ON THE DIOPHANTINE EQUATION $\mathrm{X}^{2}+3^{\mathrm{m}}=\mathrm{Y}^{\mathrm{n}}$

Tao Liqun
Department of Mathematics, Nanjing University, Nanjing 210093, P. R. China and School of Mathematical Sciences, University College Dublin, Belfield, Dublin 4, Ireland
lqtao99@tom.com

Received: 2/15/08, Revised: 5/23/08, Accepted: 7/10/08, Published: 12/3/08

Abstract

In this paper we consider the diophantine equation $x^{2}+3^{m}=y^{n}, n>2, m, n \in \mathbf{N}$. When $2 \mid m$, we determine complete solutions of the equation with the help of a deep result due to Bilu, Hanrot, and Voutier, and when $2 \nmid m$, we rewrite a proof due to E. Brown in a little different way.

1. Introduction

The diophantine equation $x^{2}+k=y^{n}, x, y, n \in \mathbf{Z}, n>2$ has been studied extensively. When $n=3$, it is well known as Mordell's equation, which Mordell discussed in detail in his book [9]. When $n>3$, there is now also a vast amount of literature. For small positive k, it seems easier to determine the solutions. For example, V. A. Lebesgue [7] proved that there are no nontrivial solutions when $k=1$. Nagell [10] showed that there are no solutions when $k=3$ and 5 . In the case $k=2$, Ljunggren [8] proved that the equation has only one solution $x=5$. J. H. E. Cohn treated the equation for values of positive k under 100 and found complete solutions for 77 values, see [4]. When $k=c^{m}, c$ a positive integer, $m \in \mathbf{N}$ unknown, the equation is more difficult to treat, even for very small c. In the case $c=2$, on the basis of the work of Cohn [3], Le and Guo [5] found complete solutions with the aid of computers. In this paper we consider the case $c=3$. Brown [2] has found all solutions for $2 \nmid m$, so we need only to consider the equation for $2 \mid m$. However for the sake of completeness we also give a simple proof here which is just a rewriting of [2] in a little different way. Le conjectured in [6] that the equation $x^{2}+3^{2 m}=y^{n},(x, y)=1, n>2, m, n \in \mathbf{N}$ has only one positive integer solution $(x, y, m, n)=(46,13,2,3)$. Using the method E. Brown called "rough decent" [2], we show this conjecture is true in all cases except when n is a prime of the form $12 k-1$. To complete the proof we use the result in [1] to cover the exceptional case.
2. The equation $x^{2}+3^{2 m+1}=y^{n}$

We begin by considering the general equation $x^{2}+3^{m}=y^{n}, n>2$. If $(x, y) \neq 1$, then $3|x, 3| y$. Suppose $3^{s}\left\|x, 3^{t}\right\| y$. If $2 \nmid m$, we have $m=t n<2 s$ or $2 s=t n<m$. So the equation can be written as

$$
\begin{equation*}
3 X^{2}+1=Y^{n} \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
X^{2}+3^{m^{\prime}}=Y^{n},(X, Y)=1,2 \nmid m^{\prime} \tag{2}
\end{equation*}
$$

If $2 \mid m$, then either $m=t n \leq 2 s$, or $2 s=t n<m$, or $2 s=m<t n$. The third case is easily exclude, for then we have $X^{2}+1=3^{t n-m} Y^{n}$, hence $X^{2}+1 \equiv 0 \bmod 3$, which is impossible. For the former two cases the equation can be written as

$$
\begin{equation*}
X^{2}+1=Y^{n} \tag{3}
\end{equation*}
$$

or

$$
\begin{equation*}
X^{2}+3^{m^{\prime}}=Y^{n},(X, Y)=1, m^{\prime}>0,2 \mid m^{\prime} \tag{4}
\end{equation*}
$$

Equation (3) has been treated in [7], and the equation $x^{2}+3=y^{n}, n>2$ has been treated in [10], so we need only consider (1), (2) for $m^{\prime}>1$ and (4). In this section we treat (1) and (2).

Throughout the paper we will use freely the fact that $\mathbb{Z}[\sqrt{-1}]$ and $\mathbb{Z}[\sqrt{-3}]$ are unique factorization domains.

Theorem 2.1. The equation $3 x^{2}+1=y^{n}, n>2$ has no positive integer solutions.
Proof. Since $n>2$, arguing modulo 8 , one obtains that if there exist integers x, y such that $3 x^{2}+1=y^{n}$, then y is odd and x is even. Hence the algebraic integers $1+x \sqrt{-3}$ and $1-x \sqrt{-3}$ are coprime. If $n=4$, there exist integers a, b such that $1+x \sqrt{-3}= \pm(a+b \sqrt{-3})^{4}$. Comparing the real part, we have $1= \pm\left(a^{4}-18 a^{2} b^{2}+9 b^{4}\right)$. Since $3 \nmid a$, hence $a^{2} \equiv 1 \bmod 3$, we see the minus case is rejected. So we have $1=\left(a^{2}-9 b^{2}\right)^{2}-72 b^{4}$. Consider the equation $X^{2}-72 Y^{4}=1$. Suppose $\left(x^{\prime}, y^{\prime}\right)$ is a nonnegative integer solution. Then $\frac{x^{\prime}+1}{2} \frac{x^{\prime}-1}{2}=18 y^{\prime 4}$. So there exist integers s, t such that $y^{\prime}=s t, \frac{x^{\prime}+1}{2}=2 s^{4}$ and $\frac{x^{\prime}-1}{2}=9 t^{4}$, or $\frac{x^{\prime}-1}{2}=2 s^{4}$ and $\frac{x^{\prime}+1}{2}=9 t^{4}$, or $\frac{x^{\prime}+1}{2}=18 s^{4}$ and $\frac{x^{\prime}-1}{2}=t^{4}$, or $\frac{x^{\prime}-1}{2}=18 s^{4}$ and $\frac{x^{\prime}+1}{2}=t^{4}$. For the former two cases we have $2 s^{4}-9 t^{4}= \pm 1$, for the latter two cases we have $18 s^{4}-t^{4}= \pm 1$. It is easy to see that $2 s^{4}-9 t^{4}=1$ and $18 s^{4}-t^{4}=1$ are impossible by considering modulo 3 .

By Lesbegue's result [7], $18 s^{4}-t^{4}=-1$ has only one solution $(s, t)=(0, \pm 1)$. Then $y^{\prime}=0$. So $b=0$, hence $x=0$. (We can also solve the equation $18 s^{4}-t^{4}=-1$ directly: we have $\left(t^{2}+1\right)\left(t^{2}-1\right)=18 s^{4}$. Hence $2 \mid\left(t^{2} \pm 1\right)$. Moreover we have $2 \|\left(t^{2}+1\right)$, because otherwise
$t^{2} \equiv 3 \bmod 4$, which is impossible. Suppose that $t \neq \pm 1$. Since $\left(\frac{t^{2}+1}{2}\right)\left(t^{2}-1\right)=\left(3 s^{2}\right)^{2}$ and $\left(\frac{t^{2}+1}{2}, t^{2}-1\right)=1$, there is an integer z such that $t^{2}-1=z^{2}$, which implies $t= \pm 1$. This is a contradiction; therefore we have the only integer solutions $t= \pm 1, s=0$.)

For $2 s^{4}-9 t^{4}=-1$, we have $\frac{3 t^{2}+1}{2} \frac{3 t^{2}-1}{2}=8\left(\frac{s}{2}\right)^{4}$. Then as above we get $u^{4}-8 v^{4}= \pm 1$ and $u v=\frac{s}{2}$ for some integers u, v. The minus case is rejected by considering modulo 8 . From [9] (see p. 208) the equation $u^{4}-8 v^{4}=1$ has only one solution $(u, v)=(1,0)$. Then we see $s=0$, hence $3 t^{2}=1$, which is impossible.

Now we may assume n is an odd prime p. Suppose (x, y, m, p) is a solution. Then there exist some integers a, b such that $1+x \sqrt{-3}=(a+b \sqrt{-3})^{p}$ and $y=a^{2}+3 b^{2}$.

Comparing the real parts, we have

$$
\begin{equation*}
1=a \sum_{k=0}^{\frac{p-1}{2}}\binom{p}{2 k} a^{p-(2 k+1)}\left(-3 b^{2}\right)^{k} . \tag{5}
\end{equation*}
$$

Then we see $a= \pm 1$. So from (5) we have $\pm 1 \equiv 1 \bmod 3$; hence $a=1$. Thus $\sum_{k=1}^{\frac{p-1}{2}}\binom{p}{2 k}\left(-3 b^{2}\right)^{k}=0$.

Let $V_{2}(\cdot)$ be the standard 2-adic valuation. For $k \geq 2$, let $k=2^{s} t, 2 \nmid t$. Then when $s=0,2(k-1)=2(t-1) \geq 2>0=V_{2}(k)$; and when $s>0,2(k-1)=2\left(2^{s} t-1\right) \geq$ $2\left(2^{s}-1\right) \geq 2 s>s=V_{2}(k)$. So $2(k-1)>V_{2}(k)$ for $k \geq 2$.

From $3 x^{2}+1=y^{p}$, we have $2 \nmid y$. As $y=a^{2}+3 b^{2}=1+3 b^{2}$, we see $2 \mid b$. Since $x>0$, we have $y>1$. So $b \neq 0$. Then for $k \geq 2$, we have

$$
\begin{aligned}
& V_{2}\left(\binom{p}{2 k}\left(-3 b^{2}\right)^{k}\right)=V_{2}\left(\frac{p(p-1)}{2 k(2 k-1)}\binom{p-2}{2 k-2}\left(-3 b^{2}\right)^{k}\right) \\
& =V_{2}\left(\binom{p}{2}\left(-3 b^{2}\right)\right)+V_{2}\left(\frac{1}{k(2 k-1)}\binom{p-2}{2 k-2}\left(-3 b^{2}\right)^{k-1}\right) \\
& \geq V_{2}\left(\binom{p}{2}\left(-3 b^{2}\right)\right)+2(k-1)-V_{2}(k)>V_{2}\left(\binom{p}{2}\left(-3 b^{2}\right)\right) .
\end{aligned}
$$

But from $0=\sum_{k=1}^{\frac{p-1}{2}}\binom{p}{2 k}\left(-3 b^{2}\right)^{k}$, we see there are at least two terms with smallest 2-adic valuation. This is a contradiction. This completes the proof of the theorem.

Theorem 2.2. The equation $x^{2}+3^{2 m+1}=y^{n},(x, y)=1, n>2, m \geq 1$ has only one positive integer solution $(x, y, m, n)=(10,7,2,3)$.

Proof. When $n=4$, we have $\left(y^{2}+x\right)\left(y^{2}-x\right)=3^{2 m+1}$. Then $y^{2}+x=3^{2 m+1}$ and $y^{2}-x=1$. So $2 y^{2}=3^{2 m+1}+1$. Then $2 \equiv 2 y^{2} \equiv 1 \bmod 3$, which is impossible.

Now we assume n is an odd prime p. Suppose (x, y, m, p) is a solution. Since $(2, y)=1$ and $(3, y)=1$ (because $(x, y)=1$), the algebraic integers $x \pm 3^{m} \sqrt{-3}$ are coprime. Then there exist some integers a, b such that $x+3^{m} \sqrt{-3}=(a+b \sqrt{-3})^{p}$ and $y=a^{2}+3 b^{2}$.

Comparing the imaginary parts, we have $3^{m}=b \sum_{k=0}^{\frac{p-1}{2}}\binom{p}{2 k+1} a^{p-(2 k+1)}\left(-3 b^{2}\right)^{k}$, so that $b \mid 3^{m}$. Let $b= \pm 3^{l}, 0 \leq l \leq m$. Then $\pm 3^{m-l}=\sum_{k=0}^{\frac{p-1}{2}}\binom{p}{2 k+1} a^{p-(2 k+1)}\left(-3 b^{2}\right)^{k}$. So $\pm 3^{m-l} \equiv$ $p a^{p-1} \equiv p \bmod 3($ since $3 \nmid y$ implies $3 \nmid a)$.

If $p=3$, we have $\pm 3^{m-l}=3 a^{2}-3 b^{2}$, or $\pm 3^{m-l-1}=a^{2}-b^{2}$. If $l>0$, then $l=m-1$ since $3 \nmid a$, hence $\pm 1=a^{2}-b^{2} \equiv a^{2} \bmod 3$. So the minus case is excluded and we have $1=a^{2}-b^{2}$. Then $a^{2}=1+b^{2}=1+3^{2(m-1)} \equiv 2 \bmod 8$, which is impossible. So $l=0$, hence $b= \pm 1$. Then we have $\pm 3^{m-1}=a^{2}-1=(a+1)(a-1)$, so $a+1= \pm 3^{m-1}$ and $a-1= \pm 1$, or $a-1= \pm 3^{m-1}$ and $a+1= \pm 1$. In both cases we have $3^{m-1}-1= \pm 2$, hence $m=2$. Then we get $a= \pm 2$, so $y=7$ and $x=10$.

If $p \neq 3$, then $m=l$. Hence, $b= \pm 3^{m}$ and $p \equiv \pm 1 \bmod 3$ accordingly.
Since $x^{2}+3^{2 m+1}=y^{p}$, by considering this modulo 8 we see that $2 \nmid y$. Then from $y=a^{2}+3 b^{2}$ and $2 \nmid b$, we have $2 \mid a$. Thus $\pm 1=\sum_{k=0}^{\frac{p-1}{2}}\binom{p}{2 k+1} a^{p-(2 k+1)}\left(-3 b^{2}\right)^{k} \equiv 1 \bmod 4$. So $b=3^{m}$ and hence $p \equiv 1 \bmod 3$. This gives us $p \equiv 1 \bmod 6$.

Let $N=p-1$. Then $6 \mid N$. Suppose $3^{r+2 m} \mid N$ (here we do not assume that $r \geq 0$, but we have $r+2 m>0$. We write this way just for convenience of computation in the following), we will prove $3^{r+2 m+1} \mid N$, which leads to a contradiction. So the equation $x^{2}+3^{2 m+1}=y^{p},(x, y)=1, p \equiv 1 \bmod 6$ has no integer solutions, thus finishing the proof of the theorem.

Let $\alpha=a+3^{m} \sqrt{-3}$. Let $V_{3}(\cdot)$ be the standard 3 -adic valuation. For $k \geq 2$, let $k=3^{s} t, 3 \nmid t$. Then when $s=0$, we have $k-2=t-2 \geq 0=V_{3}(k)$; and when $s>0$, $k-2=3^{s} t-2 \geq 3^{s}-2 \geq s=V_{3}(k)$. So $k-V_{3}(k) \geq 2$ for $k \geq 2$.

Then for $k \geq 2$, we have

$$
\begin{aligned}
& \left.V_{3}\left(\binom{N}{k}\left(3^{m} \sqrt{-3}\right)^{k}\right) \geq V_{3}\left(\frac{N}{k}\left(3^{m} \sqrt{-3}\right)^{k}\right)\right)=V_{3}(N)-V_{3}(k)+\left(m+\frac{1}{2}\right) k \\
& \geq r+2 m+\left(m-\frac{1}{2}\right) k+\left(k-V_{3}(k)\right) \geq r+2 m+\left(m-\frac{1}{2}\right) k+2 \geq r+4 m+1 .
\end{aligned}
$$

So

$$
\alpha^{N}=\left(a+3^{m} \sqrt{-3}\right)^{N} \equiv a^{N}+N a^{N-1} 3^{m} \sqrt{-3} \bmod 3^{r+4 m+1} .
$$

Thus

$$
\begin{align*}
\alpha^{p} & =\alpha \cdot \alpha^{N} \equiv \alpha a^{N}+\alpha N a^{N-1} 3^{m} \sqrt{-3}=\alpha a^{N}+\left(a+3^{m} \sqrt{-3}\right) N a^{N-1} 3^{m} \sqrt{-3} \\
& =\alpha a^{N}+N a^{N} 3^{m} \sqrt{-3}-N a^{N-1} 3^{2 m+1} \equiv \alpha a^{N}+N a^{N} 3^{m} \sqrt{-3} \quad \bmod 3^{r+4 m+1} \tag{6}
\end{align*}
$$

Since $x+3^{m} \sqrt{-3}=(a+b \sqrt{-3})^{p}$ and $b=3^{m}$, we have

$$
\alpha^{p}-\bar{\alpha}^{p}=\left(a+3^{m} \sqrt{-3}\right)^{p}-\left(a-3^{m} \sqrt{-3}\right)^{p}=\left(x+3^{m} \sqrt{-3}\right)-\left(x-3^{m} \sqrt{-3}\right)=2 \cdot 3^{m} \sqrt{-3},
$$

where $\bar{\alpha}$ is the complex conjugate.
Taking the conjugate of (6), and then subtracting from (6), and substituting the above equation, we get $2 \cdot 3^{m} \sqrt{-3}=2 \cdot 3^{m} \sqrt{-3} a^{N}+2 \cdot 3^{m} \sqrt{-3} N a^{N} \bmod 3^{r+4 m+1}$. Thus, $3^{r+2 m+1}$ | $\left(\left(a^{N}-1\right)+N a^{N}\right)$. Since $3 \mid\left(a^{2}-1\right)$ and $V_{3}\left(\left(\begin{array}{c}\frac{N}{2} \\ k \\ N\end{array}\right) 3^{k}\right) \geq V_{3}(N)-V_{3}(k)+k \geq r+2 m+1$ for $k \geq 1$, from $a^{N}-1=\left(\left(a^{2}-1\right)+1\right)^{\frac{N}{2}}-1=\sum_{k=1}^{\frac{N}{2}}\binom{\frac{N}{2}}{k}\left(a^{2}-1\right)^{k}$, we have $3^{r+2 m+1} \mid\left(a^{N}-1\right)$. Hence $3^{r+2 m+1} \mid N a^{N}$. Therefore $3^{r+2 m+1} \mid N$. This completes the proof the theorem.

3. The Equation $x^{2}+3^{2 m}=y^{p}, p \equiv 1 \bmod 12$

In this section, we treat Case (4). At first we consider some simple cases.
Theorem 3.1. The equation $x^{2}+3^{2 m}=y^{4},(x, y)=1$ has no positive integer solution.
Proof. Since $3 \nmid x y$, from $\left(y^{2}+x\right)\left(y^{2}-x\right)=3^{2 m}$, we have $y^{2}+x=3^{2 m}$ and $y^{2}-x=1$. So $2 y^{2}=3^{2 m}+1$. Thus $2 \equiv 2 y^{2} \equiv 1 \bmod 3$, which is impossible.

Theorem 3.2. The equation $x^{2}+3^{2 m}=y^{3},(x, y)=1$ has only one positive integer solution $(x, y, m)=(46,13,2)$.

Proof. Suppose (x, y, m) is a solution. Since y is odd and $(3, y)=1$ (because $(x, y)=1$), we have $x+3^{m} i$ and $x-3^{m} i$ are coprime. Then there exist integers a, b such that $x+3^{m} i=$ $(a+b i)^{3}$ and $y=a^{2}+b^{2}$. Comparing the imaginary parts we have $3^{m}=3 a^{2} b-b^{3}$, so $3 \mid b$.

Now let $b= \pm 3^{l}, l>0$. Then $\pm 3^{m-l-1}=a^{2}-3^{2 l-1}$. Since $3 \nmid y$ and $3 \mid b$, we have $3 \nmid a$. So $l=m-1$. Hence $\pm 1=a^{2}-3^{2 m-3}$. Since $a^{2} \equiv 1 \bmod 3$, the minus sign is rejected. So $a^{2}-1=3^{2 m-3}$. Then $a+1= \pm 3^{2 m-3}$ and $a-1= \pm 1$, or $a-1= \pm 3^{2 m-3}$ and $a+1= \pm 1$. In both cases we get $3^{2 m-3}-1= \pm 2$. So $m=2$, hence $a= \pm 2$. Therefore we have the solution $(x, y, m)=(46,13,2)$.

In view of the above discussion, we need only consider $x^{2}+3^{2 m}=y^{p},(x, y)=1, m \geq 1$, where $p>3$ is a prime. Suppose (x, y, m, p) is a solution. Then there exist integers a and b such that $y=a^{2}+b^{2}$ and $x+3^{m} i=(a+b i)^{p}$. Comparing the imaginary parts we have

$$
\begin{equation*}
3^{m}=b \sum_{k=0}^{\frac{p-1}{2}}\binom{p}{2 k+1} a^{p-(2 k+1)}\left(-b^{2}\right)^{k} . \tag{7}
\end{equation*}
$$

Since $3 \nmid x y$, we have $x^{2} \equiv y^{2} \equiv 1 \bmod 3$, hence from $x^{2}+3^{2 m}=y^{p}$, we get $y \equiv 1$ $\bmod 3$. If $b= \pm 1$, then from $y=a^{2}+b^{2}=a^{2}+1 \bmod 3$, we have $3 \mid a$. But from (7), we get $3^{m} \equiv b\left(-b^{2}\right)^{\frac{p-1}{2}} \bmod a$, so we have $3 \mid b$. This is a contradiction. So $3 \mid b$. We may assume $b= \pm 3^{l}, l>0$. Again from (7), we obtain $\pm 3^{m-l} \equiv p a^{p-1} \equiv p \bmod 3$. Since $p>3$, we get $m=l$, hence $b= \pm 3^{m}$. Moreover $p \equiv \pm 1 \bmod 3$ according as $b= \pm 3^{m}$.

Accordingly, we also have

$$
\begin{equation*}
\pm 1=\sum_{k=0}^{\frac{p-1}{2}}\binom{p}{2 k+1} a^{p-(2 k+1)}\left(-b^{2}\right)^{k} . \tag{8}
\end{equation*}
$$

From (8) we have $\pm 1 \equiv\left(-b^{2}\right)^{\frac{p-1}{2}} \equiv(-1)^{\frac{p-1}{2}} \bmod p$. Hence, $p \equiv \pm 1 \bmod 4$ accordingly. Thus, $p \equiv \pm 1 \bmod 12$ according as $b= \pm 3^{m}$.

Theorem 3.3. The equation $x^{2}+3^{2 m}=y^{p},(x, y)=1, p \equiv 1 \bmod 12$ has no integer solution.

Proof. Suppose (x, y, m, p) is a solution. Then there exist integers a, b such that $x+3^{m} i=$ $(a+b i)^{p}$ and $y=a^{2}+b^{2}$. Since $p \equiv 1 \bmod 12$, we have $b=3^{m}$. Let $N=p-1$ so that $3 \mid N$. Suppose $3^{r+2 m} \mid N$, we will prove that $3^{r+2 m+1} \mid N$, which leads to a contradiction, as desired.

Now let $\alpha=a+3^{m} i, i=\sqrt{-}$. Recall that in last section we proved that, for $k \geq 2$, we have $k-V_{3}(k) \geq 2$. Since $\binom{N}{k}=\frac{N}{k}\binom{N-1}{k-1}$, we have, for $k \geq 2$,

$$
V_{3}\left(\binom{N}{k} 3^{m k}\right) \geq V_{3}\left(\frac{N}{k} 3^{m k}\right)=V_{3}(N)-V_{3}(k)+m k \geq r+2 m+(m-1) k+2 \geq r+4 m
$$

So $\alpha^{N}=\left(a+3^{m} i\right)^{N} \equiv a^{N}+N a^{N-1} 3^{m} i \bmod 3^{r+4 m}$. Thus,

$$
\begin{align*}
\alpha^{p} & =\alpha \cdot \alpha^{N} \equiv \alpha a^{N}+\alpha N a^{N-1} 3^{m} i=\alpha a^{N}+\left(a+3^{m} i\right) N a^{N-1} 3^{m} i \\
& =\alpha a^{N}+N a^{N} 3^{m} i-N a^{N-1} 3^{2 m} \equiv \alpha a^{N}+N a^{N} 3^{m} i \bmod 3^{r+4 m} \tag{9}
\end{align*}
$$

Since $x+3^{m} i=(a+b i)^{p}$ and $b=3^{m}$, we have $\alpha^{p}-\bar{\alpha}^{p}=\left(a+3^{m} i\right)^{p}-\left(a-3^{m} i\right)^{p}=$ $\left(x+3^{m} i\right)-\left(x-3^{m} i\right)=2 \cdot 3^{m} i$, where $\bar{\alpha}$ is the complex conjugate.

Taking the conjugate of (9), and then subtracting from (9), and substituting the above equation, we get $2 \cdot 3^{m} i=2 \cdot 3^{m} i a^{N}+2 \cdot 3^{m} i N a^{N} \bmod 3^{r+4 m}$.

Thus, $3^{r+3 m} \mid\left(\left(a^{N}-1\right)+N a^{N}\right)$. Since $3 \mid\left(a^{2}-1\right)$ and $V_{3}\left(\binom{\frac{N}{2}}{k} 3^{k}\right) \geq V_{3}(N)-V_{3}(k)+k \geq$ $r+2 m+1$ for $k \geq 1$, from $a^{N}-1=\left(\left(a^{2}-1\right)+1\right)^{\frac{N}{2}}-1=\sum_{k=0}^{\frac{N}{2}}\binom{\frac{N}{2}}{k}\left(a^{2}-1\right)^{k}$, we have $3^{r+2 m+1} \mid\left(a^{N}-1\right)$. Hence $3^{r+2 m+1} \mid N a^{N}$. Therefore $3^{r+2 m+1} \mid N$.
4. The Equation $x^{2}+3^{2 m}=y^{p}, p \equiv-1 \bmod 12$

Theorem 4.1. The equation $x^{2}+3^{2 m}=y^{p}, p \equiv-1 \bmod 12$ has no integer solution.
Before giving the proof, we introduce the following notions; see [1].

Definition 4.2. Let α, β be two algebraic integers such that $\alpha+\beta$ and $\alpha \beta$ are nonzero coprime rational integers and $\frac{\alpha}{\beta}$ is not a root of unity. Then we call (α, β) a Lucas pair and define the corresponding sequence of Lucas numbers by

$$
u_{n}=u_{n}(\alpha, \beta)=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}, n=0,1,2, \ldots
$$

Definition 4.3. Let (α, β) be a Lucas pair. A prime p is a primitive divisor of $u_{n}(\alpha, \beta)$ if p divides u_{n} but does not divide $(\alpha-\beta)^{2} u_{1} u_{2} \cdots u_{n-1}$.

Definition 4.4. A Lucas pair (α, β), such that $u_{n}(\alpha, \beta)$ has no primitive divisors, is called an n-defective Lucas pair. If no Lucas pair is n-defective, then n is called totally non-defective.

Lemma 4.5. ([1]) Every integer $n>30$ is totally non-defective.
Proof of Theorem 4.1. Suppose (x, y, m, p) is a solution of the equation $x^{2}+3^{2 m}=y^{p},(x, y)=$ $1, p \equiv-1 \bmod 12$. Then as before we get $x+3^{m} i=(a+b i)^{p}$ and $y=a^{2}+b^{2}$ for some integers a, b. Since $p \equiv-1 \bmod 12$, we have $b=-3^{m}$ (see the paragraph above the statement of Theorem 3.3). Let $\alpha=a+3^{m} i, \beta=a-3^{m} i$. Then we have $\alpha^{p}-\beta^{p}=\left(a+3^{m} i\right)^{p}-\left(a-3^{m} i\right)^{p}=$ $\left(x+3^{m} i\right)-\left(x-3^{m} i\right)=-2 \cdot 3^{m} i=-(\alpha-\beta)$. So $u_{p}(\alpha, \beta)=\frac{\alpha^{p}-\beta^{p}}{\alpha-\beta}=-1$. It is obvious that (α, β) is a Lucas pair, so by Lemma $4.5 u_{p}(\alpha, \beta)$ always has a primitive divisor when $p>30$. When $p=11$ or 23 , we see from Table 1 of Theorem C in [1] that 11 and 23 are also totally non-defective, so the above argument can be applied. Thus $\left|u_{p}(\alpha, \beta)\right|>1$ for a prime p of the form $12 k-1$. This is a contradiction. This completes the proof of the theorem.

Acknowledgement. The author is very grateful to the referee for helpful suggestions.

References

[1] Yu. Bilu, G. Hanrot and P. M .Voutier, Existence of primitive divisors of Lucas and Lehmer numbers, J. Reine Angew. Math., 539 (2001), 75-122.
[2] E. Brown, Diophantine equations of the form $a x^{2}+D b^{2}=y^{p}$, J. Reine Angew. Math., 291 (1977), 118-127.
[3] J. H. E. Cohn, The diophantine equation $x^{2}+2^{k}=y^{n}$, Arch. Math. (Basel), 59 (1992), 341-344.
[4] J. H. E. Cohn, The diophantine equation $x^{2}+C=y^{n}$, Acta Arith., LXV. 4 (1993), 367-381.
[5] Maohua Le and Yongdong Guo, On the diophantine equation $x^{2}+2^{k}=y^{n}$, Chinese Science Bulletin, 42 (1997), 1255-1257.
[6] Maohua Le, The Applications of the Method of Gel'fond-Baker to Diophantine Equations, Science Press, Beijing, 1998.
[7] V. A. Lebesgue, Sur l'impossibilité en nombres entiers de l'équation $x^{m}=y^{2}+1$, Nouvelles Annales des Mathématiques (1) 9 (1850), 178-181.
[8] W. Ljunggren, On the diophantine equation $x^{2}+p^{2}=y^{n}$, Norske Vid. Seisk Porh. Trondheim 16 (8) (1943), 27-30.
[9] L. J. Mordell, Diophantine Equations, Academic Press, London, 1969.
[10] T. Nagell, Sur l'impossibilité de quelques equations à deux indéterminees, Norsk. Mat. Forensings Skrifter, 13 (1923), 65-82.

