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Abstract

We study discrete Fourier transformations of functions of the greatest common divisor:
n∑

k=1
f((k, n)) · exp( − 2πikm/n). Euler’s totient function: ϕ(n) =

n∑
k=1

(k, n) · exp(−2πik/n)

is an example. The greatest common divisor (k, n) =
n∑

m=1
exp(2πikm/n) ·

∑
d|n

cd(m)
d is another

result involving Ramanujan’s sum cd(m). The last equation, interestingly, can be evaluated
for k in the complex domain.

1. Introduction

This article is a study of discrete Fourier transformations of functions of the greatest com-

mon divisor (gcd). A special “Fourier transform,” the gcd-sum function P (n) :=
n∑

k=1
(k, n),

was investigated by S.S. Pillai in 1933 [1] (and therefore in the literature called Pillai’s arith-

metical function) followed by generalizations and analogues thereof:
n∑

k=1
f((k, n)) [2-8], where

f(n) is any arithmetic function.

Let m ∈ Z, n ∈ N. For an arithmetic function f : N → C, let

Ff(m,n) :=
n∑

k=1

f((k, n)) · exp(− 2πikm/n)

denote the discrete Fourier transform of f((k, n)), where (k, n) is the gcd of k and n. Further,
let

cn(m) :=
n∑

k=1
(k,n)=1

exp(2πikm/n) (1)
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denote Ramanujan’s sum. Note that cn(m) = cn(−m) for any m ∈ N (by complex con-
jugation since cn(m) ∈ R for every m ∈ Z) and cn(0) = ϕ(n) is Euler’s totient function.
For two arithmetic functions f1, f2 : N → C let (f1 ∗ f2) (n) :=

∑
d|n

f1(d) · f2(n/d) denote the

Dirichlet convolution, δ(n) the identity element for the Dirichlet convolution (i.e., δ(1) = 1
and δ(n) = 0 for every n > 1), µ(n) the Möbius function and id(n) := n for every n ∈ N.

Using this notation, the following easily proven theorem gives some already known and,
until now unknown, relations for arithmetic functions and trigonometric relations.

Theorem. Let f : N → C be any arbitrary arithmetic function. Then
i) the discrete Fourier transform of f((k, n)) is given for every m ∈ Z and n ∈ N by

Ff(m,n) = (f ∗ c•(m))(n); (2)

ii) the inverse Fourier transform thereof for every k ∈ Z and n ∈ N by

f((k, n)) =
1

n

n∑

m=1

(f ∗ c•(m)) (n) · exp(2πikm/n) (3)

Before proving the above theorem, we start with three motivating examples.

Example 1. Let f(n) = id(n) := n in (3). Then

(k, n) =
n∑

m=1

exp(2πikm/n) ·
∑

d|n

cd(m)

d
(4)

gives a function for the gcd. Note that the right-hand side can be evaluated for k in the
complex domain (for instance (1/2, 3) = −5/3 ± 2 · i/

√
3 ), although its interpretation for

non-integer values is unclear. The function (4) is holomorphic everywhere on the whole
complex plane and therefore for every n ∈ N is an entire function. Moreover, for fixed n it
is n-periodic in the variable k ∈ C and not distributive, i.e., (k · j, n · j) = j · (k, n) does not
hold in general, since 1 = (1, 6) &= 2 · (1/2, 3).

Interestingly, Keith Slavin [9] published an equation for the gcd that can be evaluated

for complex k as well: (k, n) = log2

n−1∏
m=0

(1 + exp(−2πikm/n)) for odd n ! 1 (evaluating the

last for (1/2, 3) gives ≈ 1.79248− 2.2661801 · i, not the same value, since Slavin’s equation
is not an entire function and is not defined for even n).

Example 2. Let f(n) = 1 and m = 1 in (2); then because of
n∑

k=1
exp(2πik/n) = δ(n), the

well known relation (c•(1) ∗ 1)(n) = δ(n)⇔

cn(1) = µ(n) (5)

for the Möbius function follows.
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Example 3. Let f(n) = id(n) := n and m = 1 in (2). Then with (5) a nice relation for

Euler’s totient function follows:
n∑

k=1
(k, n) · exp(−2πik/n) = (id∗µ)(n) =: ϕ(n); and splitting

up into real and imaginary parts gives the trigonometric relations:

n∑

k=1

(k, n) · cos(2πk/n) = ϕ(n) and
n∑

k=1

(k, n) · sin(2πk/n) = 0.

Proof of the theorem. We prove this in three small steps.

Step A: Let f(n) = δ(n). Then (2) gives the definition (1) of the (complex conjugated)
Ramanujan sum.

Step B: Now let f(n) = δj(n) :=

{
1 for j = n
0 else

and j > 1. For n ≡ 0 (mod j) we have

q·j∑
k=1

δj((k, q · j)) · exp(±2πikm
q·j ) =

q∑
k=1

δj((k · j, q · j)) · exp(±2πikm·j
q·j ), since j does not divide (k ·

j±l, q ·j) for 1 " l < j. Further, because of the distributive law – (k ·j, q ·j) = j ·(k, q) – of the

gcd, the last sum equals
q∑

k=1
δj(j · (k, q)) · exp(±2πikm/q) =

q∑
k=1

δ((k, q)) · exp(±2πikm/q).

Comparing this result with Step A gives
n∑

k=1
δj((k, n)) · exp(±2πikm/n) = cn/j(m) . Other-

wise, for n &≡ 0 (mod j) it is obvious that
n∑

k=1
δj((k, n)) · exp(±2πikm/n) = 0. Because the

Dirichlet convolution of δj(n) with any arithmetic function g(n) gives

(g ∗ δj)(n) =

{
g(n/j) for n ≡ 0(j)
0 else

we have
n∑

k=1

δj((k, n)) · exp(−2πikm/n) = (δj ∗ c•(m)) (n). (6)

Step C: Now let f be any arithmetic function. Multiplying (6) with f(j) and summing up
1 " j " n gives finally (2) and immediately (3) by the inverse Fourier transform thereof. !

We can also give a short proof of the theorem.

Short proof of the theorem (2). By grouping the terms according to the values (k, n) = d,
where d |n , k = dj, (j, n/d) = 1, 1 " j " n/d, we have

Ff(m,n) =
∑

d|n

f(d)
∑

1!j!n/d
(j,n/d)=1

exp(−2πijm/(n/d)) =
∑

d|n

f(d) · cn/d(m) = (f ∗ c•(m))(n).

!
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Corollary. If f is a multiplicative function, then Ff(m,n) is also multiplicative in variable n.

Proof. The Ramanujan sum cn(m) is multiplicative in n and the Dirichlet convolution
preserves the multiplicativity of functions. !

Here are some more examples.

Example 4. Let f(n) = id(n) := n and m = 0 in (2). Then the well-known Pillai sum [1]:
n∑

k=1

(k, n) = (ϕ ∗ id)(n)

follows.

Example 5. Let m = 0 in (2). Then
n∑

k=1
f((k, n)) = (ϕ ∗ f) (n) gives the generalization

thereof [2-8], already known to E. Cesàro in 1885 [6].

Example 6. Let m = 1, let f(n) = ω(n) be the number of distinct prime factors of n, and
let XPrimes(n) be the characteristic function of the primes. Then because of

ω(n) =
∑

p|n
p∈P

1 =
∑

d|n

XPrimes(d)⇔ XPrimes(n) = (ω ∗ µ) (n),

part (2) of the theorem with (5) gives
n∑

k=1

ω((k, n)) · exp(−2πik/n) = XPrimes(n).

Analogously let m = 1 and f(n) = Ω(n) the total number of prime factors of n (count-
ing multiple factors multiple times) and XPrimePower(n) the characteristic function of prime
powers, then because of

Ω(n) =
∑

pk|n
p∈P; k∈N

1 =
∑

d|n

XPrimePower(d)⇔ XPrimePower(n) = (Ω ∗ µ) (n),

part (2) of the theorem with (5) gives
n∑

k=1

Ω((k, n)) · exp(−2πik/n) = XPrimePower(n).

Example 7. Let m = 1 and let f(n) = σz(n) :=
∑
d|n

dz be the divisor function for any z ∈ C.

Then (2) with (5) gives
n∑

k=1
σz((k, n)) · exp(−2πik/n) = (σz ∗ µ) (n) = nz; and for z ∈ R,

splitting up into real and imaginary parts gives the trigonometric relations
n∑

k=1

σz((k, n)) · cos(2πk/n) = nz and
n∑

k=1

σz((k, n)) · sin(2πk/n) = 0.
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Example 8. Let r(n) =
∑

n2
1+n2

2=n

1 be the number of ways that n can be expressed as the

sum of two squares, and denote the Dirichlet character:

χ
(1,0,−1,0)

(n) :=
in−1 + (−i)n−1

2
=






1 for n ≡ 1(4)
−1 for n ≡ 3(4)
0 for n ≡ 2(4).

Then (2) with (5) gives
n∑

k=1
r((k, n)) · exp(−2πik/n) = (r ∗ µ) (n) = 4 · χ

(1,0,−1,0)
(n).

Example 9. Let f(n) = log(n) and m = 0. Then (2) gives log
n∏

k=1
(k, n) = (log ∗ϕ) (n),

whereof
n∏

k=1

n
√

(k, n) = exp (log ∗ϕ)(n)
n =

∏

p
αj
j |n

p

1−p
−αj
j

pj−1

j for n =
∏

pj∈P
p

αj

k a multiplicative arith-

metic function follows (see [10]). A generalization thereof for f(n) = log(h(n)) and m = 0,
where h : N → C\{z · R+} is any arithmetical function for a fixed 0 &= z ∈ C, gives the
general gcd-product function:

n∏

k=1

h((k, n)) =

{
0 if any factor is 0
exp((log(h) ∗ ϕ)(n)) else

as investigated in [10].

Example 10. Let f(n) = log(n) and m = 1. Then (2) with (5) gives the Mangoldt function

n∑

k=1

log((k, n)) · exp(−2πik/n) = (log ∗µ)(n) =: Λ(n).

Example 11. Let f(n) = δ(n) and k ∈ N. Then (3) gives

δ((k, n)) =
1

n
·

n∑

m=1

cn(m) · exp(2πikm/n).

This means that k and n are not coprime ⇔
n∑

m=1
cn(m) · exp(2πikm/n) = 0⇔ the n-vectors

(exp(2πikm/n))m=1..n and (cn(m))m=1..n are orthogonal. This, as a definition, could allow a
generalization of the coprime concept for k ∈ C.

Example 12. Let f(n) = 1 in (2) and ηn(m) :=
n∑

k=1
exp( − 2πikm/n) then ηn(m) =

(1 ∗ c•(m))(n) if and only if
cn(m) = (µ ∗ η•(m))(n), (7)

a well known relation for Ramanujan’s sum follows. Since ηn(m) = n for n |m otherwise
zero, cn(m) ∈ R for every m ∈ Z as already mentioned in the introduction. Using (7), the
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gcd-function (4) can be transformed to

(k, n) =
n∑

m=1

(ϕ ∗ η•(m)) (n)

n
· exp(2πikm/n).

Example 13. Let m = 1 and f(n) = nz for any z ∈ C. Then (2) with (5) gives

n∑

k=1

(k, n)z · exp(− 2πik/n) =
∑

d|n

dz · µ(n/d) =: Jz(n),

the Jordan function Jz(n), a generalization of Euler’s totient function [11].

Note that the relations in the Examples 6, 8, 9, 10, and 13 (the last for z ∈ R), when
split up into real and imaginary parts, give (analogously to Examples 3 and 7) trigonometric
relations as well.

2 Summary

The table below summarizes the examples concerning theorem (2). The number in the last
row denotes the example number in the manuscript. White spots, e.g., Flog(h)(1, n), in the
landscape of this table might be of further scientific interest.

f Ff(0, n) = (f ∗ ϕ)(n) Ff(1, n) = (f ∗ µ)(n) Ff(m,n) = (f ∗ c•(m))(n) Ex.
1 id(n) δ(n) ηn(m) 2, 12
id(n) Pillai sum P (n) ϕ(n) (η•(m) ∗ ϕ)(n) 3,4
f(n) “Cesàro sum” Theorem (2) 5

log(h(n)) log
n∏

k=1
h((k, n)) 9

log(n) (id ∗ Λ)(n) Λ(n) (η•(m) ∗ Λ)(n) 10
r(n) 4 · (id ∗ χ

(1,0,−1,0)
)(n) 4 · χ

(1,0,−1,0)
(n) 4 · (η•(m) ∗ χ

(1,0,−1,0)
)(n) 8

ω(n) (id ∗XPrimes)(n) XPrimes(n) (η•(m) ∗XPrimes)(n) 6
Ω(n) (id ∗XPrimePower)(n) XPrimePower(n) (η•(m) ∗XPrimePower)(n) 6
σz(n)
z ∈ C

n ·
∑
d|n

dz−1

Fσ0(0, n) = σ1(n)

nz
∑
d|n

ηn/d(m) · dz 7

nz

z ∈ C
(id ∗ Jz)(n) Jz(n) (η•(m) ∗ Jz)(n) 13
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