ON A RELATION BETWEEN THE RIEMANN ZETA FUNCTION AND THE STIRLING NUMBERS

Hirotaka Sato
Japanese Language Center for International Students, Tokyo University of Foreign Studies, 3-11-1, Asahi-cho, Fuchu, Tokyo, 183-8534, Japan
htsato@tufs.ac.jp

Received: 12/17/07, Accepted: 11/3/08, Published: 12/3/08

Abstract

Let $\zeta(z)$ be the Riemann zeta function and $s(k, n)$ the Stirling numbers of the first kind. Shen proved the identity $\zeta(n+1)=\sum_{k=n}^{\infty} \frac{s(k, n)}{k \cdot k!} \quad(1 \leq n \in \mathbb{Z})$. We give a short proof by elementary methods.

1. The Result

Let $\zeta(z)=\sum_{k=1}^{\infty} k^{-z}$ be the Riemann zeta function, and let $s(k, n)$ denote the Stirling numbers of the first kind, which are defined by

$$
\begin{align*}
s(0,0)=1, \quad s(k, 0)=s(0, n)=0 & (k \neq 0, n \neq 0) \tag{1}\\
s(k+1, n+1)=s(k, n)+k \cdot s(k, n+1) & (k \in \mathbb{Z}, n \in \mathbb{Z}) . \tag{2}
\end{align*}
$$

Shen [2] proved the following identity, which shows an interesting relation between $\zeta(n)$ and $s(k, n)$ by using Gauss's summation theorem of the hypergeometric series:

$$
\begin{equation*}
\zeta(n+1)=\sum_{k=n}^{\infty} \frac{s(k, n)}{k \cdot k!} \quad(1 \leq n \in \mathbb{Z}) \tag{3}
\end{equation*}
$$

In this paper we give a short proof of (3) by elementary methods.
First we show the outline of the proof. We denote

$$
(k)_{-n}=\frac{1}{k(k+1)(k+2) \cdots(k+n-1)} \quad(1 \leq n \in \mathbb{Z}, 1 \leq k \in \mathbb{Z})
$$

and put $\xi(n)=\sum_{k=1}^{\infty}(k)_{-n}$. Then we have

$$
\begin{equation*}
\xi(n+1)=\sum_{k=1}^{\infty} \frac{1}{n}\left\{(k)_{-n}-(k+1)_{-n}\right\}=\frac{1}{n \cdot n!} . \tag{4}
\end{equation*}
$$

Proposition. For $1 \leq x \in \mathbb{R}$ and $0 \leq n \in \mathbb{Z}$ we have

$$
\begin{equation*}
x^{-(n+1)}=\sum_{k=n}^{\infty} s(k, n) \cdot(x)_{-(k+1)} . \tag{5}
\end{equation*}
$$

By this proposition we have

$$
\zeta(n+1)=\sum_{m=1}^{\infty} m^{-(n+1)}=\sum_{m=1}^{\infty} \sum_{k=n}^{\infty} s(k, n) \cdot(m)_{-(k+1)} .
$$

Since it is a convergent series with positive terms, we can change the order of summation. Noting (4), we obtain

$$
\zeta(n+1)=\sum_{k=n}^{\infty} s(k, n) \xi(k+1)=\sum_{k=n}^{\infty} \frac{s(k, n)}{k \cdot k!}
$$

Now we prove the proposition above. We need the following result [1, Section 54, p. 160].
Lemma. For fixed $1 \leq k \in \mathbb{Z}$, we have $\lim _{N \rightarrow \infty} \frac{s(N, k)}{N!}$.

We prove (5) by induction on n. The case $n=0$, which is $x^{-1}=\sum_{k=0}^{\infty} s(k, 0) \cdot(x)_{-(k+1)}$, follows from (1) and the definition of $(x)_{-k}$. Now let N be a sufficiently large integer. From (2) we have

$$
\begin{array}{rl}
\sum_{k=n}^{N} & s(k, n) \cdot(x)_{-(k+1)}=\sum_{k=n}^{N}(s(k+1, n+1)-k \cdot s(k, n+1)) \cdot(x)_{-(k+1)} \\
& =\sum_{k=n}^{N} s(k+1, n+1) \cdot(x)_{-(k+1)}-\sum_{k=n}^{N} k \cdot s(k, n+1) \cdot(x)_{-(k+1)} \\
& =\sum_{k=n}^{N} s(k+1, n+1) \cdot(x)_{-(k+2)} \cdot(x+k+1)-\sum_{k=n}^{N} k \cdot s(k, n+1) \cdot(x)_{-(k+1)} \\
\quad & =\sum_{k=n+1}^{N+1} s(k, n+1) \cdot(x)_{-(k+1)} \cdot(x+k)-\sum_{k=n+1}^{N} k \cdot s(k, n+1) \cdot(x)_{-(k+1)} \\
& (\text { Note } s(n, n+1)=0 .) \\
& =x \cdot \sum_{k=n+1}^{N+1} s(k, n+1) \cdot(x)_{-(k+1)}+s(N+1, n+1) \cdot(x)_{-(N+2)} \cdot(N+1) .
\end{array}
$$

Noting $x \geq 1$, we obtain

$$
\begin{aligned}
s(N+1, n+1) \cdot(x)_{-(N+2)} \cdot(N+1) & \leq s(N+1, n+1) \cdot \frac{N+1}{1 \cdot 2 \cdots(N+2)} \\
& =\frac{s(N+1, n+1)}{(N+1)!} \cdot \frac{N+1}{N+2}
\end{aligned}
$$

which tends to 0 as $N \rightarrow \infty$ because of the lemma above. Therefore as $N \rightarrow \infty$ we obtain by the induction assumption

$$
x^{-(n+1)}=x \cdot \sum_{k=n+1}^{\infty} s(k, n+1) \cdot(x)_{-(k+1)} .
$$

Hence we have complete the proof of (5).
Remark. Let $S(n, k)$ be the Stirling number of the second kind and denote $(x)_{n}=x(x-$ 1) $\cdots(x-n+1)$ for $1 \leq n \in \mathbb{Z}$. Equation (5) can be viewed as the negative n case of the well-known identity

$$
x^{n}=\sum_{k=0}^{n} S(n, k) \cdot(x)_{k} \quad(0 \leq n \in \mathbb{Z})
$$

References

[1] C. Jordan, Calculus of Finite Differences, 3rd ed., Chelsea, 1965.
[2] L. C. Shen, Remarks on some integrals and series involving the Stirling numbers and $\zeta(n)$, Trans. Amer. Math. Soc. 347 (1995), 1391-1399.

