007), no. 10, 1915–1918.
- [2] P. Erdős and J.-L. Nicolas, Sur la fonction: nombre de facteurs premiers de N, Enseign. Math. (2) 27 (1981), no. 1-2, 3–27.
- [3] E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Leipzig, 1909.
- [4] D. H. Lehmer, On Euler's totient function, Bull. Amer. Math. Soc., 38 (1932), 745–757.
- [5] C. Pomerance, On the congruences $\sigma(n) \equiv a \pmod{n}$ and $n \equiv a \pmod{\varphi(n)}$, Acta Arith. 26 (1974/75), no. 3, 265–272.
- [6] C. Pomerance, On composite n for which $\varphi(n) \mid n-1$, Acta Arith. 28 (1975/76), no. 4, 387–389.
- [7] C. Pomerance, On composite n for which $\varphi(n) \mid n-1$, II, Pacific J. Math. 69 (1977), no. 1, 177–186.
- [8] Z. Shan, On composite n for which $\varphi(n)|n-1$, J. China Univ. Sci. Tech., 15 (1985), 109–112.
- [9] W. Sierpiński, Elementary Theory of Numbers, Warsaw, 1964.