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Abstract

Jacobi’s classical four-square theorem gives the number of representations of a positive integer
as the sum of four squares. A theorem of Legendre gives the number of representations of a
positive integer as the sum of four triangular numbers. In this paper we give analogous results
that involve triangular numbers, squares, pentagonal numbers, and octagonal numbers.

1. Introduction

Let σ(n) denote the sum of the divisors of n. Following convention, σ(n) = 0 if n is not a
positive integer. Then two classical theorems of Jacobi and Legendre, respectively, can be
stated thus:

Theorem 1 (Jacobi [7]). The number of representations of n ≥ 1 as the sum of four
squares is

r {! + ! + ! + !} (n) = 8
∑

d|n, 4!d
d = 8 (σ(n)− 4σ(n/4)) .

Theorem 2 (Legendre [9]). The number of representations of n ≥ 1 as the sum of four
triangular numbers is

r {#+#+#+#} (n) = σ(2n + 1).

To state another old result, which we require in the sequel, we first define
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χ(n) =






+1, n ≡ ±1 (mod 6),
−1, n ≡ ±2 (mod 6),
0, n ≡ 0 (mod 3).

Then

Theorem 3. The number of representations of n ≥ 1 as the sum of a square plus a square
plus three times a square plus three times a square is

r {! + ! + 3! + 3!} (n) = (−1)n−14
∑

d|n

dχ(d). (1)

This result has a long history. It was stated without proof by Liouville, and proved by
Pepin, Bachmann, and Kloosterman. The references to the relevant works of these authors
are given in [1], where the result is listed as Theorem 1.9. A proof can also be found in [4,
p. 76]. Ramanujan also listed it as Entry 3 (iv) in Chapter 19 of his second notebook. See
[2, p. 223].

With the same notation, Hirschhorn [5] recently proved the following:

r {#+#+ ! + !} (n) = σ(4n + 1), n ≥ 1, (2)

r {#+#+ 2#+ 2#} (n) = σ(4n + 3)/4, n ≥ 1. (3)

While Hirschhorn did not state (3) explicitly, it follows immediately from his equation
(3.20). In further work, presently unpublished, Hirschhorn discovered two further results
that involve pentagonal and octagonal numbers. Both are valid for n ≥ 1, and can be stated
thus:

r {3#+ 3#+ D + D} (n) = σ(6n + 5)/6, (4)

r {3! + 3! + 8 + 8} (n) = (σ(3n + 2)− 4σ((3n + 2)/4)) /3. (5)

In this paper we prove the following results, each of which being valid for n ≥ 1:

r {#+#+#+ 4#} (n) = σ(8n + 7)/8, (6)

r {#+#+#+ 2!} (n) = σ(8n + 3)/4, (7)
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r {! + ! + 3! + 8} (n) = (−1)n
∑

d|3n+1

dχ(d), (8)

r {! + ! + 8 + 8} (n) = (−1)n+1
∑

d|3n+2

dχ(d), (9)

r {#+#+ 3#+ 3#} (n) = −
∑

d|8n+8, d!2n+2

dχ(d)/12, (10)

r {#+#+ 3#+ D} (n) = −
∑

d|24n+16, d!6n+4

dχ(d)/24, (11)

r {#+#+ D + D} (n) = −
∑

d|24n+8, d!6n+2

dχ(d)/12, (12)

r {3! + D + D + 8} (n) = σ(12n + 5)/6, (13)

r {6#+ D + D + 2D} (n) = σ(12n + 11)/12. (14)

A theta function identity that implies (7) was given by H. Y. Lam in [8, Eq. 9]. Lam has
informed the present author that, with the aforementioned identity, he was able to prove
(7), and that it appears in his thesis (cited in [8]) as identity (6.4.37).

A theta function identity that implies (10) was given by Ramanujan, who listed it as
Entry 3 (iii) in Chapter 19 of his second notebook. See [2, p. 223].

2. Preliminary Results

Define

ψ(q) =
∑

n≥0

q(n2+n)/2, φ(q) =
∞∑

−∞
qn2

,

which are generating functions of the triangular numbers and the squares, respectively. In
addition let

P (q) =
∞∑

−∞
q(3n2+n)/2, X(q) =

∞∑

−∞
q3n2+2n,
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generating functions of the pentagonal and octagonal numbers, respectively.

The following three relationships, which are easy to prove, are given in [3], [5], and [6]:

φ(q) = φ
(
q4

)
+ 2qψ

(
q8

)
,

φ(q) = φ
(
q9

)
+ 2qX

(
q3

)
,

ψ(q) = P
(
q3

)
+ qψ

(
q9

)
.

We use the next identity, established by Hirschhorn [5], in the proof of (10).

ψ (q)ψ
(
q3

)
= φ

(
q6

)
ψ

(
q4

)
+ qφ

(
q2

)
ψ

(
q12

)
. (15)

We also require the following two results.

P
(
q2

)
X (q) = P (q)ψ

(
q3

)
, (16)

P (q)2 = P
(
q2

)
φ

(
q3

)
+ 2qX (q)ψ

(
q6

)
. (17)

We have not cited (16) in the literature, while (17) appears in [3, p. 19].

Let a and q be complex numbers with |q| < 1, and set

(a; q)∞ =
∞∏

j=0

(
1− aqj

)
.

With the use Jacobi’s triple-product identity, together with simple properties of the infinite
product above, it can be shown that

ψ(q) =
(q2; q2)2

∞
(q; q)∞

, φ(q) =
(q2; q2)5

∞

(q; q)2
∞ (q4; q4)2

∞
,

and

P (q) =
(q2; q2)∞ (q3; q3)2

∞
(q; q)∞ (q6; q6)∞

, X(q) =
(q2; q2)2

∞ (q3; q3)∞ (q12; q12)∞
(q; q)∞ (q4; q4)∞ (q6; q6)∞

.

Identity (16) follows upon substitution of the relevant expressions.
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3. Proofs

Jacobi’s result is equivalent to

φ (q)4 =
(
φ

(
q16

)
+ 2qψ

(
q8

)
+ 2q4ψ

(
q32

))4
= 1 + 8

∑

n≥1




∑

d|n, 4!d
d



 qn. (18)

In the expansion of (φ (q16) + 2qψ (q8) + 2q4ψ (q32))4 only the product 64q7ψ (q8)3 ψ (q32)
contains powers of q that are congruent to 7 (mod 8). Therefore from the right side of (18)
we extract those terms in which the power of q is 7 (mod 8), divide by q7, and replace q8 by
q to obtain

64ψ(q)3ψ
(
q4

)
= 8

∑

n≥0




∑

d|8n+7

d



 qn = 8
∑

n≥0

σ(8n + 7)qn,

which is (6).

Here we have used dissection of series to prove (6). Indeed, we use this technique in all
the proofs that follow (in Section 4 we give a short commentary on other types of identities
that can be proved with this technique). The following table will assist the reader to keep
track of this process. The first column gives the identity being proved. The second column
gives the identity (or its equivalent) that is being dissected, while the third column gives the
powers of q that are (in the first instance) being extracted.

Identity Dissected Series Terms Extracted
6 Theorem 1 q8n+7

7 Theorem 1 q8n+3

8 Theorem 3 q3n+1

9 Theorem 3 q3n+2

10 Theorem 3 q4n

11 23 q3n+1

12 23 q3n

13 2 q3n+1

14 3 q3n+2

Once again, in the expansion of (φ (q16) + 2qψ (q8) + 2q4ψ (q32))4 only the product
32q3ψ (q8)3 φ (q16) contains powers of q that are congruent to 3 (mod 8). From the right side
of (18) we extract those terms in which the power of q is 3 (mod 8), divide by q3, and replace
q8 by q to obtain
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32ψ(q)3φ
(
q2

)
= 8

∑

n≥0




∑

d|8n+3

d



 qn = 8
∑

n≥0

σ(8n + 3)qn,

which is (7).

With the same expansion we also obtain (3), discovered by Hirschhorn. To accom-
plish this we consider the powers of q congruent to 6 (mod 8), and make use of the result
φ(q)ψ (q2) = ψ(q)2, which was recorded by Ramanujan as Entry 25 (iv) in Chapter 16 of his
second notebook. See [2, p. 40].

To prove (8) and (9) we consider (1), which is equivalent to

φ(q)2φ
(
q3

)2
=

(
φ

(
q9

)
+ 2qX

(
q3

))2
φ

(
q3

)2

= 1 +
∑

n≥1



(−1)n−14
∑

d|n

dχ(d)



 qn. (19)

In the expansion of (φ (q9) + 2qX (q3))2 φ (q3)2 only the product 4qφ (q3)2 φ (q9)X (q3) con-
tains powers of q that are congruent to 1 (mod 3). Accordingly, from the right side of (19)
we extract those terms in which the power of q is 1 (mod 3), divide by 4q, and replace q3 by
q to obtain

φ(q)2φ
(
q3

)
X(q) =

∑

n≥0



(−1)n
∑

d|3n+1

dχ(d)



 qn,

which is equivalent to (8).

In the same manner, those terms in which the power of q is 2 (mod 3) yield

φ(q)2X(q)2 =
∑

n≥0



(−1)n+1
∑

d|3n+2

dχ(d)



 qn,

which is equivalent to (9).

Once again we turn to (1), which we write in an alternative manner as
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φ(q)2φ
(
q3

)2
=

(
φ

(
q4

)
+ 2qψ

(
q8

))2 (
φ

(
q12

)
+ 2q3ψ

(
q24

))2

= 1 +
∑

n≥1



(−1)n−14
∑

d|n

dχ(d)



 qn. (20)

Of the nine products obtained by expanding, three consist of powers of q that are congruent
to 0 (mod 4). Extracting these powers of q from both sides we have

φ
(
q4

)2
φ

(
q12

)2
+ 16q4ψ

(
q4

)2
ψ

(
q12

)2
+ 16q8ψ

(
q8

)2
ψ

(
q24

)2

= 1 +
∑

n≥1



−4
∑

d|4n

dχ(d)



 q4n. (21)

Next, we use (1) to substitute for φ (q4)2 φ (q12)2, replace q4 by q, and divide by 16q to obtain

ψ (q)2 ψ
(
q3

)2
+ qψ

(
q2

)2
ψ

(
q6

)2
=

∑

n≥1







−
∑

d|4n

dχ(d) + (−1)n
∑

d|n

dχ(d)



 /4



 qn−1. (22)

Now, identity (15) allows us to substitute for ψ (q)2 ψ (q3)2, so the left side of (22) can be
replaced by 3qψ (q2)2 ψ (q6)2 + φ (q6)2 ψ (q4)2 + q2φ (q2)2 ψ (q12)2. Then, from both sides of
the identity that results, we extract the powers of q that are 1 (mod 2), divide by 3q, and
replace q2 by q to obtain

ψ (q)2 ψ
(
q3

)2
=

∑

n≥1







−
∑

d|8n

dχ(d) +
∑

d|2n

dχ(d)



 /12



 qn−1

=
∑

n≥1



−
∑

d|8n, d!2n

dχ(d)/12



 qn−1, (23)

which is equivalent to (10).

The left side of (23) is ψ (q3)2 (qψ (q9) + P (q3))2, which expands to

ψ
(
q3

)2
P

(
q3

)2
+ 2qψ

(
q3

)2
ψ

(
q9

)
P

(
q3

)
+ q2ψ

(
q3

)2
ψ

(
q9

)2
. (24)
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Therefore, if from the right side of (23) we extract those terms in which the power of q is 1
(mod 3), divide by 2q, and replace q3 by q, we obtain

ψ (q)2 ψ
(
q3

)
P (q) =

∑

n≥0



−
∑

d|24n+16, d!6n+4

dχ(d)/24



 qn,

which is equivalent to (11).

In view of (24), from the right side of (23) we extract those terms in which the power of
q is 0 (mod 3), and replace q3 by q to obtain

ψ (q)2 P (q)2 =
∑

n≥0



−
∑

d|24n+8, d!6n+2

dχ(d)/12



 qn,

which is equivalent to (12).

To prove (13) we begin with (2), writing it as

ψ(q)2φ(q)2 =
(
qψ

(
q9

)
+ P

(
q3

))2 (
φ

(
q9

)
+ 2qX

(
q3

))2

=
∑

n≥0

σ(4n + 1)qn. (25)

Three products in the expansion of (qψ (q9) + P (q3))2 (φ (q9) + 2qX (q3))2 consist of powers
of q that are 1 (mod 3), their sum being

4qφ
(
q9

)
P

(
q3

)2
X

(
q3

)
+ 2qψ

(
q9

)
φ

(
q9

)2
P

(
q3

)
+ 4q4ψ

(
q9

)2
X

(
q3

)2
. (26)

Now, observing that

φ
(
q3

)
P (q)2 X (q) = ψ

(
q3

)
φ

(
q3

)2
P (q) + 2qψ

(
q3

)2
X (q)2 ,

which follows immediately from (16) and (17), we see that the sum in (26) is
6qφ (q9)P (q3)2 X (q3). We therefore extract from the right side of (25) those terms in which
the power of q is 1 (mod 3) to obtain

6qφ
(
q9

)
P

(
q3

)2
X

(
q3

)
=

∑

n≥0

σ(12n + 5)q3n+1,
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from which (13) follows.

To prove (14) we begin with (3), writing it as

ψ(q)2ψ(q2)2 =
(
qψ

(
q9

)
+ P

(
q3

))2 (
q2ψ

(
q18

)
+ P

(
q6

))2

=
∑

n≥0

(σ(4n + 3)/4) qn. (27)

In the expansion of (qψ (q9) + P (q3))2 (q2ψ (q18) + P (q6))2, three terms consist of powers of
q that are 2 (mod 3), their sum being

2q2ψ
(
q18

)
P

(
q3

)2
P

(
q6

)
+ q2ψ

(
q9

)2
P

(
q6

)2
+ 2q5ψ

(
q9

)
ψ

(
q18

)2
P

(
q3

)
. (28)

Observing that

ψ
(
q6

)
P (q)2 P

(
q2

)
= ψ

(
q3

)2
P

(
q2

)2
+ 2qψ

(
q3

)
ψ

(
q6

)2
P (q) ,

which follows from (16) and (17), we see that (28) is 3q2ψ (q18)P (q3)2 P (q6). Accordingly,
from the right side of (27) we extract those terms in which the power of q is 2 (mod 3) to
obtain

3q2ψ
(
q18

)
P

(
q3

)2
P

(
q6

)
=

∑

n≥0

(σ(12n + 11)/4) q3n+2,

from which (14) follows.

4. Final Comments

The method of proof used in this paper is dissection of series. To obtain our results we
considered products of the form

ψ (qa)r φ
(
qb

)s
P (qc)t X

(
qd

)u
, (29)

in which r + s + t + u = 4. This led to analogues of the classical results of Jacobi and
Legendre.

In [5] Hirschhorn considered certain products (29) in which t = u = 0. In so doing he re-
produced some classical results, and discovered new ones. In [6] he introduced the generating
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functions P and X and exploited them similarly to obtain representation results involving
triangular, square, pentagonal, and octagonal numbers. In both these works Hirschhorn used
dissection of series. Indeed, [5] and [6] were the starting points of our present paper.

Let r3(n) denote the number of representations of the positive integer n as a sum of three
squares. In [3] the authors proved a large number of results in which the generating function
of r3(an+b) is a simple infinite product. They proved eleven results of Hurwitz, and another
twelve results of the same type. They also proved eighty infinite families of similar results,
and stated as conjectures a further eighty-two infinite families of results. Here the starting
point was r3(n) = φ(q)3, and the method employed was dissection of series.

The author would like to express his gratitude to an anonymous referee. This referee
suggested the references [1], [2], [3], and [8], and gave a detailed commentary of their relevance
to the results contained herein. This has served to better place the present work in a historical
context.
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