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Abstract

Suppose g is a fixed positive integer. For N ≥ 2, a set A ⊂ Z
⋂

[1, N ] is called a B2[g] set if
every integer n has at most g distinct representations as n = a + b with a, b ∈ A and a ≤ b.
In this note, we introduce a new idea to give a small improvement to the upper bound for
the size of such A when g is small.

1. Introduction

For positive integers g and N , a set A ⊂ [N ] (where [N ] := {1, 2, . . . , N}) is called a B2[g]
set if every integer n has at most g distinct representations as n = a + b with a, b ∈ A and
a ≤ b. Note that B2[1] sets are just the classical Sidon sets, B2[g] sets sometimes are also
called generalized Sidon sets.

Let F (g,N) be the largest cardinality of a B2[g] set contained in [N ]. The study for the
asymptotic behavior of F (g,N) has attracted a lot of attentions. (See O’Bryant’s excellent
survey paper [11] for the complete up-to-date references.) In particular, from the works of
Singer [13] and Erdös & Turán [7], we have known that F (1, N) ∼

√
N as N →∞.

When g ≥ 2, it is believed that F (g,N) has an asymptotic formula as well. There is,
however, a big gap between the currently best upper and lower bounds for F (g,N). There
have been various constructions of B2[g] sets with large cardinality (c.f., [3], [4], [5], [9], [10]),
each of which gives a result F (g,N) ≥ (c + o(1))

√
gN for some constant c > 1.

For the upper bound, J. Cilleruelo, I. Ruzsa and C. Trujillo [4] showed that F (g,N) !√
3.4745gN . Combining the idea of [4] with the consideration of the fourth moment of the

Fourier transform of a B2[g] set, B. Green [8] improved the constant 3.4745 to 3.4. By a more
careful analysis of the test function involved in Green’s study, G. Martin and K. O’Bryant
showed that the constant can be further improved to 3.3819. In [14], the author introduced
a new method to improve the constant to 3.1982.

1The author was supported by NSF grant DMS-0601033.
2In a recent preprint, Martin and O’Bryant, using a better weight function than the one used in [14], are

able to replace the 3.198 by 3.1698.
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It should be remarked that an upper bound better than the ones listed above can be
achieved when g is small. The most interesting is the case when g = 2. Cilleruelo [1] and
Helm (unpublished) independently showed that F (2, N) !

√
6N . Plagne [12] was able to

reduce the constant 6 to 5.59. Later he and Habsieger [9] further improved this to 5.39. In
[8], Green proved a result that is still the best for small g, that is F (g,N) !

√
1.75(2g − 1)N ,

which yields F (2, N) !
√

5.25N .

Here we give a small improvement to this last result of Green. More precisely, we prove
the following result.

Theorem 1.1. For every g ≥ 2, we have

F (g,N) !
√

1.74246(2g − 1)N. (1.1)

In particular, we have

F (2, N) !
√

5.2274N. (1.2)

This improvement to Green’s bound is almost negligible. Nevertheless, we think it is
worthwhile to introduce in this short note a new idea to bound F (g,N). It should be clear
later that the bound (1.1) is not the limit of the method. It is unfortunate that we do not
know how to get the optimal bound with this method, and we shall not be devoted to doing
complicated numerical computation for a better bound, though in section 4, we shall indicate
how a small improvement to Theorem 1.1 can be obtained by simply choosing a different
weight function.

Theorem 1.2. For every g ≥ 2, we have

F (g,N) !
√

1.74217(2g − 1)N. (1.3)

Notation. As usual, for a real number t, e(t) = exp(2πit). Throughout the paper, N is a
sufficiently large integer, A ⊂ [N ] is a B2[g] set. For a real number β, let

f̂(β) = f̂A(β) =
∑

a∈A

e(aβ).

For any number n, d(n) = dA(n) is defined as the number of representations of n as a
difference of two elements of A. A ! B means that A ≤ (1 + o(1))B as N →∞.

2. Preliminaries

We first state an estimate for the fourth moment of f̂ .

Lemma 2.1. Suppose ε ∈
(
0, 1

2

)
is any fixed number. For any B2[g] set A ⊂ [N ], we have

∑

1≤n≤Nε

∣∣∣∣f̂A
(

n

2N

)∣∣∣∣
4

! (2g − 1)N |A|2 − 1

2
|A|4. (2.1)

Proof. This is Lemma 3 of [14]. A proof has essentially been included in [8, §8]. !
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Now we introduce the idea with which we shall get the upper bound (1.1). Suppose w(t)
is an even function, with continuous second derivative on [−1, 1], and A ⊂ [N ] is a B2[g] set.
Suppose further that

∫ 1

0

w(t)dt < 0, and
∑

|n|≤N

d(n)w(n/N) ≥ 0. (2.2)

Lemma 2.2. Suppose N is sufficiently large, A ⊂ [N ] is a B2[g] set, and w(t) is a function
satisfying the above conditions. Then we have

F (g,N) !
√

cwN, (2.3)

where

cw =
4g − 2

1 +

( ∫ 1
0 w(t)dt

)2

∫ 1
0 (w(t))2dt−

( ∫ 1
0 w(t)dt

)2

. (2.4)

Proof. Let w(t) = a0
2 +

∑∞
m=1 am cos(mπt) be the Fourier expansion of w(t) on [−1, 1]. Then

we have
∑

|n|≤N

d(n)w(n/N) =
a0

2
|A|2 +

∞∑

m=1

am

∣∣∣∣f̂
(

m

2N

)∣∣∣∣
2

. (2.5)

Note that w(t) ∈ C2[−1, 1], we have am = O(m−2). Thus, for any positive ε < 1
2 , we get

from (2.5) that

∑

|n|≤N

d(n)w(n/N) =
a0

2
|A|2 +

∑

m≤Nε

am

∣∣∣∣f̂
(

m

2N

)∣∣∣∣
2

+ O(|A|2N−ε).

Then, by Cauchy’s inequality, we have

∑

|n|≤N

d(n)w(n/N) ≤ a0

2
|A|2 +

√√√√
( ∞∑

m=1

am
2

)( ∑

m≤Nε

∣∣∣∣f̂
(

m

2N

)∣∣∣∣
4)

+ O(|A|2N−ε). (2.6)

Now from Lemma 2.1, (2.6), and the condition (2.2), we have

−a0

2
|A|2 !

√√√√
( ∞∑

m=1

am
2

)(
(2g − 1)N |A|2 − 1

2
|A|4

)
. (2.7)

Also from the condition (2.2), we have

a0

2
=

∫ 1

0

w(t)dt < 0.

Thus, by squaring both sides of (2.7) and reforming the inequality, we get

|A|2
N

! (2g − 1)
1
2 + a0

2

4
∑∞

m=1 am
2

. (2.8)

From Parseval’s identity,
∞∑

m=1

am
2 = 2

(∫ 1

0

(w(t))2dt−
(∫ 1

0

w(t)dt

)2)
.
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Thus the right-hand side of (2.8) is

4g − 2

1 +

( ∫ 1
0 w(t)dt

)2

∫ 1
0 (w(t))2dt−

( ∫ 1
0 w(t)dt

)2

,

which gives the constant cw. !

3. Proof of Theorem 1.1

Let w(t) be the even function given by w(t) =
106∑

m=0

1

4m + 3
cos

(
(4m + 3)πt

2

)
. Then for any

set A ⊂ [N ], we have

∑

|n|≤N

d(n)w(n/N) =
106∑

m=0

1

4m + 3

∑

|n|≤N

d(n) cos

(
(4m + 3)πn

2N

)
=

106∑

m=0

∣∣f̂
(

4m+3
4N

)∣∣2

4m + 3
≥ 0.

It is easy to see that

∫ 1

0

w(t)dt = −
106∑

m=0

2

(4m + 3)2π
= −.1011381... < 0. (3.1)

Thus w(t) satisfies all conditions required by Lemma 2.2. Note that

∫ 1

0

(w(t))2dt =

∫ 1

0

106∑

m=0

cos2
(

(4m+3)πt
2

)

(4m + 3)2
dt =

106∑

m=0

1

2(4m + 3)2
= 0.07943370.... (3.2)

Thus from (3.1) and (3.2) we have
( ∫ 1

0 w(t)dt
)2

∫ 1

0 (w(t))2dt−
( ∫ 1

0 w(t)dt
)2 ≈

(−.1011381)2

0.07943370− (−.1011381)2
> .1478064.

which gives cw < 4g−2
1.1478064 < 1.74246(2g − 1) in Lemma 2.2, and Theorem 1.1 follows. !

4. Some Remarks

First of all, we remark that, for a sufficiently large K and an appropriate small constant δ,

w(t) =
K∑

m=0

cos
( (4m+3+δ)πt

2

)

4m + 3 + δ

is a slightly better choice for the weight function. For example, take K = 1000 and δ =
0.0126, then we can replace the constant 1.74246 in Theorem 1.1 by 1.74217. This is the
result of Theorem 1.2. The calculation in section 3, however, is much cleaner.
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In the proofs of both theorems, we have chosen w(t) so that the sum of d(n) weighted by
w(n/N) is a linear combination of |f̂ |2 with positive coefficients. While it is hard to believe
that such a weighted sum is o(|A|2), we do not know how to get a non-trivial lower bound
for it. The upper bound for F (g,N) would be improved significantly if one had a good lower
bound for this weighted sum.

We also remark that, in the proof of Lemma 2.2, after getting (2.5) we implicitly used the
inequality

∑

|n|≤N

d(n)w(n/N) ≤ a0

2
|A|2 +

∞∑

m=1

|am|
∣∣∣∣f̂

(
m

2N

)∣∣∣∣
2

.

This surely is a waste if some Fourier coefficients am are negative. We can at least drop
those negative terms to get an upper bound better than that given by Lemma 2.2.

All those in the above remarks are easy to see. The difficulty is still about how to find a
better weight function w(t). While we do not know how to optimize this method, seeking a
better weight function is probably highly computational.

At last, we remark that the function w(t) clearly does not have to satisfy the conditions
(2.2). The idea in this paper, however, works only if one has a (relatively good) positive
lower bound for ∣∣∣∣

∑

|n|≤N

d(n)w(n/N)−
(∫ 1

0

w(t)dt

)
|A|2

∣∣∣∣.
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