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Abstract

Let ζ(z) be the Riemann zeta function and s(k, n) the Stirling numbers of the first kind.
Shen proved the identity ζ(n + 1) =

∑∞
k=n

s(k,n)
k·k! (1 ≤ n ∈ Z). We give a short proof by

elementary methods.

1. The Result

Let ζ(z) =
∑∞

k=1 k−z be the Riemann zeta function, and let s(k, n) denote the Stirling
numbers of the first kind, which are defined by

s(0, 0) = 1 , s(k, 0) = s(0, n) = 0 (k #= 0, n #= 0), (1)

s(k + 1, n + 1) = s(k, n) + k · s(k, n + 1) (k ∈ Z, n ∈ Z). (2)

Shen [2] proved the following identity, which shows an interesting relation between ζ(n) and
s(k, n) by using Gauss’s summation theorem of the hypergeometric series:

ζ(n + 1) =
∞∑

k=n

s(k, n)

k · k!
(1 ≤ n ∈ Z). (3)

In this paper we give a short proof of (3) by elementary methods.

First we show the outline of the proof. We denote

(k)−n =
1

k(k + 1)(k + 2) · · · (k + n− 1)
(1 ≤ n ∈ Z, 1 ≤ k ∈ Z)

and put ξ(n) =
∑∞

k=1(k)−n. Then we have

ξ(n + 1) =
∞∑

k=1

1

n
{(k)−n − (k + 1)−n} =

1

n · n!
. (4)
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Proposition. For 1 ≤ x ∈ R and 0 ≤ n ∈ Z we have

x−(n+1) =
∞∑

k=n

s(k, n) · (x)−(k+1). (5)

By this proposition we have

ζ(n + 1) =
∞∑

m=1

m−(n+1) =
∞∑

m=1

∞∑

k=n

s(k, n) · (m)−(k+1).

Since it is a convergent series with positive terms, we can change the order of summation.
Noting (4), we obtain

ζ(n + 1) =
∞∑

k=n

s(k, n)ξ(k + 1) =
∞∑

k=n

s(k, n)

k · k!
.

Now we prove the proposition above. We need the following result [1, Section 54, p. 160].

Lemma. For fixed 1 ≤ k ∈ Z, we have lim
N→∞

s(N, k)

N !
.

We prove (5) by induction on n. The case n = 0, which is x−1 =
∑∞

k=0 s(k, 0) · (x)−(k+1),
follows from (1) and the definition of (x)−k. Now let N be a sufficiently large integer. From
(2) we have

N∑

k=n

s(k, n) · (x)−(k+1) =
N∑

k=n

(s(k + 1, n + 1)− k · s(k, n + 1)) · (x)−(k+1)

=
N∑

k=n

s(k + 1, n + 1) · (x)−(k+1) −
N∑

k=n

k · s(k, n + 1) · (x)−(k+1)

=
N∑

k=n

s(k + 1, n + 1) · (x)−(k+2) · (x + k + 1)−
N∑

k=n

k · s(k, n + 1) · (x)−(k+1)

=
N+1∑

k=n+1

s(k, n + 1) · (x)−(k+1) · (x + k)−
N∑

k=n+1

k · s(k, n + 1) · (x)−(k+1)

(Note s(n, n + 1) = 0.)

= x ·
N+1∑

k=n+1

s(k, n + 1) · (x)−(k+1) + s(N + 1, n + 1) · (x)−(N+2) · (N + 1).

Noting x ≥ 1, we obtain

s(N + 1, n + 1) · (x)−(N+2) · (N + 1) ≤ s(N + 1, n + 1) · N + 1

1 · 2 · · · (N + 2)

=
s(N + 1, n + 1)

(N + 1)!
· N + 1

N + 2
,
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which tends to 0 as N → ∞ because of the lemma above. Therefore as N → ∞ we obtain
by the induction assumption

x−(n+1) = x ·
∞∑

k=n+1

s(k, n + 1) · (x)−(k+1).

Hence we have complete the proof of (5).

Remark. Let S(n, k) be the Stirling number of the second kind and denote (x)n = x(x −
1) · · · (x − n + 1) for 1 ≤ n ∈ Z. Equation (5) can be viewed as the negative n case of the
well-known identity

xn =
n∑

k=0

S(n, k) · (x)k (0 ≤ n ∈ Z).
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