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Abstract

For a finite abelian group G and a finite subset A ⊆ Z, the Davenport constant of G with
weight A, denoted by DA(G), is defined to be the smallest positive integer k such that for any
sequence (x1, . . . , xk) of k elements in G there exists a non-empty subsequence (xj1 , . . . , xjr)
and a1, . . . , ar ∈ A such that

∑r
i=1 ai xji = 0. To avoid trivial cases, one assumes that the

weight set A does not contain 0 and it is non-empty. Similarly, for any such A and an abelian
group G with |G| = n, the constant EA(G) is the smallest positive integer k such that for any
sequence (x1, . . . , xk) of k elements in G there exists xj1 , . . . , xjn such that

∑n
i=1 ai xji = 0,

with ai ∈ A. In the present paper, we consider the problem of determining EA(n) and DA(n)
where A is the set of squares in the group of units in the cyclic group Z/nZ.

1. Introduction

For a finite abelian group G, the Davenport constant D(G) is the smallest positive integer
k such that any sequence of k elements in G has a non-empty subsequence whose sum is
zero. For a finite abelian group G, with cardinality |G| = n, another combinatorial invariant
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E(G) is defined to be the smallest positive integer k such that any sequence of k elements in
G has a subsequence of length n whose sum is zero. These two constants were being studied
independently before the following result of Gao [11]:

E(G) = D(G) + n− 1. (1)

Generalizations of these constants with weights were considered in [5] and [6] for the
particular group Z/nZ. Later, in [4], the following generalizations of both E(G) and D(G)
for an arbitrary finite abelian group G of order n were introduced. One may look into [2]
for an elaborate account of this theme.

For a finite abelian group G and a finite subset A ⊆ Z, the Davenport constant of G with
weight A, denoted by DA(G), is defined to be the smallest positive integer k such that for any
sequence (x1, . . . , xk) of k elements in G there exists a non-empty subsequence (xj1 , . . . , xjr)
and a1, . . . , ar ∈ A such that

r∑

i=1

ai xji = 0.

To avoid trivial cases, one assumes that the weight set A does not contain 0 and it is non-
empty. Further, if |G| = n, one can assume that A ⊆ {1, 2, . . . , n− 1}.

Similarly, for any such A and an abelian group G with |G| = n, the constant EA(G) is the
smallest positive integer k such that for any sequence (x1, . . . , xk) of k elements in G there
exists xj1 , . . . , xjn such that

n∑

i=1

ai xji = 0,

with ai ∈ A.

Taking A = {1}, we retrieve the classical constants D(G) and E(G). A result similar to
the above result (1) of Gao is expected to hold for the generalized constants with weights.
In many special cases this relation has been established (see [3], [4], [5], [12], [13], [15] ).

One of the few general results known in this direction is the following one due to Adhikari
and Chen [4]; one notes that it does not include the result (1) of Gao which corresponds to
the case |A| = 1.

Theorem A. Let G be a finite abelian group of order n and A = {a1, . . . , ar} be a finite
subset of Z with r ≥ 2. If gcd (a2 − a1, . . . , ar − a1, n) = 1, then

EA(G) = DA(G) + n− 1.

When G is the cyclic group Z/nZ, we denote EA(G) and DA(G) by EA(n) and DA(n)
respectively. Exact values for DA(n) and EA(n) have been found in some cases (see [3],[5],
[6], [12], [13]). For instance, it has been proved in [6] that DA(p) = 3 and EA(p) = p + 2,
for all primes p when A is the set of quadratic residues modulo p. In the present paper we
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consider its natural generalization, that is, the problem of determining EA(n) and DA(n)
where A is the set of squares in the group of units in the cyclic group Z/nZ for a general
integer n. In the rest of the paper, we will denote this set as Rn = {x2 : x ∈ (Z/nZ)∗}.
When it is obvious from the context, we shall simply write R in place of Rn. Also, ω(n)
will denote the number of distinct prime factors of n and Ω(n) the number of prime factors
counting multiplicity; clearly, for a square-free integer n one has ω(n) = Ω(n). We prove the
following results. For a general integer we have:

Theorem 1. Let n be an integer. Then

(i) DR(n) ≥ 2Ω(n) + 1, and

(ii) ER(n) ≥ n + 2Ω(n).

When restricting to square-free integers we can say much more.

Theorem 2. Let n be a square-free integer, coprime to 6. Then

(i) DR(n) = 2ω(n) + 1, and

(ii) ER(n) = n + 2ω(n).

As it will be observed from Part (ii) of Theorem 4 below, when the prime 3 is involved,
the constants DR(n) and ER(n) may be strictly greater than the values given in the above
theorem. In this case we can prove the following:

Theorem 3. Let n be any square-free odd integer such that 3 | n. Then

(i)DR(n) ≤ 6ω(n)− 3, and

(ii)ER(n) ≤ n + 6ω(n)− 4.

However, we have the following precise result.

Theorem 4. We have

(i) DR(3p) = 5 for primes p ≥ 7, and

(ii) DR(15) = 6.

When the prime 2 is involved we have the following results.

Theorem 5. Let n be any square-free even integer such that 3 ! n. Then

(i)DR(n) ≤ 4ω(n)− 2, and

(ii)ER(n) ≤ n + 4ω(n)− 3.

Theorem 6. Let n be any square-free integer which is a multiple of 6. Then

(i)DR(n) ≤ 6ω(n)− 6, and

(ii)ER(n) ≤ n + 6ω(n)− 7.
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In the non-square-free case, we have the following result.

Theorem 7. Let n = pr, for p > 3 prime. Then,

(i) DR(n) = 2Ω(n) + 1, and

(ii) ER(n) = n + 2Ω(n).

Finally, we dedicate Section 3 to investigate other sets of weights. Among other remarks,
we are able to prove the following result. As usual, we write &x' for the smallest integer
larger than or equal to x.

Theorem 8. Let n, r be positive integers, 1 ≤ r < n and consider the subset A = {1, . . . , r}
of Z/nZ. Then,

(i) DA(n) =
⌈n

r

⌉
, and

(ii) EA(n) = n− 1 + DA(n).

This theorem also generalizes a result in [6], where the case n prime was proved.

2. Proofs of Theorems

Proof of Theorem 1. We start by proving (i). Let n =
∏ω(n)

i=1 pαi
i , and consider the sequence of

2Ω(n) elements given by xi,j = npj−αi
i for i = 1, . . . ,ω(n), j = 0, . . . ,αi−1, and yi,j = −vixi,j,

for i = 1, . . . ,ω(n), j = 0, . . . ,αi − 1, and vi (∈ Rpi . Suppose there exist si,j, ti,j ∈ Rn ∪ {0}
such that ∑

si,jxi,j + ti,jyi,j = 0.

For any i, pi divides every element of the sequence except xi,0, yi,0, which implies that

si,0xi,0 + ti,0yi,0 ≡ 0 (mod pi),

and hence si,0 = ti,0 = 0. Now, by an easy induction procedure, we obtain that si,j = ti,j = 0,
for all i, j and we obtain (i).

In order to prove (ii) we just have to note that, if we append a sequence of n−1 zeroes to
a sequence of length DR(n)− 1 with no zero sum (which exists by the definition of DR(n)),
then the resulting sequence will have no subsequence of length n which sums up to zero and
hence

ER(n) ≥ DR(n) + n− 1. (2)

This proves the theorem. !

For the rest of the theorems we shall need the following version of the Cauchy-Davenport
Theorem (see [7], [9]; one can also find it in [14] for instance).
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Theorem B (Cauchy-Davenport). If p is a prime and A1, A2, . . . , Ah are non-empty
subsets of Z/pZ, then

|A1 + A2 + . . . + Ah| ≥ min

(
p,

h∑

i=1

|Ai|− (h− 1)

)
.

We shall also need the following generalization of the above result in the case h = 2 (see
[8] and [14]).

Theorem C (Chowla). Let n be a natural number, and let A and B be two nonempty
subsets of Z/nZ, such that 0 ∈ B and A + B (= Z/nZ. If (x, n) = 1, for all x ∈ B \ {0},
then |A + B| ≥ |A| + |B|− 1.

Lemma 9. If p ≥ 7 is a prime and x1, . . . , xk are elements of Z/pZ with at least three of
them being non-zero, then there exist ai ∈ Rp, i = 1, . . . , k, such that

∑k
i=1 ai xi = 0.

Proof. Without loss of generality, let x1, x2, x3 be units. By Theorem B,

|x1Rp + x2Rp + x3Rp| ≥ min

(
p,

3(p− 1)

2
− 2

)
= p.

Therefore, one can write α1x1 + α2x2 + α3x3 = −(x4 + x5 + . . . + xk), where αi ∈ Rp. !

We also have the following lemma, the proof of which is similar to the proof of Lemma 9.

Lemma 10. If x1, . . . , xk are elements of Z/5Z with at least four of them being non-zero,
then there exists ai ∈ R5, i = 1, . . . , k, such that

∑k
i=1 ai xji = 0.

Theorem 2 will be an easy corollary of Propositions 11 and 12 below. As it can be seen,
the bulk of the work goes towards the proof of Proposition 12.

Proposition 11. Let n = p1 . . . pr, r ≥ 1 be a square-free integer all of whose prime factors
are greater than or equal to 7. Let m ≥ 3r and (x1, . . . , xm+2r) be a sequence of elements
of Z/nZ. Then there exists a subsequence (xi1 , . . . , xim) and a1, . . . , am ∈ Rn such that∑m

j=1 aj xij = 0.

Proposition 12. Let n = p1 . . . pr, r ≥ 1 be a square-free integer where p1 = 5 and pi ≥ 7,
for all i ≥ 2. Let m ≥ 3r +1 and (x1, . . . , xm+2r) be a sequence of m+2r elements in Z/nZ.
Then there exists a subsequence (xi1 , . . . , xim) and a1, . . . , am ∈ Rn such that

∑m
j=1 aj xij = 0.

We observe that in the above propositions, the results would be true if the given sequence
has more than m + 2r elements, say t + m + 2r elements, with t ≥ 1, without considering
the extra t elements.

Proof of Proposition 11. We proceed by induction on r. When r = 1, we have n = p, a prime.
By Lemma 9, given any sequence (x1, . . . , xm+2) of elements modulo p with at least three
non-zero elements, there are ai ∈ Rp for i = 1, . . . ,m such that

∑m
i=1 ai xi = 0. Otherwise,
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at most two elements of the sequence are units which implies that at least m elements say
xj1 , . . . , xjm are divisible by p and hence

∑m
i=1 ai xji = 0 for any choice of ai ∈ Rp for each

i = 1, . . . ,m. This establishes the case with r = 1.

Suppose now that r ≥ 2 and the result is true for any square-free odd integer with a
number of prime factors not exceeding r− 1 provided all its prime factors are ≥ 7. Suppose
we are given a sequence (x1, . . . , xm+2r) of m + 2r elements of Z/nZ.

Suppose that, for each prime p | n, the sequence contains three elements coprime to
p. Then, without loss of generality, let S = (x1, . . . , xt) be a subsequence of t ≤ 3r ≤ m
elements such that S has three units corresponding to each prime.

Then, by Lemma 9, for each prime pi, we have
∑m

j=1 a(i)
j xj ≡ 0 (mod pi), with some

a(i)
j ∈ Rpi . The result now follows by the Chinese Remainder Theorem.

If, on the other hand, the sequence does not contain three elements coprime to every prime
pi, there is a prime pl such that the sequence does not contain more than two elements coprime
to it. We remove those elements and consider a subsequence of m+2(r−1) elements all whose
elements are 0 in Z/plZ. By the induction hypothesis, there is a subsequence (xi1 , . . . , xim)

such that
∑m

j=1 a(i)
j xij ≡ 0 (mod pi), for some a(i)

j ∈ Rpi , for all i (= l. However,

m∑

j=1

a(l)
j xij ≡ 0 (mod pl),

where a(l)
j = 1, for all j = 1, . . . ,m. Once again, we are through via the Chinese Remainder

Theorem. !

Proof of Proposition 12. We consider four cases.

Case 0. When n = 5. In this case, r = 1 and we are given a sequence (x1, . . . , xm+2) of
elements modulo 5, where m ≥ 4. If there are at least four non-zero elements of Z/5Z in
the given sequence, the result is true by Lemma 10. If there are not more than two non-zero
elements, then the sequence has at least m multiples of 5 and the result follows for these
elements and any choice of ai ∈ R5.

If there are exactly three non-zero elements of Z/5Z in the given sequence, let them be
x1, x2, x3. Since DR(p) = 3 for any prime p, where R is the set of quadratic residues modulo
p (see Theorem 3 of [6]), we have

∑
i∈I aixi = 0, for some nonempty I ⊆ {1, 2, 3} and ai ∈ R5

for i ∈ I. It is clear that |I| ≥ 2.

Taking (x4, . . . , xt) with t = m + (3 − |I|), we have
∑

i∈I aixi +
∑t

i=4 aixi = 0, where
a4 = . . . = at = 1, thus giving us an m-sum with ai ∈ R5. +

So, let us now suppose that n > 5, that is, we have r ≥ 2. Let n = 5n1n2, where n2 is
the product of all primes p|n, p (= 5 such that the sequence does not contain more than two
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elements coprime to p. We then remove a sequence of length t ≤ 2ω(n2) ≤ 2r − 2, so that
each of the remaining elements are divisible by n2.

Hence, we just have to prove the theorem for the new N = 5n1 = p1 . . . pr1 , and, in this
case, we have a sequence (x1, x2, . . . ) of at least m + 2r1 elements containing at least three
elements coprime to p for any prime p | n1.

Case I. The sequence contains four units modulo 5. Without loss of generality, let S =
(x1, . . . , xt) be a subsequence of t ≤ 3r1 + 1 ≤ m elements such that S has three units
corresponding to each prime pi for i = 2, . . . , r1, and four elements coprime to 5.

By Lemmas 9 and 10, we have
∑m

j=1 a(i)
j xj ≡ 0 (mod pi) , for each prime pi | N , with

a(i)
j ∈ Rpi , for j = 1, . . . ,m and the result follows by the Chinese Remainder Theorem. +

Case II. The sequence contains at most two units modulo 5. We remove the elements
coprime with 5, and apply Proposition 11 to the remaining subsequence to obtain another
one xj1 , . . . , xjm with

∑m
i=1 ai xji ≡ 0 (mod n1) , with ai ∈ Rn1 . The result now follows since

every element in this subsequence is a multiple of 5. +

Case III. The sequence contains exactly three units modulo 5. Let x1, x2, x3 be those
elements. Once again, since DR(p) = 3, we have

∑
i∈I aixi ≡ 0 (mod 5), for some subset I

of {1, 2, 3} with |I| ≥ 2 and some ai ∈ R5, for i ∈ I. If |I| = 3, we have a subsequence of
length less than or equal to 3r1 and hence, not exceeding m, which will contain x1, x2, x3 and
three elements coprime to each of the remaining primes. We complete it to a subsequence
of length m, say x1, . . . , xm.

Now,
∑m

i=1 ai xi ≡ 0 (mod 5), where a1, a2, a3 are as above and a4, . . . , am ∈ R5 are

chosen arbitrarily. Applying Lemma 9, we get
∑m

i=1 a(j)
i xi ≡ 0 (mod pj), with a(j)

i ∈ Rpj ,
for all j = 1, . . . ,m and all prime factors pj of n1. The result now follows by the Chinese
Remainder Theorem.

If however, |I| = 2, let us suppose 1 /∈ I. We remove x1. Let n̂ be the product of
those primes p|n1 such that, after removing x1, there are only two elements coprime to p
remaining. We remove all the elements which are coprime to one or more of these primes;
observe that we are removing less than 2ω(n̂)+1 elements in the whole process. If after this,
there remains at most one unit modulo 5, we remove it. So, in total, we are removing at
most 2ω(n̂) + 2 elements, and now the result follows by Proposition 11. If after this, there
remain two units modulo 5, we argue as in the previous case (|I| = 3), but for this new
sequence and integer N/n̂, which suffices since every remaining element is a multiple of n̂. +

The four cases exhaust all possibilities, thereby proving the theorem. !

We now prove Theorem 2 using Propositions 11 and 12.
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Proof of Theorem 2. Since trivially n ≥ 3r + 1, we can apply Propositions 11 and 12 with
m = n to get ER(n) ≤ n + 2r. Hence, by Theorem 1 and (2), n + 2r ≤ DR(n) + n − 1 ≤
ER(n) ≤ n + 2r, which gives the result. !

Proof of Theorem 3. By the Erdős-Ginzburg-Ziv Theorem [10] (can also see [1] or [14], for
instance), given any five integers there is a subsequence of three elements which sums up to
0 (mod 3). Therefore, given a sequence (x1, . . . , xn+6r−4) of n+6r−4 elements of Z/nZ, we
can pick up t = p2 . . . pr + 2(r− 1) disjoint subsequences I1, I2, . . . , It one after another each
of length 3 such that ∑

i∈Ij

xi = 0 (mod 3),

for i = 1, 2, . . . , t. Now, considering the sequence (y1, . . . , yt) where yj =
∑

i∈Ij
xi, by Theo-

rem 2 there exists a subsequence (yi1 , . . . , yil) with l = p2 . . . pr such that

l∑

j=1

ajyij = 0 (mod l),

with aj ∈ Rl.

Since yj =
∑

i∈Ij
xi, where |Ij| = 3 for each j, by the Chinese Remainder Theorem we get

the result since n = 3l. From here we deduce the upper bound for ER(n) and, hence, the
upper bound for DR(n) follows from the inequality n− 1 + DR(n) ≤ ER(n). !

Proof of Theorem 4. (i) It is interesting to observe that in the case when n = 3p, for p ≥ 7
prime, we again reach the identity of Theorem 2, DR(n) = 2r + 1 = 5. Indeed, given a
sequence {x1, . . . , x5}, (in all the arguments we will assume that none of these elements is
zero modulo 3p), with at most two units modulo p, or at most two units modulo 3, then
removing those elements, the result is true since DR(q) = 3 for any prime q. Now suppose the
sequence has at least three units modulo p and three units modulo 3. The interesting case is
when the sequence has precisely three units modulo p. So suppose p|(x4, x5), and hence, are
coprime with 3. If x4 ≡ −x5 (mod 3) then x4+x5 = 0 (mod 3p). Otherwise, since there are at
least three units modulo 3, we can assume that (x3, 3p) = 1. Then, for some {b4, b5} ⊆ {0, 1}
we have x1 + x2 + x3 ≡ −(b4x4 + b5x5) (mod 3). We fix those bi. On the other hand, there
exist squares ai ∈ (Z/pZ)∗ for i = 1, 2, 3, such that

∑3
i=1 aixi ≡ −(b4x4 + b5x5) ≡ 0 (mod p).

We just have to apply the Chinese Remainder Theorem to get the result.

When the sequence has five units modulo p, the result is trivial by Lemma 9, since by
the Erdős-Ginzburg-Ziv Theorem, the sum of three of them will be a multiple of 3. If the
sequence has exactly four units modulo p then suppose p|x5 and 3 ! x4x5. Then, as before,
we will choose {b4, b5} ⊆ {0, 1} so that

∑3
i=1 aixi ≡ −(b4x4 + b5x5) ≡ 0 (mod 3p). In this

way we get DR(3p) ≤ 5, and we get the identity by Theorem 1. (It is important to note that
Theorem A does not apply because the only square modulo 3 is 1, so a2 − b2 will always be
a multiple of 3.)

(ii) To get the lower bound DR(15) ≥ 6, we observe that the sequence obtained by
repeating 1 five times does not contain any subsequence whose sum is zero with coefficients
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squares of units modulo 15. We just have to note that such a subsequence, to be a multiple
of 3, would have exactly three elements. On the other hand, we can assume the squares
modulo 5 to be ±1. Then, the sum of any three elements would be −3 ≤

∑
ai ≤ 3, and the

only way to be a multiple of 5 is that it is 0, which needs an even number of ±1.

In order to get the upper bound, let x1, . . . , x6 be elements modulo 15. We assume that
none is zero. If at least three are zero modulo 5, let them be x1, x2, x3. Now, some non-empty
subsum of them is zero modulo 3 (since the classical Davenport constant D(Z/3Z) = 3).
From now on, we assume that at least four of them are non-zero modulo 5.

Let us assume that the elements x1, x2, x3, x4 are non-zero modulo 5. If there is I ⊆ {5, 6}
(I can be empty), such that

∑
i∈J xi ≡ 0 (mod 3), where J = {1, . . . , 4} ∪ I, then we are

through by Lemma 10.

So, assume that there is no such I. In particular,
∑4

i=1 xi (≡ 0 (mod 3). We may then
assume, without loss of generality (considering the sequence−x1, . . . ,−x6, if necessary), that

4∑

i=1

xi ≡ 1 (mod 3).

By our assumption, neither of x5 and x6 can be −1 modulo 3. Also, both of them can not be
1 modulo 3. Therefore, one of them, say x6, is 0 modulo 3. Then x6 is non-zero modulo 5.
If one among the elements x1, . . . , x4 is 1 modulo 3, we replace it by x6 and we are through
by Lemma 10. If none of them is 1 modulo 3, the only possibility is that two of them are
−1 modulo 3 and the other two are 0 modulo 3. We replace the pair of elements −1 modulo
3 by x6. Since we have three elements each of which is 0 modulo 3, some of them will sum
up to 0 modulo 5, since DR(5) = 3. !

Proofs of Theorems 5 and 6. The proof of Theorem 5 relies on the trivial observation that
given any three integers, there is a subsequence of two elements which sums up to 0 (mod 2).
Similarly, for the proof of Theorem 6, one has to observe that by the Erdős-Ginzburg-Ziv
Theorem, given any eleven integers, there is a subsequence of six elements which sums up to
0 (mod 6). Then, one has to follow the arguments as in the proof of Theorem 3. !

Proof of Theorem 7. Observe that, by Theorem A, we just have to prove DR(n) = 2r + 1
since {1, 4} ⊆ R. By Theorem 1, it remains to establish the upper bound DR(n) ≤ 2r + 1.
Let S = (x1, . . . , x2r+1) be a sequence of elements of Z/prZ. We note that three of the
integers in S will be divisible by the same power of p. So, without loss of generality, we can
suppose that {y1, y2, y3} ⊆ (Z/prZ)∗ where yi = xi/pα for some 0 ≤ α ≤ r − 1. Then, by
Theorem C we see that

|Ry1 + Ry2 ∪ 0 + Ry3 ∪ 0| ≥ min{n, 3|R|} = n,

since |R| = n
2 (1− 1

p), and 3
2n(1− 1

p) > n for any p > 3, and the result follows. Observe that
Ry∪ 0 satisfies the conditions of Theorem C for any y ∈ (Z/prZ)∗. This concludes the proof
of the theorem. !
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3. Other Weights

In this section we include some zero-sum results concerning different sets of weights. We
start with the remark that Theorems 1, 2, 3, 4 and 7 remain true if we replace the set Rn by
the set Sn = {a ∈ (Z/nZ)∗,

(
a
n

)
= 1}, where

(
a
n

)
is the Jacobi symbol. Indeed, Rn is a subset

of Sn, which gives the upper bound. For the lower bound, we just have to use the similar
counterexample as in the proof of Theorem 1, but with vi /∈ Spi instead. On the other hand,
it is interesting to observe that, |Sn| = ϕ(n)/2 whereas, in general, Rn gets much smaller
when n is composite.

We now proceed to prove Theorem 8, where one considers a completely different set of
weights.

Proof of Theorem 8. For the proof of the first part we use the argument in [6]. Given a
sequence S = (s1, . . . , s&n

r ') we consider the sequence

S′ = (s1, . . . , s1, s2, . . . , s2, . . . , s&n
r ', . . . , s&n

r '),

where each element is repeated r times. Then |S′| ≥ n, and noting that D{1}(n) ≤ n, we
obtain

DA(n) ≤
⌈n

r

⌉
.

On the other hand, let us consider the sequence of
⌈

n
r

⌉
− 1 elements all equal to 1. Then,

for any nonempty subsequence, (sj1 , . . . , sjl
) and ai ∈ A, i = 1, . . . , l we have

0 <
l∑

i=1

aisji < rl ≤ n− 1,

which gives us the lower bound,

DA(n) ≥
⌈n

r

⌉
,

and hence part (i) follows.

Since the Erdős-Ginzburg-Ziv Theorem takes care of the second part of the theorem for
the case r = 1, we can assume that r > 1. Now, noting that {1, 2} ⊆ A, part (ii) is a
consequence of Theorem A. !

Acknowledgment. This work was done while the first and the last authors were visiting
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