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Abstract

The numbers ẽp(k, n) defined as min(νp(S(k, j)j!) : j ≥ n) appear frequently in algebraic
topology. Here S(k, j) is the Stirling number of the second kind, and νp(−) the exponent of
p. Let sp(n) = n− 1 + νp([n/p]!). The author and Sun proved that if L is sufficiently large,
then ẽp((p− 1)pL + n− 1, n) ≥ sp(n). In this paper, we determine the set of integers n for
which ẽp((p−1)pL +n−1, n) = sp(n) when p = 2 and when p = 3. The condition is roughly
that, in the base-p expansion of n, the sum of two consecutive digits must always be less
than p. The result for divisibility of Stirling numbers is, when p = 2, that for such integers
n, ν2(S(2L +n−1, n)) = [(n−1)/2]. We also present evidence for conjectures that, if n = 2t

or 2t + 1, then the maximum value over all k ≥ n of ẽ2(k, n) is s2(n) + 1. Finally, we obtain
new results in algebraic topology regarding James numbers, v1-periodic homotopy groups,
and exponents of SU(n).

1. Introduction

Let S(k, j) denote the Stirling number of the second kind. This satisfies

S(k, j)j! = (−1)j
j∑

i=0

(−1)i
(

j
i

)
ik. (1.1)

Let νp(−) denote the exponent of p. For k ≥ n, the numbers ẽp(k, n) defined by

ẽp(k, n) = min(νp(S(k, j)j!) : j ≥ n) (1.2)

are important in algebraic topology. We will discuss these applications in Section 6.

In [7], it was proved that, if L is sufficiently large, then

ẽp((p− 1)pL + n− 1, n) ≥ n− 1 + νp([n/p]!). (1.3)

Let sp(n) = n−1+νp([n/p]!), as this will appear throughout the paper. Our main theorems,
1.7 and 1.10, give the sets of integers n for which equality occurs in (1.3) when p = 2 and
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when p = 3. Before stating these, we make a slight reformulation to eliminate the annoying
(p− 1)pL.

We define the partial Stirling numbers ap(k, j) by, for any integer k,

ap(k, j) =
∑

i!≡0 (p)

(−1)i
(

j
i

)
ik

and then

ep(k, n) = min(νp(ap(k, j)) : j ≥ n). (1.4)

Partial Stirling numbers have been studied in [10] and [9].

The following elementary and well-known proposition explains the advantage of using
ap(k, j) as a replacement for S(k, j)j!: it is that νp(ap(k, j)) is periodic in k. In particular,
νp(ap(n−1, n)) = νp(ap((p−1)pL +n−1, n)) for L sufficiently large, whereas S(n−1, n)n! =
0. Thus when using ap(−), we need not consider the (p − 1)pL. The second part of the
proposition says that replacing S(k, j)j! by ap(k, j) merely extends the numbers ẽp(k, n) for
k ≥ n in which we are interested periodically to all integers k. An example (p = 3, n = 10)
is given in [4, p.543].

Proposition 1.5. a. If t ≥ νp(ap(k, j)), then

νp(ap(k + (p− 1)pt, j)) = νp(ap(k, j)).

b. If k ≥ n, then ep(k, n) = ẽp(k, n).

Proof. a. ([3, 3.12]) For all t, we have

ap(k + (p− 1)pt, j)− ap(k, j) =
∑

i!≡0 (p)

(−1)i
(

j
i

)
ik(i(p−1)pt − 1) ≡ 0 (mod pt+1),

from which the conclusion about p-exponents is immediate.

b. We have

(−1)jS(k, j)j!− ap(k, j) ≡ 0 (mod pk) (1.6)

since all its terms are multiples of pk. Since ẽ(k, n) ≤ νp(S(k, k)k!) < k, a multiple of pk

cannot affect this value. !

Our first main result determines the set of values of n for which (1.3) is sharp when p = 2.
This theorem will be proved in Section 2.

Theorem 1.7. For n ≥ 1, e2(n− 1, n) = s2(n) if and only if

n = 2ε(2s + 1) with 0 ≤ ε ≤ 2 and
(
3s
s

)
odd. (1.8)

Remark 1.9. Since
(
3s
s

)
is odd if and only if binary(s) has no consecutive 1’s, another

characterization of those n for which e2(n − 1, n) = s2(n) is those satisfying n %≡ 0 mod 8,
and the only consecutive 1’s in binary(n) are, at most, a pair at the end, followed perhaps
by one or two 0’s. Alternatively, except at the end, the sum of consecutive bits must be less
than 2.
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When p = 3, the description is similar. The following theorem will be proved in Section
4, using results proved in Section 3.

Theorem 1.10. Let T denote the set of positive integers for which the sum of two consecutive
digits in the base-3 expansion is always less than 3. Let T ′ = {n ∈ T : n %≡ 2 (mod 3)}. For
integers a and b, let aT+b = {an+b : n ∈ T}, and similarly for T ′. Then e3(n−1, n) = s3(n)
if and only if

n ∈ (3T + 1) ∪ (3T ′ + 2) ∪ (9T + 3). (1.11)

Remark 1.12. Thus e3(n − 1, n) = s3(n) if and only if n %≡ 0, 6 (mod 9) and the only
consecutive digits in the base-3 expansion of n whose sum is ≥ 3 are perhaps · · · 21, · · · 12,
or · · · 210, each at the very end.

The following definition will be used throughout the paper.

Definition 1.13. Let n denote the residue of n mod p.

The value of p will be clear from the context. Similarly x denotes the residue of x, etc.

Remark 1.14. As our title suggests, we can interpret our results in terms of divisibility of
Stirling numbers. Suppose p = 2 or 3 and L is sufficiently large. The main theorem of [7]
can be interpreted to say that

νp(S((p− 1)pL + n− 1, n)) ≥ (p− 1)[n
p ] + n− 1. (1.15)

Our results imply that equality occurs in (1.15) if and only if, for p = 3, n is as in (1.11) with
n %≡ 2 (mod 9) or, for p = 2, n is as in (1.8). They also imply that, if p = 3 and n = 9x + 2,
then equality occurs in

ν3(S(2 · 3L + n− 1, n + 1)) ≥ 6x

if and only if x ∈ T ′.

Of special interest in algebraic topology is

ep(n) := max(ep(k, n) : k ∈ Z). (1.16)

In Section 5, we discuss the relationship between e2(n), e2(n− 1, n), and s2(n). We describe
an approach there toward a proof of the following conjecture.

Conjecture 1.17. If n = 2t ≥ 8, then

e2(n) = e2(n− 1, n) = s2(n) + 1,

while if n = 2t + 1 ≥ 5, then

e2(n) = e2(n− 1, n) + 1 = s2(n) + 1.

This conjecture suggests that the inequality e2(n− 1, n) ≥ s2(n) fails by 1 to be sharp if
n = 2t, while if n = 2t + 1, it is sharp but the maximum value of e2(k, n) occurs for a value
of k %= n− 1.
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2. Proof of Theorem 1.7

In this section, we prove Theorem 1.7, utilizing results of [12] and some work with binomial
coefficients. The starting point is the following result of [12]. In this section, we abbreviate
ν2(−) as ν(−).

Theorem 2.1. ([12, 1.2]) For all n ≥ 0 and k ≥ 0,

ν

(
2kk!

∑

i

(
n

4i+2

)(
i
k

)
)
≥ ν([n/2]!).

The bulk of the work is in proving the following refinement.

Theorem 2.2. Let n be as in (1.8), and, if n > 4, define n0 by n = 2e + n0 with 0 < n0 <
2e−1. Then ν

((
n−1

k

)
2kk!

∑
i

(
n

4i+2

)(
i
k

))
= ν([n/2]!) if and only if

k =






0 1 ≤ n ≤ 4

n0 − 1 n %≡ 0 (mod 4), n > 4

n0 − 2 n ≡ 0 (mod 4), n > 4.

(2.3)

Note that, by 2.1, ν
((

n−1
k

)
2kk!

∑
i

(
n

4i+2

)(
i
k

))
≥ ν([n/2]!) is true for all n and k.

Proof that Theorem 2.2 implies the “if” part of Theorem 1.7. By (1.3), e2(n− 1, n) ≥ s2(n)
for all n. Thus it will suffice to prove that if n is as in Theorem 2.2, then

ν(a2(n− 1, n)) = s2(n). (2.4)

Note that

0 = (−1)nS(n− 1, n)n! = −a2(n− 1, n) +
∑(

n
2k

)
(2k)n−1.

Factoring 2n−1 out of the sum shows that (2.4) will follow from showing
∑(

n
2k

)
kn−1 = ν([n/2]!). (2.5)

The sum in (2.5) may be restricted to odd values of k, since terms with even k are more
2-divisible than the claimed value. Write k = 2j + 1 and apply the Binomial Theorem,
obtaining ∑

j

(
n

4j+2

)∑

"

2"j"
(

n−1
"

)
=

∑

j

(
n

4j+2

)∑

"

2"
(

n−1
"

)∑

i

S(#, i)i!
(

j
i

)
. (2.6)

Here we have used the standard fact that j" =
∑

S(#, i)i!
(

j
i

)
.

Recall that S(#, i) = 0 if # < i, and S(i, i) = 1. Terms in the right-hand side of (2.6) with
# = i yield ∑

i

(
n−1

i

)
2ii!

∑

j

(
n

4j+2

)(
j
i

)
,
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which we shall call An. By Theorem 2.2, if n is as in (1.8), ν(An) = ν([n/2]!) since all
i-summands have 2-exponent ≥ ν([n/2]!), and exactly one of them has 2-exponent equal to
ν([n/2]!). Terms in (2.6) with # > i satisfy

ν(term) > ν

(
2ii!

∑

j

(
n

4j+2

)(
j
i

)
)

,

the right-hand side of which is ≥ ν([n/2]!) by 2.1. The claim (2.5), and hence the “if” part
of Theorem 1.7, follows. !

We recall the following definition from [12, 1.5].

Definition 2.7. Let p be any prime. For n,α, k ≥ 0 and r ∈ Z, let

T p
k,α(n, r) :=

k!pk

[n/pα−1]!

∑

i

(−1)pαi+r

(
n

pαi + r

)(
i

k

)
.

In the remainder of this section, we have p = 2 and omit writing it as a superscript of T .

By 2.1, Theorem 2.2 is equivalent to the following result, to the proof of which the rest of
this section will be devoted.

Theorem 2.8. If n is as in (1.8), then
(

n−1
k

)
Tk,2(n, 2) is odd if and only if k is as in (2.3).

Central to the proof of 2.8 is the following result, which will be proved at the end of this
section. This result applies to all values of n, not just those as in Theorem 2.2. This result
is the complete evaluation of Tk,2(n, 2) mod 2.

Theorem 2.9. If 4k + 2 > n, then Tk,2(n, 2) = 0. If 4k + 2 ≤ n, then

Tk,2(n, 2) ≡
(

[n/2]− k − 1

[n/4]

)
(mod 2).

Proof of Theorem 2.8. The cases n ≤ 4 are easily verified and not considered further.

First we establish that
(

n−1
k

)
Tk,2(n, 2) is odd for the stated values of k. We have

(
n−1

k

)
=

{(
2e+n0−1

n0−1

)
if n0 %≡ 0 (mod 4)(

2e+n0−1
n0−2

)
if n0 ≡ 0 (mod 4),

which is clearly odd in both cases. Here and throughout we use the well-known fact that, if
0 ≤ εi, δi ≤ p− 1, then (∑

εipi

∑
δipi

)
≡

∏(
εi

δi

)
(mod p). (2.10)

Now we show that Tk,2(n, 2) is odd when n and k are as (1.8) and (2.3).

Case 1: n0 = 8t + 4 with
(
3t
t

)
odd, and k = 8t + 2. Using 2.9, with all equivalences mod 2,

Tk,2(n, 2) ≡
(

2e−1 + 4t + 2− (8t + 2)− 1

2e−2 + 2t + 1

)
≡

(
−4t− 1

2t + 1

)
≡

(
6t + 1

2t + 1

)
≡

(
3t

t

)
.
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Case 2: n0 = 4t + ε, ε ∈ {1, 2},
(
3t
t

)
odd, k = 4t + ε− 1. Then

Tk,2(n, 2) ≡
(

2e−1 + 2t + ε− 1− (4t + ε− 1)− 1

2e−2 + t

)
≡

(
−2t− 1

t

)
≡

(
3t

t

)
.

Case 3: n0 = 4t + 3,
(
3(2t+1)
2t+1

)
odd, k = 4t + 2. Then

Tk,2(n, 2) ≡
(

2e−1 + 2t + 1− (4t + 2)− 1

2e−2 + t

)
≡

(
−2t− 2

t

)
≡

(
3t + 1

t

)
≡

(
2(3t + 1) + 1

2t + 1

)
.

Now we must show that, if n is as in (1.8) and k does not have the value specified in (2.3),
then

(
n−1

k

)
Tk,2(n, 2) is even. The notation of Theorem 2.2 is continued. We divide into cases.

Case 1: k ≥ n0. Here
(

n−1
k

)
odd implies k ≥ 2e, but then 4k + 2 > n and so by Theorem

2.9, Tk,2(n, 2) = 0. Hence
(

n−1
k

)
Tk,2(n, 2) is even.

Case 2: n0 = 4t + 4, k = n0 − 1. Here Tk,2(n, 2) ≡
(−(2t+2)

t+1

)
≡

(
3t+2
t+1

)
. If t is even, this

is even, and if t = 2s − 1, this is congruent to
(
3s−1

s

)
which is even, since if ν(s) = w, then

2w %∈ 3s− 1; i.e., the decomposition of 3s− 1 as a sum of distinct 2-powers does not contain
2w.

Case 3: n0 = 4t + ε, 1 ≤ ε ≤ 3, and k < n0 − 1. Here
(

n− 1

k

)
Tk,2(n, 2) ≡

(
4t + ε− 1

k

)(
2e−1 + 2t + [ε/2]− k − 1

2e−2 + t

)
.

If k ≤ 2t + [ε/2] − 1, then the second factor is even due to the i = e − 2 factor in (2.10).
If k > 2t + [ε/2] − 1, the second factor is congruent to

(−(k+1−2t−[ε/2])
t

)
≡

(
k−t−[ε/2]

t

)
. For(

4t+ε−1
k

)(
k−t−[ε/2]

t

)
to be odd would require one of the following:

ε = 1, k = 4i, and
(

t
i

)(
4i−t

t

)
odd

ε = 2, k = 4i + 〈0, 1〉, and
(

t
i

)(
4i−t−〈1,0〉

t

)
odd.

ε = 3, k = 4i + 〈0, 2〉,
(

t
i

)(
4i−t+〈−1,1〉

t

)
odd.

But all these products are even if i < t by Lemma 2.13. If i = t, since k < n0− 1, we obtain
a

(
3t−1

t

)
factor, which is even, as in Case 2.

Case 4: n0 = 4t + 4 and k < n0− 2. Note that t must be even since n %≡ 0 (8) in 2.2. We
have (

n− 1

k

)
Tk,2(n, 2) ≡

(
4t + 3

k

)(
2e−1 + 2t + 1− k

2e−2 + t + 1

)
.

The case k ≤ 2t + 1 is handled as in Case 3. If k > 2t + 1, then, similarly to Case 3, it
reduces to

(
4t+3

k

)(
k−t−1

t+1

)
. If k = 4t or 4t + 1, then we obtain

(
3t−1
t+1

)
or

(
3t

t+1

)
, which are even

since t is even. Now suppose k = 4i + ∆ with 0 ≤ ∆ ≤ 3 and i < t. Since t is even, if ∆
is odd, then

(
k−t−1

t+1

)
is even. For ∆ = 0 or 2, we obtain

(
t
i

)(
4i−t±1

t+1

)
. Since t is even, we use(

2A+1
2B+1

)
≡

(
2A
2B

)
to obtain

(
t
i

)(
4i−t−〈0,2〉

t

)
, which is even by Lemma 2.13. !

The following result implies the “only if” part of Theorem 1.7.



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (2008), #A56 7

Theorem 2.11. Assume n ≡ 0 mod 8 or n = 2ε(2s+1) with 0 ≤ ε ≤ 2 and
(
3s
s

)
even. Then

for all N ≥ n, we have ν2(a2(n− 1, N)) > s2(n).

Proof. Note that for N ≥ n,

0 = (−1)NS(n− 1, N)N ! = −a2(n− 1, N) +
∑(

N
2k

)
(2k)n−1.

Thus it suffices to prove that, if n is as in 2.11 and N ≥ n, then B2 ≡ 0 mod 2 where
B2 := 1

[n/2]!

∑(
N
2k

)
kn−1. Similarly to the proof of Theorem 4.21, and then using Theorem

2.9, we have, mod 2,

B2 ≡ [N/2]!
[n/2]!

∑(
n−1

k

)
Tk,2(N, 2) ≡ [N/2]!

[n/2]!

∑

4k+2≤N

(
n−1

k

)(
[N/2]−k−1

[N/4]

)
.

If [N/4] > [n/4], then [N/2]!
[n/2]! ≡ 0 mod 2, while if [N/4] = [n/4], we will show below that

∑

4k+2≤N

(
n−1

k

)(
[N/2]−k−1

[N/4]

)
≡ 0 (mod 2), (2.12)

which will complete the proof.

When n = 8#, it is required to show that
∑(

8"−1
k

)(
4"−k−1

2"

)
and

∑(
8"−1

k

)(
4"−k
2"

)
are both

even. The first corresponds to N = n or n + 1, and the second to N = n + 2 or n + 3. The
first is proved by noting easily that the summands for k = 2j and 2j + 1 are equal. The
second follows from showing that the summands for k = 2j and 2j − 1 are equal. This is
easy unless 2j = 8i. For this, we need to know that

(
2"−4i

"

)(
"
i

)
is always even, and this follows

easily from showing that the binary expansions of #− 4i, #− i, and i cannot be disjoint.

For n = 2ε(2s + 1) with
(
3s
s

)
even, all summands in (2.12) can be shown to be even when

n = 2e + n0 with 0 < n0 < 2e−1 and N = n using the proof of Theorem 2.8. For such
n and N > n, the main case to consider is n = 8a + 4 and N = n + 2. Then we need(
8a+3

k

)(
4a+2−k
2a+1

)
≡ 0 mod 2. For this to be false, k must be odd. But then we have

(
8a+3

k

)(
4a+2−k
2a+1

)
≡

(
8a+3
k−1

)(
4a+1−(k−1)

2a+1

)
≡ 0

by the result for N = n with k replaced by k − 1.

If n = 2e+d + · · ·+ 2e + n0 with d > 0 and 0 < n0 < 2e−1, then (2.12) for n = N is proved
when k does not have the special value of (2.3) just as in the second part of the proof of 2.8.
We illustrate what happens when k does have the special value by considering what happens
to Case 1 just after (2.10). The binomial coefficient there becomes

(
2e+d−1 + · · · + 2e−1 − 4t− 1

2e+d−2 + · · · + 2e−2 + 2t + 1

)
,

which is 0 mod 2 by consideration of the 2e−1 position in (2.10). For N > n, the argument
is essentially the same as that of the previous paragraph. !

The following lemma was used above.

Lemma 2.13. Let i < t, −2 ≤ δ ≤ 1, and if δ = −2, assume that t is even. Assume also
that 4i− t + δ ≥ 0. Then

(
t
i

)(
4i−t+δ

t

)
is even.
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Proof. Assume that
(

t
i

)(
4i−t+δ

t

)
is odd. Then i, t − i, and 4i − 2t + δ have disjoint binary

expansions. If δ = 0 or 1, then letting # = t− i and r = 2i− t, we infer that # + r, #, and 2r
are disjoint with # and r positive, which is impossible by Sublemma 2.14.2. If δ = −1 and t
is odd, then two of i, t− i, and 4i− 2t− 1 are odd, and so cannot be disjoint. Thus we may
assume t is even and δ = −1 or −2. Let # = t− i and r = 2i− t− 1. Then # + r + 1, #, and
2r are disjoint with # and r positive and r odd, which is impossible by Sublemma 2.14.3. !

Sublemma 2.14. Let # and r be nonnegative integers.

(1) Then #, 2r + 1, and # + r + 1 do not have disjoint binary expansions.
(2) If # and r are positive, then #, 2r, and # + r do not have disjoint binary expansions.
(3) If # is positive and r is odd, then #, 2r, and # + r + 1 do not have disjoint binary

expansions.

Proof. (1) Assume that # and r constitute a minimal counterexample. We must have # = 2#′

and r = 2r′ + 1. Then #′ and r′ yield a smaller counterexample.

(2) Assume that # and r constitute a minimal counterexample. If r is even, then # must
be even, and so dividing each by 2 gives a smaller counterexample. If r = 1, then #, 2,
and # + 1 are disjoint, which is impossible, since the only way for # and # + 1 to be disjoint
is if # = 2e − 1. If r = 2r′ + 1 with r′ > 0, and # = 2#′, then #′ and r′ form a smaller
counterexample. If r = 2r′ + 1 and # = 2#′ + 1, then #′, 2r′ + 1, and #′ + r′ + 1 are disjoint,
contradicting (1).

(3) Let r = 2r′ + 1. Then # must be even (= 2#′). Then #′, 2r′ + 1, and #′ + r′ + 1 are
disjoint, contradicting (1). !

The following result was proved recently in [13, Cor 1.3].

Theorem 2.15. Let p be any prime. Then, mod p,

T p
k,2(n, r) ≡ (−1)r

(
n

r

)
T p

k,1([
n
p ], [ r

p ]).

The following lemma together with Theorem 2.15 implies Theorem 2.9. Its proof uses the
following definition, which will be employed throughout the paper.

Definition 2.16. Let dp(−) denote the sum of the coefficients in the p-ary expansion.

Lemma 2.17. Mod 2,

Tk,1(n, r) ≡
{(

n−k−1
[(n−1+r)/2]

)
n > k

0 n ≤ k.
(2.18)

Proof. The proof is by induction on k. Let fk(n, r) denote the right-hand side of (2.18) mod
2. It is easy to check that f0(n, r) = δd2(n),1, while

T0,1(n, r) = (−1)r 1
n!

∑

i

(
n

2i+r

)
= (−1)r 2n−1

n! ≡ δd2(n),1 (mod 2).
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Here and throughout δi,j is the Kronecker function. From Definition 2.7, Tk,1(1, r) ≡
δk,0 (mod 2). This is what causes the dichotomy in (2.18).

By [12, (2.3)], if k > 0, then

Tk,1(n, r) + rTk−1,1(n, r + 2) = −Tk−1,1(n− 1, r + 1). (2.19)

Noting that f only depends on the mod 2 value of r, the lemma follows from

fk(n, 0) = fk−1(n− 1, 1)

fk(n, 1) = fk−1(n, 1) + fk−1(n− 1, 0),

which are immediate from the definition of f and Pascal’s formula. !

3. Mod 3 Values of the T -function

We saw in Theorem 2.8 that knowledge of the mod 2 value of the T -function of [12] played an
essential role in proving Theorem 1.7. A similar situation occurs when p = 3. The principal
goal of this short section is the determination of T 3

k,2(n, r), obtained by combining Theorems
2.15 and 3.2.

We begin by recording a well-known proposition.

Proposition 3.1. If n ≥ 0, then νp(n!) = 1
p−1(n− dp(n)), and hence νp(

(
n
b

)
) = 1

p−1(dp(b) +
dp(n− b)− dp(n)).

Now we give the mod 3 values of T 3
k,1(−,−). The mod 3 values of T 3

k,2(−,−) can be
obtained from this using Theorem 2.15. Throughout the rest of this section and the next,
the superscript 3 on T is implicit.

Theorem 3.2. Let n = 3m + δ with 0 ≤ δ ≤ 2.

• If n− k = 2#, then, mod 3, Tk,1(n, r) is given by

δ
0 1 2

0
(

"−1
m−1

) (
"−1
m

)
−

(
"−1
m

)

r (mod 3)
1, 2 −

(
"−1
m

) (
"−1
m

)
−

(
"−1
m

)

• If n− k = 2# + 1, then, mod 3, Tk,1(n, r) is given by

δ
0 1 2

0 0
(

"
m

)
0

r (mod 3) 1
(

"
m

)
−

(
"
m

)
0

2 −
(

"
m

)
0 0

Proof. By [12, (2.3)], we have

Tk,1(n, r) + rTk−1,1(n, r + 3) = −Tk−1,1(n− 1, r + 2), (3.3)
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yielding an inductive determination of Tk,1 starting with T0,1. One can verify that the mod 3
formulas of Theorem 3.2 also satisfy (3.3). For example, if r ≡ 1 mod 3 and n−k = 2#, then
for δ = 0, 1, 2, (3.3) becomes, respectively, −

(
"−1
m

)
+

(
"
m

)
=

(
"−1
m−1

)
,
(

"−1
m

)
−

(
"
m

)
= −

(
"−1
m−1

)
,

and −
(

"−1
m

)
+ 0 = −

(
"−1
m

)
.

To initiate the induction we show that, mod 3,

T0,1(n, r) ≡






2 n = 2 · 3e

1 n = 3e1 + 3e2 , 0 ≤ e1 < e2

r n = 3e, e > 0

r + 1 n = 1

0 otherwise,

(3.4)

and observe that when k = 0 the formulas in the tables of the theorem also equal (3.4). The
latter can be proved by considering separately n = 6t + d for 0 ≤ d ≤ 5. For example, if
d = 3, then m = 2t+1, δ = 0, and n−k = 2(3t+1)+1. For r ≡ 0, 1, 2, the tabulated value is,
respectively, 0,

(
3t+1
2t+1

)
, −

(
3t+1
2t+1

)
. Using Proposition 3.1, one shows ν3

((
3t+1
2t+1

))
= d3(2t+1)−1.

Thus the tabulated value in these cases is 0 mod 3 unless 2t + 1, hence 6t + 3, is a 3-power,
and in this case

(
3t+1
2t+1

)
≡ 1 mod 3.

To see (3.4), we note that

T0,1(n, r) =
(−3)[(n−1)/2]

n!
F3(n, r)

with

F3(n, r) :=
1

(−3)[(n−1)/2]

∑

k≡r (3)

(−1)k

(
n

k

)

as in [14]. One easily verifies, using 3.1, that, mod 3,

(−3)[(n−1)/2]

n!
≡






1 n = 3e or 3e1 + 3e2 , 0 ≤ e1 < e2

2 n = 2 · 3e

0 otherwise.

In [14, (1.2),(1.5)], it is shown that, mod 3,

F3(n, r) ≡






1 n ≡ 0, 4 (mod 6)

r n ≡ 3 (mod 6)

r + 1 n = 1,

from which (3.4) follows immediately. !

4. Proof of Theorem 1.10

In this section, we prove Theorem 1.10. We begin with a result, 4.3, which reduces much of
the analysis to evaluation of binomial coefficients mod 3.

Definition 4.1. For ε = ±1, let τ(n, k, ε) := Tk,1(n, 1) + εTk,1(n, 2), mod 3.
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The following result is immediate from Theorem 3.2.

Proposition 4.2. Let n = 3m+δ with 0 ≤ δ ≤ 2. If n−k = 2#, then, mod 3, τ(n, k,−1) ≡ 0,
while τ(n, k, 1) ≡ (−1)δ

(
"−1
m

)
. If n− k = 2# + 1, then, mod 3,

τ(n, k, ε) ≡
{

0 if δ = 2 or ε = 1 and δ = 0

−
(

"
m

)
otherwise.

The following result is a special case of Theorem 4.21, which is proved later.

Theorem 4.3. Define

φ(n) :=
∑(

n−1
k

)
τ([n

3 ], k, (−1)n−k−1) ∈ Z/3. (4.4)

Then ν3(a3(n− 1, n)) = s3(n) if and only if φ(n) %= 0.

The following definition will be used throughout this section.

Definition 4.5. An integer x is sparse if it can be written as 3h0 +· · ·+3hr with hi−hi−1 > 1
for 1 ≤ i ≤ r. The pair (x, i) is special if x has the above sparse decomposition and
i = 3h0 + · · · + 3hr−1.

Some special pairs are (9, 0), (10, 1), (30, 3), and (91, 10).

Lemma 4.7 will be used frequently. Its proof uses the following sublemma, which is easily
proved.

Sublemma 4.6. Let F0(x, i) = (3x, 3i) and F1(x, i) = (9x+1, 9i+1). The special pairs are
those that can be obtained from (1, 0) by repeated application of F0 and/or F1.

For example (37 + 33 + 3, 33 + 3) = F0F1F1F0F0(1, 0).

Lemma 4.7. Mod 3,

(1) If x− i is even, then
(

x
i

)(
(3x−9i)/2

x

)
≡ 0;

(2) If x− i is odd, then
(

x
i

)(
(3x−9i−1)/2

x

)
≡

{
1 if (x, i) is special

0 otherwise;

(3) If x− i is odd, then
(

x
i

)(
(3x−9i−3)/2

x

)
≡

{
1 if (x, i) is special and x ≡ 0 (3)

0 otherwise.

Proof. We make frequent use of (2.10).

(1) If
(

x
i

)
%≡ 0, then ν3(i) ≥ ν3(x), but then the second factor is ≡ 0 for a similar reason.

(2) Say (x, i) satisfies C if
(

x
i

)(
(3x−9i−1)/2

x

)
%≡ 0. Note that (1, 0) satisfies C. We will

show that (x, i) satisfies C if and only if either (x, i) = (3x′, 3i′) and (x′, i′) satisfies C or
(x, i) = (9x′′ +1, 9i′′ +1) and (x′′, i′′) satisfies C. The result then follows from the sublemma
and the observation that the binomial coefficients maintain a value of 1 mod 3.
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If x = 3x′, then
(

x
i

)
%≡ 0 implies i = 3i′. Then

(
(3x−9i−1)/2

x

)
=

(
(9x′−27i′−1)/2

3x′

)
=

( 1
2 (9x′−27i′−3)+1

3x′

)
≡

(
(3x′−9i′−1)/2

x′

)
.

If x = 3x′+1, then 0 %≡
( 1

2 (9x′−9i)+1
3x′+1

)
implies x′ = 3x′′. The product becomes

(
9x′′+1

i

)(
(3x′′−i)/2

x′′

)
.

For the first factor to be nonzero mod 3, i must be of the form 9i′′ or 9i′′ + 1. Similarly to
case (1), i cannot be 9i′′ by consideration of the second factor. If i = 9i′′ + 1, the product
becomes

(
x′′

i′′

)(
(3x′′−9i′′−1)/2

x′′

)
, as claimed. If x = 3x′+2, a nonzero second factor would require

the impossible condition (9x′ − 9i + 5)/2 ≡ 2.

(3) To get nonzero, we must have x = 3x′ then i = 3i′. The product then becomes(
x′

i′

)(
(3x′−9i′−1)/2

x′

)
, which is analyzed using case (2). !

Next we prove a theorem which, with 4.3, implies one part of the “if” part of Theorem
1.10.

Theorem 4.8. With T as in Theorem 1.10, if n ∈ (3T + 1) then φ(n) %= 0.

Proof. Define f1(x) = φ(3x + 1). The lengthy proof breaks up into four cases, which are
easily seen to imply the result, that

f1(x) %= 0 if x ∈ T. (4.9)

(1) If x is sparse, then f1(x) %= 0.
(2) For all x, f1(3x) = f1(x).
(3) If x is not sparse and x %≡ 2 mod 3, or if x is sparse and x ≡ 1 mod 3, then

f1(3x + 1) = ±f1(x).
(4) If x ≡ 0 mod 3, then f1(3x + 2) = f1(x).

Moreover, this inductive proof of (4.9) will establish at each step that

if
(
3x
k

)
τ(x, k, (−1)x−k) %= 0, then 3x− k ≡ 0 (mod 2)

unless (3x, k) is special. (4.10)

Case 1: Let x be sparse and

3x =
t∑

j=1

3aj

with aj − aj−1 ≥ 2 for 2 ≤ j ≤ t. Then

f1(x) =
∑(

3x
3i

)
τ(x, 3i, (−1)x−i).

We will show that

(
3x
3i

)
τ(x, 3i, (−1)x−i) =






−1 3i = 3x− 3at

(−1)j 3i = 3x− 3at − 3aj , 1 ≤ j < t

0 otherwise.

(4.11)

This will imply Case 1.
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In the first case of (4.11), (x, i) is special. If x = 3x′, then i = 3i′ with (x′, i′) special, and
we have

τ(x, 3i,−1) = −
(
(3x′−9i′−1)/2

x′

)
≡ −1

by Lemma 4.7.(2). If x = 3x′+1, then i = 3i′+1 with (x′, i′) special. Also, since x is sparse,
we must have x′ = 3x′′ and then i′ = 3i′′. Thus

τ(x, 3i,−1) = −
(
(x−3i−1)/2

x′

)
= −

(
(3x′′−9i′′−1)/2

x′′

)
≡ −1

by Lemma 4.7.(2).

For the second case of (4.11), let 3i = 3x− 3at − 3aj . This time x− 3i = 2# with

# =
at−2∑

s=at−1

3s + · · · +
aj+2−2∑

s=aj+1

3s +

aj−2∑

s=aj−1

3s + · · · +
a2−2∑

s=a1

3s +

aj+1−2∑

s=a1

3s + 2 · 3a1−1.

Then #− 1 is obtained from this by replacing 2 · 3a1−1 with 3a1−1 + 2
a1−2∑

s=0

3s. Hence

τ(x, 3i, (−1)x−i) = (−1)x
(

"−1
[x/3]

)
≡ 2j ≡ (−1)j.

Here we have used that for x = 0, 1, we have [x
3 ] =

t∑

j=x+1

3aj−2.

We complete the argument for Case 1 by proving the third part of (4.11). The binomial
coefficient

(
3x
3i

)
is 0 unless 3i = 3x− 3aj1 − · · ·− 3ajr with j1 < · · · < jr. We must have jr = t

or else x− 3i would be negative. Hence r > 2. If r = 2w + 1 > 1 is odd, then

τ(x, 3i, (−1)x−i) = −
(

"
[x/3]

)

with

2# + 1 = x− 3i =
∑

j !∈{j1,...,jr}

(3aj+1−1 − 3aj) +
w∑

h=1

(3aj2h+1
−1 + 3aj2h

−1) + 3aj1−1,

and hence

# =
∑

j !∈{j1,...,jr}

aj+1−2∑

i=aj

3i +
w∑

h=1

(
3aj2h−1 +

aj2h+1
−2∑

i=aj2h
−1

3i

)
+

aj1−2∑

i=0

3i.

Using (2.10), we see that
(

"
[x/3]

)
≡ 0 by consideration of position aj2 − 2. A similar argument

works when r is even.

Case 2: We are comparing

f1(x) =
∑(

3x
3i

)
τ(x, 3i, (−1)3x−3i)

with

f1(3x) =
∑(

9x
9i

)
τ(3x, 9i, (−1)9x−9i),

mod 3. Clearly the binomial coefficients agree. Let x = 3y + δ with 0 ≤ δ ≤ 2.
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If x− 3i = 2#, let Q = (x− 3i)/2. We have

τ(x, 3i, 1) = (−1)δ
(

Q−1
y

)
≡

(
3Q−1
3y+δ

)
= τ(3x, 9i, 1).

If x− 3i = 2# + 1, let Q = (x− 3i− 1)/2. If δ %= 2, we have

τ(x, 3i,−1) = −
(

Q
y

)
≡ −

(
3Q+1
3y+δ

)
= τ(3x, 9i,−1),

while if δ = 2, we have τ(x, 3i,−1) = 0 by 4.2, and
(
3Q+1
3y+δ

)
= 0.

Case 3: Let x = 3y + δ with δ ∈ {0, 1}. Except for the single special term when x is sparse,
we have f1(x) =

∑(
3x
3i

)
τ(x, 3i, 1), and will show that

f1(3x + 1) =
∑(

9x+3
9i+3

)
τ(3x + 1, 9i + 3, 1). (4.12)

If x−3i = 2#, then τ(x, 3i, 1) = (−1)δ
(

"−1
y

)
and τ(3x+1, 9i+3, 1) = −

(
3"−2
3y+δ

)
≡ −

(
"−1
y

)
since

δ %= 2. Thus f1(3x + 1) = (−1)δ+1f1(x). To see that (4.12) contains all possible nonzero
terms, note that terms

(
9x+3

9i

)
τ(3x + 1, 9i, (−1)x−i−1) contribute 0 to f1(3x + 1) since the

τ -part is −
(
(3x−9i)/2

x

)
≡ 0 or −

(
(3x−9i−1)/2

x

)
≡ 0, since (x, i) is not special.

If x is sparse, the special term (x, i) contributes −1 to f1(x). If also x ≡ 1 mod 3,
then the corresponding term in (4.12) is τ(3x + 1, 9i + 3,−1) with x − i odd, equaling
−

(
(3x−9i−3)/2

x

)
≡ −1 by 4.7.(3). That the terms added to each are equal is consistent with

f1(3x + 1) = (−1)δ+1f1(x).

Case 4: Let x = 3y. Ignoring temporarily the special term when x is sparse, we have
f1(x) =

∑(
3x
3i

)
τ(x, 3i, 1) and will show that f1(3x + 2) =

∑(
9x+6
9i+6

)
τ(3x + 2, 9i + 6, 1). If

x− 3i = 2#, then

τ(x, 3i, 1) ≡
(

"−1
y

)
≡

(
3"−3
3y

)
≡ τ(3x + 2, 9i + 6, 1).

If the 9i + 6 in the sum for f1(3x + 2) is replaced by 9i or 9i + 3, then the associated τ is 0,
for different reasons in the two cases.

We illustrate what happens to a special term (x, i) when x is sparse, using the case x = 30
and i = 3. It is perfectly typical. This term contributes −1 to f1(x). We will show that it
also contributes −1 to f1(3x + 2), using 9i + 3 rather than 9i + 6, which is what contributed
in all the other cases. The reader can check that for terms with k = 9i+〈0, 3, 6〉, the τ -terms
are, respectively

τ(92, 27,−1) = 0, τ(92, 30, 1) ≡
(
30
30

)
≡ 1, τ(92, 33,−1) = 0.

The binomial coefficient accompanying the case i = 30 is
(
9·30+6
9·3+3

)
≡ 2. !

Next we prove a theorem, similar to 4.8, which, with 4.3, implies another part of the “if”
part of Theorem 1.10.

Theorem 4.13. With T as in Theorem 1.10, if n ∈ (9T + 3) then φ(n) %= 0.

Proof. We define f3(x) = φ(9x + 3). We organize the proof into four cases, which imply the
result.
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(1) If the 3-ary expansion of x contains no 2’s, then f3(x) %= 0.
(2) For all x, f3(3x) = f3(x).
(3) For all x, f3(9x + 2) = f3(x).
(4) If x is not sparse and x %≡ 2 mod 3, then f3(3x + 1) = (−1)x+1f3(x).

Case 1: Let 9x =
t∑

i=1

3ai with ai > ai−1 and a1 ≥ 2. Let i0 be the largest i ≥ 1 such that

ai+1−ai = 1. Note that x is sparse if and only if no such i exists; let i0 = 1 in this situation.
For any j, let p(j) denote the number of i ≤ j for which ai−1 < ai − 1 or i = 1. We will
sketch a proof that, mod 3,

(
9x+2

k

)
τ(3x + 1, k, (−1)x−k) ≡






1 · (−1)p(j)+1 k = 9x + 2− 3at − 3aj , i0 ≤ j < t

2 · (−1) k = 9x + 1− 3at , n sparse

0 otherwise.

(4.14)

We have written the values in a form which separates the binomial coefficient factor from
the τ factor. The binomial coefficient factor follows from (2.10). One readily verifies from
(4.14) that the nonzero terms in (4.4) written in increasing k-order alternate between 1 and
−1 until the last one which repeats its predecessor. Thus the sum is nonzero.

The hard part in all of these is discovering the formula; then the verifications are straight-
forward, and extremely similar to those of the preceding proof. We give one, that shows
where (−1)p(j)+1 comes from.

If k = 9x+2−3at−3aj = 2+3a1 + · · ·+3aj−1 +3aj+1 + · · ·+3at−1 , then 3x+1−k = 2#+1
with

# =
t∑

i=2, i!=j+1

ai−2∑

s=ai−1

3s +

aj+1−2∑

s=0

3s +
a1−2∑

s=0

3s.

We desire τ(3x + 1, k, 1) = −
(

"
x

)
with x =

∑t
i=1 3ai−2. Note that # has a 3ai−2-summand

for each i %= j + 1 for which ai−1 %= ai − 1, and another for each i ≤ j + 1. Thus the 3-ary
expansion of # will have 0 in position ai − 2, causing τ = 0, if i > j + 1 and ai = ai−1 + 1.
That explains the choice of i0. If j ≥ i0, then

(
"
x

)
from (2.10) has a factor

(
2
1

)
in positions i

enumerated by p(j).

Case 2: If x is sparse, the result follows from the proof of Case 1, and so we assume x is not
sparse. Then we are comparing

f3(x) =
∑(

9x+2
9i+2

)
τ(3x + 1, 9i + 2, (−1)x−i), (4.15)

mod 3, with

f3(3x) =
∑(

27x+2
27i+2

)
τ(9x + 1, 27i + 2, (−1)x−i). (4.16)

The binomial coefficients are clearly equal, mod 3. One can show that, for the other possible
contributors to (4.16), τ(9x + 1, 27i + 1, (−1)x−i+1) = 0 = τ(9x + 1, 27i, (−1)x−i). If x− i is
odd, the τ -terms in (4.15) and (4.16) are 0, while if x− i is even and Q = x−3i

2 , then

τ(3x + 1, 9i + 2, 1) ≡ −
(
3Q−1

x

)
≡ −

(
9Q−1

3x

)
≡ τ(9x + 1, 27i + 2, 1).
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Case 3: If x is not sparse, we are comparing

f3(x) =
∑(

9x+2
9i+2

)
τ(3x + 1, 9i + 2, (−1)x−i)

with

f3(9x + 2) =
∑(

9(9x+2)+2
9(9i+2)+2

)
τ(3(9x + 2) + 1, 9(9i + 2) + 2, (−1)x−i). (4.17)

We will show below that no other terms can contribute to (4.17). Given this, then the
binomial coefficients clearly agree, mod 3.

When x− i is odd, the terms in both sums are 0, since they are of the form τ(3m+1, 3m+
1− 2#,−1).

Suppose x − i is even. Let Q = x−3i
2 . The first τ is −

(
3Q−1

x

)
, while the second is the

negative of
(
27Q−7
9x+2

)
≡

(
3Q−1

x

)
, as desired.

As a possible additional term in (4.17), if k = 9(9i+2)+2 is replaced with k = 9(9i+α)+β
with 0 ≤ α,β ≤ 2, which are the only ways to obtain a nonzero binomial coefficient, then
we show that the relevant τ is 0. Still assuming x− i even, if α + β is odd, then we obtain
τ(3m + 1, 3m + 1− 2#,−1) = 0, while if β = 0 and α %= 1, then we obtain τ =

(
3y

9x+2

)
≡ 0 for

some y. Finally, if β = 2 and α = 0,

τ =
(
9(3x−9i)/2+2

9x+2

)
≡

(
(3x−9i)/2

x

)
.

Since, in order to have
(
9(9x+2)+2
9(9i+2)+2

)
%≡ 0, we must have ν3(i) ≥ ν3(x), we conclude

(
(3x−9i)/2

x

)
≡ 0

mod 3. The case x− i odd is handled similarly.

If 9x = 3a1 + · · ·+3at is sparse and 9i = 9x−3at , there is an additional term,
(
9x+2
9i+1

)
τ(3x+

1, 9i + 1, 1) ≡ 1, in the sum for f3(x). The additional term in f3(9x + 2) is
(
9(9x+2)+2
9(9i+1)+2

)
τ(3(9x + 2) + 1, 9(9i + 1) + 2, 1) ≡

(
"
m

)
,

with m = 9x + 2 = 2 + 3a1 + · · · + 3at , and 2# + 1 = 3(9x + 2) + 1− 9(9i + 1)− 2, so that

# =
t∑

j=2

aj∑

s=aj−1+2

3s +
a1∑

s=2

3s + 2,

and so the additional term in f(9x + 2) is 1.

Case 4: We first show

(−1)x+1f3(x) = (−1)x+1
∑(

9x+2
9i+2

)
τ(3x + 1, 9i + 2, (−1)x−i)

=
∑(

27x+11
27i+11

)
τ(9x + 4, 27i + 11, (−1)x−i)

= f3(3x + 1)

for x ≡ 0, 1 (mod 3). Both τ ’s are 0 if x− i is odd, while if x− i is even and x ≡ 0, 1 (mod 3),
then

(−1)x+1τ(3x + 1, 9i + 2, 1) ≡ (−1)x
(
3Q+2

x

)
≡ −

(
9Q+5
3x+1

)
= τ(9x + 4, 27i + 11, 1),

where Q = (x− 3i− 2)/2.
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We must also show that
(
27x+11

k

)
τ(9x + 4, k, (−1)x+1−k) ≡ 0 for k %≡ 11 (mod 27). When

k ≡ 2 (mod 27), the result follows from Lemma 4.7. When k ≡ 0, 9 (mod 27), τ is of the
form

(
3A

3x+1

)
≡ 0. !

The “if” part of Theorem 1.10 when n = 3T ′ + 2 divides into two parts, Theorems 4.18
and 4.22, noting that 3T ′ + 2 = (9T + 2) ∪ (9T ′ + 5).

Theorem 4.18. If T ′ is as in Theorem 1.10 and n ∈ (9T ′ + 5), then φ(n) %= 0.

Proof. Let f5(x) = φ(9x + 5). We will prove that if x ∈ T ′ then

f5(x) = (−1)xf3(x). (4.19)

With Theorem 4.13, this implies the result.

Case 1: Assume x not sparse and recall x %≡ 2 (mod 3). We show that, mod 3,
(
9x+4

k

)
τ(3x + 1, k, (−1)9x+4−k) ≡ (−1)x

(
9x+2
k−2

)
τ(3x + 1, k − 2, (−1)9x+4−k). (4.20)

Since f5(x) is the sum over k of the left-hand side, and (−1)xf3(x) the sum over k of the
right-hand side, (4.19) will follow when x is not sparse.

We first deal with cases when the right-hand side of (4.20) is nonzero. By the proof of
4.13, this can only happen when k − 2 = 9i + 2,

(
x
i

)
%≡ 0 mod 3, and x− i is even. Mod 3,

we have
(
9x+4
9i+4

)
≡

(
9x+2
9i+2

)
by (2.10). The two τ ’s in (4.20) are, with Q := 3x−9i

2 , −
(

Q−2
x

)
and

−
(

Q−1
x

)
, respectively. Since Q ≡ 0 mod 3, these are equal if x ≡ 0 and negatives if x ≡ 1.

We conclude the proof of (4.20) by showing that other values of k cause
(
9x+4

k

)
τ(3x +

1, k, (−1)x−k) ≡ 0. If k %≡ 0, 1, 3, 4 mod 9, then
(
9x+4

k

)
≡ 0. If k = 9i + 1 or 9i + 3 and x− i

even, or if k = 9i or 9i+4 and x− i odd, then τ = 0 by 4.2. If k = 9i and x− i is even, then
τ ≡

(
3x−9i

x

)
≡ 0. For k = 9i + 1 or 9i + 3 and x− i odd, the result follows from Lemma 4.7.

Case 2: Assume x is sparse. Let 9x =
t∑

j=1

3aj with aj − aj−1 ≥ 2. We call k = 9i + d,

d ∈ {0, 1, 3, 4}, special if (9x, 9i) is special. The analysis of Case 1 shows that the f5-sum
over non-special values of k equals (−1)x times the f3-sum over non-special values of k.

We saw in (4.14) that the only special value of k giving a nonzero summand for f3(x) is
k = 9i + 1 (with 9i = 9x− 3at) and this summand is 1. We will show that if x ≡ 1 (mod 3),
then the only special value of k giving a nonzero summand for f5(x) is k = 9i + 1, and it
gives −1, while if x ≡ 0 (mod 3), both k = 9i + 1 and k = 9i + 3 give summands of −1 for
f5(x). This will imply the claim.

Recall 9i = 9x − 3at , and hence x − i is odd. If k = 9i + 〈0, 4〉, then the τ -factor is
τ(3x + 1, 9i + 〈0, 4〉,−1) = 0. If k = 9i + 〈1, 3〉, the relevant term in f5(x) is

(
9x+4

9i+〈1,3〉
)
τ(3x + 1, 9i + 〈1, 3〉, 1) = −

(
"
x

)
,
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where

# =
t∑

i=2

ai−2∑

s=ai−1

3s +
a1−2∑

s=0

3s + 〈0,−1〉.

Using (2.10),
(

"
x

)
≡ 1 in the (9i + 1)-case, while in the (9i + 3)-case,

(
#

x

)
≡

(
(
∑a1−2

s=0 3s)− 1

3a1−2

)

is 0 if x ≡ 1 (mod 3), since then a1 = 2, but is 1 if x ≡ 0 (mod 3) since then a1 ≥ 3. !

When n ∈ (9T + 2), the equality of e3(n − 1, n) and s3(n) in Theorem 1.10 comes not
from ν3(a3(n− 1, n)), as it has in the other cases, but rather from ν3(a3(n− 1, n + 1)). To
see this, we first extend Theorem 4.3 as follows.

Theorem 4.21. If N ≥ n, then ν3(a3(n− 1, N)) = s3(n) if and only if [N/9] = [n/9] and
∑(

n−1
k

)
τ([N

3 ], k, (−1)n−k−1) %≡ 0 (mod 3).

Proof. This is very similar to the proof, centered around (2.6), that Theorem 2.2 implies
Theorem 1.7. We have

0 = (−1)NS(n− 1, N)N ! = a3(n− 1, N) + 3n−1
∑

(−1)k
(

N
3k

)
kn−1.

Thus ν3(a3(n− 1, N)) = s3(n) if and only if B %≡ 0 (mod 3), where, mod 3,

B := 1
[n/3]!

∑
(−1)k

(
N
3k

)
kn−1

≡
2∑

d=1

1
[n/3]!

∑

k≡d (mod 3)

(−1)k
(

N
3k

)
kn−1

≡ 1
[n/3]!

2∑

d=1

(−1)d
∑

j

(−1)j
(

N
9j+3d

)∑

"

3"j"
(

n−1
"

)
dn−1−"

≡ 1
[n/3]!

2∑

d=1

(−1)d
∑

j

(−1)j
(

N
9j+3d

)∑

"

3"
(

n−1
"

)
dn−1−"

∑

i

S(#, i)i!
(

j
i

)

≡ 1
[n/3]!

2∑

d=1

(−1)d
∑

j

(−1)j
(

N
9j+3d

)∑

i

3i
(

n−1
i

)
dn−1−ii!

(
j
i

)

≡ [N/3]!
[n/3]!

∑

i

(
n−1

i

)
(Ti,2(N, 3) + (−1)n−1−iTi,2(N, 6))

≡ [N/3]!
[n/3]!

∑

i

(
n−1

i

)
(Ti,1([

N
3 ], 1) + (−1)n−1−iTi,1([

N
3 ], 2))

= [N/3]!
[n/3]!

∑

i

(
n−1

i

)
τ([N

3 ], i, (−1)n−i−1).

!
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The “if” part of 1.10 when n ∈ (9T +2) now follows from Theorem 4.21 and the following
result.

Theorem 4.22. If T is as in (1.11) and n ∈ (9T + 2), then
∑(

n−1
k

)
τ([n+1

3 ], k, (−1)n−k−1) %≡ 0 (mod 3).

Proof. We prove that for such n
∑(

n−1
k

)
τ([n+1

3 ], k, (−1)n−k−1) ≡
∑(

n
k

)
τ([n+1

3 ], k, (−1)n−k) (4.23)

and then apply Theorem 4.13. Note that the right-hand side is φ(n + 1).

If n = 9x + 2 with x not sparse, then the proof of 4.13 shows that the nonzero terms of
the right-hand side of (4.23) occur for k = 9i + 2 with

(
x
i

)
%≡ 0 (mod 3) and x− i even. Now

(4.23) in this case follows from
(
9x+1
9i+1

)
τ(3x + 1, 9i + 1, 1) ≡ −

(
x
i

)(
(3x−9i−2)/2

x

)
≡

(
9x+2
9i+2

)
τ(3x + 1, 9i + 2, 1). (4.24)

One must also verify that no other values of k contribute to the left-hand side of (4.23); this
is done by the usual methods.

If n = 9x+2 with x sparse, (4.24) holds unless (x, i) is special. For such i, the contribution
to the right-hand side of (4.23) using k = 9i + 1 is 2 · 2 ≡ 1. The left-hand side of (4.23)
obtains contributions of 1 · 2 from both k = 9i and k = 9i + 1. Indeed both τ ’s are equal to
−

(
(3x−9i−1)/2

x

)
≡ −1 by (4.7). !

The “if” part of Theorem 1.10 is an immediate consequence of Theorems 4.3, 4.8, 4.13,
4.18, and 4.22. We complete the proof of Theorem 1.10 by proving the following result.

Proposition 4.25. If n is not one of the integers described in (1.11), then for all integers
N ≥ n satisfying [N/9] = [n/9], we have

∑(
n−1

k

)
τ([N

3 ], k, (−1)n−k−1) ≡ 0 (mod 3).

Proof. We break into cases depending on n mod 9, and argue by induction on n with the
integers ordered so that 9x + 3 immediately precedes 9x + 2.

Case 1: n ≡ 0 (mod 9). Let n = 9a. If [N
3 ] = 3a or 3a + 2, then τ([N

3 ], k, (−1)a−1−k) = 0 by
4.2. Now suppose [N

3 ] = 3a + 1. We show that for each nonzero term in
∑

k

(
9a−1

k

)
τ(3a + 1, k, (−1)a−k−1)

with a− k odd, the (k + 1)-term is the negative of the k-term. Thus the sum is 0.

Both τ ’s equal −
(
(3a−k−1)/2

a

)
. Since

(
9a−1

k

)
+

(
9a−1
k+1

)
=

(
9a

k+1

)
, the binomial coefficients are

negatives of one another unless k + 1 = 9t with
(

a
t

)
%≡ 0 (mod 3). Then ν(t) ≥ ν(a) and so(

(3a−k−1)/2
a

)
=

(
(3a−9t)/2

a

)
≡ 0 (mod 3), so the τ ’s were 0.
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Case 2: n ≡ 6, 7, 8 (mod 9). In these cases, [N/9] = [n/9] implies [N/3] = [n/3] and so we
need not consider N > n. By 4.2, τ(3x + 2, k, (−1)x+1−k) = 0, which implies φ(9x + 6) =
0 = φ(9x + 8). We have

φ(9x + 7) =
∑(

9x+6
k

)
τ(3x + 2, k, (−1)x−k).

This is 0 if x − k is odd, while if x − k is even, a summand is
(
9x+6

k

)(
(3x−k)/2

x

)
, which is 0

unless k ≡ 0 (mod 3) and hence x ≡ 0 (mod 3). In the latter case, with x = 3x′ and f1 as
in the proof of 4.8, we have φ(n) = f1(9x′ + 2), which, by Case 4 of the proof of 4.8, equals
f1(3x′), and this is 0 by induction unless x′ ∈ T .

Case 3: n = 9x + 5. If x ≡ 0, 1 (mod 3), then φ(9x + 5) = ±φ(9x + 3) was proved in Case
1 of the proof of 4.18. The induction hypothesis thus implies the result for N = n in these
cases. If x = 3y + 2, then

φ(n) =
∑(

27y+22
k

)
τ(9y + 7, k, (−1)y−k).

The k-term is 0 if y−k is odd, while if y−k is even, τ = −
(
(9y+6−k)/2

3y+2

)
. This is 0 unless k ≡ 2

mod 3, but then
(
27y+22

k

)
≡ 0 (mod 3). The k-term for N = n+1 is nonzero if and only if the

k-term in φ(n) is nonzero; this is true because τ(3z+2, k, (−1)z−k) = ±τ(3z+1, k, (−1)z−k).
Thus the sum for N = n + 1 is 0 if x %∈ T ′.

Case 4: n = 9x + 2. Since, for ε = 0 or 2, τ(3x + ε, k, (−1)x−k+1) = 0, we deduce that∑(
n−1

k

)
τ([N

3 ], k, (−1)n−k−1) = 0 for N = n and N = n + 4. For N = n + 1, this is just the
left-hand side of (4.23). By (4.23), it equals φ(n + 1), which is 0 for x %∈ T by the induction
hypothesis.

Case 5: n = 9x+3. Let f3(x) = φ(9x+3). Let x be minimal such that x %∈ T and f3(x) has
a nonzero summand. By the proof of 4.13, x is not 0 mod 3, 2 mod 9, 1 mod 9, or 4 mod 9.

If x ≡ 5, 7, or 8 mod 9, then f3(x) has no nonzero summands. For example, if x = 9t + 7,
the summands are

(
81t+65

k

)
τ(27t + 22, k, (−1)t−k−1). This is 0 if t− k is even, while if t− k

is odd, the τ -factor is
(
(27t+21−k)/2

9t+7

)
. For this to be nonzero, we must have k ≡ 5 or 7 mod 9,

but these make the first factor 0. Other cases are handled similarly.

One can show that for ε = 0, 1, 2,

τ(3x + 2, 9i + ε, (−1)x−i−ε) = ±τ(3x + 1, 9i + ε, (−1)x−i−ε) ∈ Z/3.

This implies that when we use N = n+3, nonzero terms will be obtained if and only if they
were obtained for n.

Case 6: n ≡ 1, 4 mod 9. Let f1(x) = φ(3x + 1). By the proof of Theorem 4.8, there
can be no smallest x ≡ 0, 1 mod 3 which is not in T and has f1(x) %= 0. When using
N = n+2 or, if n ≡ 1 (mod 9), N = n+5, then the k-summands,

(
9x
k

)
τ(3x+1, k, (−1)x−k),(

9x+3
k

)
τ(3x + 2, k, (−1)x+1−k), and

(
9x
k

)
τ(3x + 2, k, (−1)x−k), are easily seen to be 0. !
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5. Discussion of Conjecture 1.17

In this section we discuss the relationship between e2(n), e2(n−1, n), and s2(n). In particular,
we discuss an approach to Conjecture 1.17, which suggests that the inequality e2(n−1, n) ≥
s2(n) fails by 1 to be sharp if n = 2t, while if n = 2t + 1, it is sharp but the maximum value
of e2(k, n) occurs for a value of k %= n − 1. The prime p = 2 is implicit in this section; in
particular, ν(−) = ν2(−) and a(−,−) = a2(−,−).

Although our focus will be on the two families of n with which Conjecture 1.17 deals, we
are also interested, more generally, in the extent to which equality is obtained in each of the
inequalities of

s2(n) ≤ e2(n− 1, n) ≤ e2(n). (5.1)

In Table 1, we list the three items related in (5.1) for 2 ≤ n ≤ 38, and also the smallest
positive k for which e2(k, n) = e2(n). We denote this as kmax, since it is the simplest k-value
giving the maximum value of e2(k, n). Note that in this range kmax always equals n− 1 plus
possibly a number which is rather highly 2-divisible.

We return to more specific information leading to Conjecture 1.17. To obtain the value
of e2(n), we focus on large values of e2(k, n). For n = 2t and 2t + 1, this is done in the
following conjecture, which implies Conjecture 1.17. Note that s2(2t) = 2t + 2t−1 − 2, and
s2(2t + 1) = 2t + 2t−1 − 1. We employ the usual convention ν(0) = ∞.

Conjecture 5.2. If t ≥ 3, then

e2(k, 2t)

{
= min(ν(k + 1− 2t) + 2t − t, 2t + 2t−1 − 1) if k ≡ −1 (mod 2t−1)

< 2t + 2t−1 − 1 if k %≡ −1 (mod 2t−1);

e2(k, 2t + 1)

{
= min(ν(k − 2t − 22t−1+t−1) + 2t − t, 2t + 2t−1) if k ≡ 0 (mod 2t−1)

< 2t + 2t−1 if k %≡ 0 (mod 2t−1).

Note from this that conjecturally the smallest positive value of k for which e2(k, n) achieves
its maximum value is n−1 when n = 2t but is n−1+22t−1+t−1 when n = 2t +1. The reason
for this is explained in the next result, involving a comparison of the smallest ν(a(k, j))
values.

Conjecture 5.3. There exist odd 2-adic integers u, whose precise value varies from case to
case, such that

(1) if k ≡ −1 (mod 2t−1), then

ν(a(k, 2t + 1)) = ν(k + 1− 2t − 22t−1+t−1u) + 2t − t

ν(a(k, 2t + 2)) = ν(k + 1− 2t − 22t−1+t−2u) + 2t − t + 1

ν(a(k, 2t + 3)) = ν(k + 1− 2t − 22t−1+t−2u) + 2t − t + 1;
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Table 1. Comparison for (5.1) when p = 2

n s2(n) e2(n− 1, n) e2(n) kmax

2 1 1 1 1
3 2 2 2 2
4 4 4 4 3
5 5 5 6 4 + 23

6 6 6 8 5 + 23

7 7 8 8 6
8 10 11 11 7
9 11 11 12 8 + 26

10 12 12 14 9 + 26

11 13 13 15 10 + 26

12 15 15 15 11
13 16 18 18 12
14 17 21 21 13
15 18 22 22 14
16 22 23 23 15
17 23 23 24 16 + 211

18 24 24 26 17 + 211

19 25 25 28 18 + 211

20 27 27 28 19 + 211

21 28 28 28 20
22 29 29 30 21 + 210

23 30 31 31 22
24 33 34 34 23
25 34 36 38 24 + 216

26 35 37 40 25 + 2165
27 36 38 40 26 + 216

28 38 40 40 27
29 39 42 44 28 + 218

30 40 43 45 29 + 218

31 41 46 46 30
32 46 47 47 31
33 47 47 48 32 + 220

34 48 48 50 33 + 220

35 49 49 52 34 + 220

36 51 51 53 35 + 220

37 52 52 54 36 + 2203
38 53 53 56 37 + 2207

(2) if k ≡ 0 (mod 2t−1), then

ν(a(k, 2t + 1)) = ν(k − 2t − 22t−1+t−1u) + 2t − t

ν(a(k, 2t + 2)) = ν(k − 2t − 22t−1+tu) + 2t − t + 1

ν(a(k, 2t + 3)) = ν(k − 2t − 22t−1+t−2u) + 2t − t + 2.
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For other values of j ≥ 2t (resp. 2t + 1), ν(a(k, j)) is at least as large as all the values
appearing on the right-hand side above.

Note that, for fixed j, ν(a(k, j)) is an unbounded function of k; it is the interplay among
several values of j which causes the boundedness of e2(k, n) for fixed n.

We show now that Conjecture 5.3 implies the “= min”-part of Conjecture 5.2. In part
(1), the smallest ν(a(k, j)) for j ≥ 2t is






ν(k + 1− 2t) + 2t − t if ν(k + 1− 2t) ≤ 2t−1 + t− 2, using j = 2t + 1

2t + 2t−1 − 1 if ν(k + 1− 2t) = 2t−1 + t− 1, using j = 2t + 2

2t + 2t−1 − 1 if ν(k + 1− 2t) > 2t−1 + t− 1, using either.

In part (2), the smallest ν(a(k, j)) for j ≥ 2t + 1 is





ν(k − 2t) + 2t − t if ν(k − 2t) ≤ 2t−1 + t− 2, using j = 2t + 1

2t + 2t−1 if ν(k − 2t) = 2t−1 + t− 1, using j = 2t + 2

2t + 2t−1 − 1 if ν(k − 2t) ≥ 2t−1 + t, using j = 2t + 1.

Conjecture 5.3 can be thought of as an application of Hensel’s Lemma, following Clarke
([2]). We are finding the first few terms of the unique zero of the 2-adic function f(x) =
ν(a(x, 2t + ε)) for x in a restricted congruence class.

6. Relationships With Algebraic Topology

In this section, we sketch how the numbers studied in this paper are related to topics in
algebraic topology, namely James numbers and v1-periodic homotopy groups.

Let Wn,k denote the complex Stiefel manifold consisting of k-tuples of orthonormal vectors
in Cn, and Wn,k → S2n−1 the map which selects the first vector. In work related to vector
fields on spheres, James ([8]) defined U(n, k) to be the order of the cokernel of

π2n−1(Wn,k) → π2n−1(S
2n−1) ≈ Z,

now called James numbers. A bibliography of many papers in algebraic topology devoted to
studying these numbers can be found in [4]. It is proved in [11] that

νp(U(n, k)) ≥ νp((n− 1)!)− ẽp(n− 1, n− k).

Our work implies the following sharp result for certain James numbers.

Theorem 6.1. If p = 2 or 3, n is as in (1.8) or (1.11), and L is sufficiently large, then

νp(U((p− 1)pL + n, (p− 1)pL)) = pL − (p− 1)[n
p ]− νp(n)− n.

Proof. We present the argument when p = 3. By [4, 4.3] and 1.10, we have

ν3(U(2 · 3L + n, 2 · 3L)) = ν3((2 · 3L + n− 1)!)− (n− 1 + ν3([n/3]!)).
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Using Proposition 3.1, this equals
1
2(2 · 3

L − n− 1− d3(n− 1)− [n
3 ] + d3([

n
3 ])).

If n %= 0 and n = 3m + n, this equals 3L − 2m − n, while if n = 3m, we use d3(k − 1) =
d3(k)− 1 + 2ν3(k) to obtain 3L − 2m− ν3(3m). !

The p-primary v1-periodic homotopy groups of a topological space X, denoted v−1
1 π∗(X)(p)

and defined in [5], are a first approximation to the p-primary actual homotopy groups
π∗(X)(p). Each group v−1

1 πi(X)(p) is a direct summand of some homotopy group πj(X).
It was proved in [4] that for the special unitary group SU(n), we have, if p or n is odd,

v−1
1 π2k(SU(n))(p) ≈ Z/pep(k,n),

and v−1
1 π2k−1(SU(n))(p) has the same order. The situation when p = 2 and n is even is

slightly more complicated; it was discussed in [1] and [6]. In this case, there is a summand
Z/2e2(k,n)) or Z/2e2(k,n)−1 in v−1

1 π2k(SU(n))(2). From Theorems 1.10 and 1.7 we immediately
obtain

Corollary 6.2. If n is as in (1.11) and k ≡ n− 1 mod 2 · 3s3(n), then

v−1
1 π2k(SU(n))(3) ≈ Z/3s3(n).

If n is as in (1.8) and is odd, and k ≡ n− 1 mod 2s2(n)−1, then

v−1
1 π2k(SU(n))(2) ≈ Z/2s2(n).

We are especially interested in knowing the largest value of ep(k, n) as k varies over all
integers, as this gives a lower bound for expp(SU(n)), the largest p-exponent of any homotopy
group of the space. It was shown in [7] that this is ≥ sp(n) if p or n is odd. Our work here
immediately implies Corollary 6.3 since v−1

1 π2n−2(SU(n))(p) has p-exponent greater than
sp(n) in these cases.

Corollary 6.3. If p = 3 and n is not as in (1.11) or p = 2 and n is odd and not as in (1.8),
then expp(SU(n)) > sp(n).

Table 1 illustrates how we expect that k = n − 1 will give almost the largest group
v−1
1 π2k(SU(n))(p), but may miss by a small amount. There is much more that might be done

along these lines.
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