THE FOURIER TRANSFORM OF FUNCTIONS OF THE GREATEST COMMON DIVISOR

Wolfgang Schramm
Schulgasse 62 / 11, A-1180 Vienna, AUSTRIA
wolfgang.schramm@meduniwien.ac.at

Received: 7/4/08, Revised: 10/3/08, Accepted: 10/26/08, Published: 11/24/08

Abstract

We study discrete Fourier transformations of functions of the greatest common divisor: $\sum_{k=1}^{n} f((k, n)) \cdot \exp (-2 \pi i k m / n)$. Euler's totient function: $\varphi(n)=\sum_{k=1}^{n}(k, n) \cdot \exp (-2 \pi i k / n)$ is an example. The greatest common divisor $(k, n)=\sum_{m=1}^{n} \exp (2 \pi i k m / n) \cdot \sum_{d \mid n} \frac{c_{d}(m)}{d}$ is another result involving Ramanujan's sum $c_{d}(m)$. The last equation, interestingly, can be evaluated for k in the complex domain.

1. Introduction

This article is a study of discrete Fourier transformations of functions of the greatest common divisor (gcd). A special "Fourier transform," the gcd-sum function $P(n):=\sum_{k=1}^{n}(k, n)$, was investigated by S.S. Pillai in 1933 [1] (and therefore in the literature called Pillai's arithmetical function) followed by generalizations and analogues thereof: $\sum_{k=1}^{n} f((k, n))$ [2-8], where $f(n)$ is any arithmetic function.

Let $m \in \mathbb{Z}, n \in \mathbb{N}$. For an arithmetic function $f: \mathbb{N} \rightarrow \mathbb{C}$, let

$$
F_{f}(m, n):=\sum_{k=1}^{n} f((k, n)) \cdot \exp (-2 \pi i k m / n)
$$

denote the discrete Fourier transform of $f((k, n))$, where (k, n) is the gcd of k and n. Further, let

$$
\begin{equation*}
c_{n}(m):=\sum_{\substack{k=1 \\(k, n)=1}}^{n} \exp (2 \pi i k m / n) \tag{1}
\end{equation*}
$$

denote Ramanujan's sum. Note that $c_{n}(m)=c_{n}(-m)$ for any $m \in \mathbb{N}$ (by complex conjugation since $c_{n}(m) \in \mathbb{R}$ for every $\left.m \in \mathbb{Z}\right)$ and $c_{n}(0)=\varphi(n)$ is Euler's totient function. For two arithmetic functions $f_{1}, f_{2}: \mathbb{N} \rightarrow \mathbb{C}$ let $\left(f_{1} * f_{2}\right)(n):=\sum_{d \mid n} f_{1}(d) \cdot f_{2}(n / d)$ denote the Dirichlet convolution, $\delta(n)$ the identity element for the Dirichlet convolution (i.e., $\delta(1)=1$ and $\delta(n)=0$ for every $n>1), \mu(n)$ the Möbius function and $i d(n):=n$ for every $n \in \mathbb{N}$.

Using this notation, the following easily proven theorem gives some already known and, until now unknown, relations for arithmetic functions and trigonometric relations.

Theorem. Let $f: \mathbb{N} \rightarrow \mathbb{C}$ be any arbitrary arithmetic function. Then
i) the discrete Fourier transform of $f((k, n))$ is given for every $m \in \mathbb{Z}$ and $n \in \mathbb{N}$ by

$$
\begin{equation*}
F_{f}(m, n)=\left(f * c_{\bullet}(m)\right)(n) ; \tag{2}
\end{equation*}
$$

ii) the inverse Fourier transform thereof for every $k \in \mathbb{Z}$ and $n \in \mathbb{N}$ by

$$
\begin{equation*}
f((k, n))=\frac{1}{n} \sum_{m=1}^{n}\left(f * c_{\bullet}(m)\right)(n) \cdot \exp (2 \pi i k m / n) \tag{3}
\end{equation*}
$$

Before proving the above theorem, we start with three motivating examples.
Example 1. Let $f(n)=i d(n):=n$ in (3). Then

$$
\begin{equation*}
(k, n)=\sum_{m=1}^{n} \exp (2 \pi i k m / n) \cdot \sum_{d \mid n} \frac{c_{d}(m)}{d} \tag{4}
\end{equation*}
$$

gives a function for the gcd. Note that the right-hand side can be evaluated for k in the complex domain (for instance $(1 / 2,3)=-5 / 3 \pm 2 \cdot i / \sqrt{3}$), although its interpretation for non-integer values is unclear. The function (4) is holomorphic everywhere on the whole complex plane and therefore for every $n \in \mathbb{N}$ is an entire function. Moreover, for fixed n it is n-periodic in the variable $k \in \mathbb{C}$ and not distributive, i.e., $(k \cdot j, n \cdot j)=j \cdot(k, n)$ does not hold in general, since $1=(1,6) \neq 2 \cdot(1 / 2,3)$.

Interestingly, Keith Slavin [9] published an equation for the gcd that can be evaluated for complex k as well: $(k, n)=\log _{2} \prod_{m=0}^{n-1}(1+\exp (-2 \pi i k m / n))$ for odd $n \geqslant 1$ (evaluating the last for $(1 / 2,3)$ gives $\approx 1.79248-2.2661801 \cdot i$, not the same value, since Slavin's equation is not an entire function and is not defined for even n).

Example 2. Let $f(n)=1$ and $m=1$ in (2); then because of $\sum_{k=1}^{n} \exp (2 \pi i k / n)=\delta(n)$, the well known relation $\left(c_{\bullet}(1) * 1\right)(n)=\delta(n) \Leftrightarrow$

$$
\begin{equation*}
c_{n}(1)=\mu(n) \tag{5}
\end{equation*}
$$

for the Möbius function follows.

Example 3. Let $f(n)=i d(n):=n$ and $m=1$ in (2). Then with (5) a nice relation for Euler's totient function follows: $\sum_{k=1}^{n}(k, n) \cdot \exp (-2 \pi i k / n)=(i d * \mu)(n)=: \varphi(n)$; and splitting up into real and imaginary parts gives the trigonometric relations:

$$
\sum_{k=1}^{n}(k, n) \cdot \cos (2 \pi k / n)=\varphi(n) \quad \text { and } \quad \sum_{k=1}^{n}(k, n) \cdot \sin (2 \pi k / n)=0
$$

Proof of the theorem. We prove this in three small steps.
Step A: Let $f(n)=\delta(n)$. Then (2) gives the definition (1) of the (complex conjugated) Ramanujan sum.

Step B: Now let $f(n)=\delta_{j}(n):=\left\{\begin{array}{ll}1 & \text { for } j=n \\ 0 & \text { else }\end{array}\right.$ and $j>1$. For $n \equiv 0(\bmod j)$ we have $\sum_{k=1}^{q \cdot j} \delta_{j}((k, q \cdot j)) \cdot \exp \left(\frac{ \pm 2 \pi i k m}{q \cdot j}\right)=\sum_{k=1}^{q} \delta_{j}((k \cdot j, q \cdot j)) \cdot \exp \left(\frac{ \pm 2 \pi i k m \cdot j}{q \cdot j}\right)$, since j does not divide $(k$. $j \pm l, q \cdot j)$ for $1 \leqslant l<j$. Further, because of the distributive law $-(k \cdot j, q \cdot j)=j \cdot(k, q)-$ of the gcd, the last sum equals $\sum_{k=1}^{q} \delta_{j}(j \cdot(k, q)) \cdot \exp (\pm 2 \pi i k m / q)=\sum_{k=1}^{q} \delta((k, q)) \cdot \exp (\pm 2 \pi i k m / q)$. Comparing this result with Step A gives $\sum_{k=1}^{n} \delta_{j}((k, n)) \cdot \exp (\pm 2 \pi i k m / n)=c_{n / j}(m)$. Otherwise, for $n \not \equiv 0(\bmod j)$ it is obvious that $\sum_{k=1}^{n} \delta_{j}((k, n)) \cdot \exp (\pm 2 \pi i k m / n)=0$. Because the Dirichlet convolution of $\delta_{j}(n)$ with any arithmetic function $g(n)$ gives

$$
\left(g * \delta_{j}\right)(n)= \begin{cases}g(n / j) & \text { for } n \equiv 0(j) \\ 0 & \text { else }\end{cases}
$$

we have

$$
\begin{equation*}
\sum_{k=1}^{n} \delta_{j}((k, n)) \cdot \exp (-2 \pi i k m / n)=\left(\delta_{j} * c_{\bullet}(m)\right)(n) \tag{6}
\end{equation*}
$$

Step C: Now let f be any arithmetic function. Multiplying (6) with $f(j)$ and summing up $1 \leqslant j \leqslant n$ gives finally (2) and immediately (3) by the inverse Fourier transform thereof.

We can also give a short proof of the theorem.
Short proof of the theorem (2). By grouping the terms according to the values $(k, n)=d$, where $d \mid n, k=d j,(j, n / d)=1,1 \leqslant j \leqslant n / d$, we have

$$
F_{f}(m, n)=\sum_{d \mid n} f(d) \sum_{\substack{1 \leqslant j \leqslant n / d \\(j, n / d)=1}} \exp (-2 \pi i j m /(n / d))=\sum_{d \mid n} f(d) \cdot c_{n / d}(m)=\left(f * c_{\bullet}(m)\right)(n)
$$

Corollary. If f is a multiplicative function, then $F_{f}(m, n)$ is also multiplicative in variable n.
Proof. The Ramanujan sum $c_{n}(m)$ is multiplicative in n and the Dirichlet convolution preserves the multiplicativity of functions.

Here are some more examples.
Example 4. Let $f(n)=i d(n):=n$ and $m=0$ in (2). Then the well-known Pillai sum [1]:

$$
\sum_{k=1}^{n}(k, n)=(\varphi * i d)(n)
$$

follows.
Example 5. Let $m=0$ in (2). Then $\sum_{k=1}^{n} f((k, n))=(\varphi * f)(n)$ gives the generalization thereof [2-8], already known to E. Cesàro in 1885 [6].

Example 6. Let $m=1$, let $f(n)=\omega(n)$ be the number of distinct prime factors of n, and let $\mathrm{X}_{\text {Primes }}(n)$ be the characteristic function of the primes. Then because of

$$
\omega(n)=\sum_{\substack{p \mid n \\ p \in \mathbb{P}}} 1=\sum_{d \mid n} \mathrm{X}_{\text {Primes }}(d) \Leftrightarrow \mathrm{X}_{\text {Primes }}(n)=(\omega * \mu)(n)
$$

part (2) of the theorem with (5) gives

$$
\sum_{k=1}^{n} \omega((k, n)) \cdot \exp (-2 \pi i k / n)=X_{\text {Primes }}(n)
$$

Analogously let $m=1$ and $f(n)=\Omega(n)$ the total number of prime factors of n (counting multiple factors multiple times) and $\mathrm{X}_{\text {PrimePower }}(n)$ the characteristic function of prime powers, then because of

$$
\Omega(n)=\sum_{\substack{p^{k} \mid n \\ p \in \mathbb{P} ; k \in \mathbb{N}}} 1=\sum_{d \mid n} \mathrm{X}_{\text {PrimePower }}(d) \Leftrightarrow \mathrm{X}_{\text {PrimePower }}(n)=(\Omega * \mu)(n),
$$

part (2) of the theorem with (5) gives

$$
\sum_{k=1}^{n} \Omega((k, n)) \cdot \exp (-2 \pi i k / n)=\mathrm{X}_{\text {PrimePower }}(n)
$$

Example 7. Let $m=1$ and let $f(n)=\sigma_{z}(n):=\sum_{d \mid n} d^{z}$ be the divisor function for any $z \in \mathbb{C}$. Then (2) with (5) gives $\sum_{k=1}^{n} \sigma_{z}((k, n)) \cdot \exp (-2 \pi i k / n)=\left(\sigma_{z} * \mu\right)(n)=n^{z}$; and for $z \in \mathbb{R}$, splitting up into real and imaginary parts gives the trigonometric relations

$$
\sum_{k=1}^{n} \sigma_{z}((k, n)) \cdot \cos (2 \pi k / n)=n^{z} \quad \text { and } \quad \sum_{k=1}^{n} \sigma_{z}((k, n)) \cdot \sin (2 \pi k / n)=0
$$

Example 8. Let $r(n)=\sum_{n_{1}^{2}+n_{2}^{2}=n} 1$ be the number of ways that n can be expressed as the sum of two squares, and denote the Dirichlet character:

$$
\chi_{(\overline{1,0,-1,0)}}(n):=\frac{i^{n-1}+(-i)^{n-1}}{2}= \begin{cases}1 & \text { for } n \equiv 1(4) \\ -1 & \text { for } n \equiv 3(4) \\ 0 & \text { for } n \equiv 2(4)\end{cases}
$$

Then (2) with (5) gives $\sum_{k=1}^{n} r((k, n)) \cdot \exp (-2 \pi i k / n)=(r * \mu)(n)=4 \cdot \chi_{(\overline{1,0,-1,0)}}(n)$.
Example 9. Let $f(n)=\log (n)$ and $m=0$. Then (2) gives $\log \prod_{k=1}^{n}(k, n)=(\log * \varphi)(n)$, whereof $\prod_{k=1}^{n} \sqrt[n]{(k, n)}=\exp \frac{(\log * \varphi)(n)}{n}=\prod_{p_{j} \alpha_{j} \mid n} p^{\frac{1-p_{j}^{-\alpha_{j}}}{p_{j}-1}}$ for $n=\prod_{p_{j} \in \mathbb{P}} p_{k}^{\alpha_{j}}$ a multiplicative arithmetic function follows (see [10]). A generalization thereof for $f(n)=\log (h(n))$ and $m=0$, where $h: \mathbb{N} \rightarrow \mathbb{C} \backslash\left\{z \cdot \mathbb{R}^{+}\right\}$is any arithmetical function for a fixed $0 \neq z \in \mathbb{C}$, gives the general gcd-product function:

$$
\prod_{k=1}^{n} h((k, n))= \begin{cases}0 & \text { if any factor is } 0 \\ \exp ((\log (h) * \varphi)(n)) & \text { else }\end{cases}
$$

as investigated in [10].
Example 10. Let $f(n)=\log (n)$ and $m=1$. Then (2) with (5) gives the Mangoldt function

$$
\sum_{k=1}^{n} \log ((k, n)) \cdot \exp (-2 \pi i k / n)=(\log * \mu)(n)=: \Lambda(n)
$$

Example 11. Let $f(n)=\delta(n)$ and $k \in \mathbb{N}$. Then (3) gives

$$
\delta((k, n))=\frac{1}{n} \cdot \sum_{m=1}^{n} c_{n}(m) \cdot \exp (2 \pi i k m / n)
$$

This means that k and n are not coprime $\Leftrightarrow \sum_{m=1}^{n} c_{n}(m) \cdot \exp (2 \pi i k m / n)=0 \Leftrightarrow$ the n-vectors $(\exp (2 \pi i k m / n))_{m=1 . . n}$ and $\left(c_{n}(m)\right)_{m=1 . . n}$ are orthogonal. This, as a definition, could allow a generalization of the coprime concept for $k \in \mathbb{C}$.

Example 12. Let $f(n)=1$ in (2) and $\eta_{n}(m):=\sum_{k=1}^{n} \exp (-2 \pi i k m / n)$ then $\eta_{n}(m)=$ $\left(1 * c_{\bullet}(m)\right)(n)$ if and only if

$$
\begin{equation*}
c_{n}(m)=\left(\mu * \eta_{\bullet}(m)\right)(n), \tag{7}
\end{equation*}
$$

a well known relation for Ramanujan's sum follows. Since $\eta_{n}(m)=n$ for $n \mid m$ otherwise zero, $c_{n}(m) \in \mathbb{R}$ for every $m \in \mathbb{Z}$ as already mentioned in the introduction. Using (7), the
gcd-function (4) can be transformed to

$$
(k, n)=\sum_{m=1}^{n} \frac{\left(\varphi * \eta_{\bullet}(m)\right)(n)}{n} \cdot \exp (2 \pi i k m / n)
$$

Example 13. Let $m=1$ and $f(n)=n^{z}$ for any $z \in \mathbb{C}$. Then (2) with (5) gives

$$
\sum_{k=1}^{n}(k, n)^{z} \cdot \exp (-2 \pi i k / n)=\sum_{d \mid n} d^{z} \cdot \mu(n / d)=: J_{z}(n),
$$

the Jordan function $J_{z}(n)$, a generalization of Euler's totient function [11].
Note that the relations in the Examples $6,8,9,10$, and 13 (the last for $z \in \mathbb{R}$), when split up into real and imaginary parts, give (analogously to Examples 3 and 7) trigonometric relations as well.

2 Summary

The table below summarizes the examples concerning theorem (2). The number in the last row denotes the example number in the manuscript. White spots, e.g., $F_{\log (h)}(1, n)$, in the landscape of this table might be of further scientific interest.

f	$F_{f}(0, n)=(f * \varphi)(n)$	$F_{f}(1, n)=(f * \mu)(n)$	$F_{f}(m, n)=\left(f * c_{\bullet}(m)\right)(n)$	Ex.
1	$i d(n)$	$\delta(n)$	$\eta_{n}(m)$	2,12
$i d(n)$	Pillai sum $P(n)$	$\varphi(n)$	$\left(\eta_{\bullet}(m) * \varphi\right)(n)$	3,4
$f(n)$	"Cesàro sum"			5
$\log (h(n))$	$\log \prod_{k=1}^{n} h((k, n))$		$\Lambda(n)$	9
$\log (n)$	$(i d * \Lambda)(n)$	$4 \cdot \chi_{(1,0,-1,0)}(n)$	$4 \cdot\left(\eta_{\bullet}(m) * \chi_{(\overline{1,0,-1,0)}}\right)(n)$	8
$r(n)$	$4 \cdot\left(i d * \chi_{(\overline{1,0,-1,0)}}\right)(n)$	$4)$	6	
$\omega(n)$	$\left(i d * \mathrm{X}_{\text {Primes }}\right)(n)$	$\mathrm{X}_{\text {Primes }}(n)$	$\left(\eta_{\bullet}(m) * \mathrm{X}_{\text {Primes }}\right)(n)$	6
$\Omega(n)$	$\left(i d * \mathrm{X}_{\text {PrimePower }}\right)(n)$	$\mathrm{X}_{\text {PrimePower }}(n)$	$\left(\eta_{\bullet}(m) * \mathrm{X}_{\text {PrimePower }}\right)(n)$	6
$\sigma_{z}(n)$ $z \in \mathbb{C}$	$n \cdot \sum_{d \mid n} d^{z-1}$ $F_{\sigma_{0}}(0, n)=\sigma_{1}(n)$	n^{z}	$\sum_{d \mid n} \eta_{n / d}(m) \cdot d^{z}$	7
n^{z} $z \in \mathbb{C}$	$\left(i d * J_{z}\right)(n)$	$J_{z}(n)$	$\left(\eta_{\bullet}(m) * J_{z}\right)(n)$	13

Acknowledgments Many thanks to the reviewer of this article whose suggestions (inclduing the short proof) and comments greatly improved the clarity of this exposition.

References

[1] Pillai S.S., On an arithmetic function, Annamalai University Journal II (1933), 242-248.
[2] Alladi K., On generalized Euler functions and related totients, New Concepts in Arithmetic Functions, Mat. Sc. Report 83, Madras (1975).
[3] Sandor J., Kramer A.V., Über eine Zahlentheoretische Funktion, Mathematica Moravica 3 (1999), 53-62.
[4] Sándor J., A generalized Pillai function, Octogon M.M. 9 No. 2 (2001), 746-748.
[5] Sivaramakrishnan R., On three extensions of Pillai's arithmetic function $\beta(n)$, Math. Student 39 (1971), 187-190.
[6] Cesàro E., Étude moyenne du grand commun diviseur de deux nombres, Ann. Mat. Pura Appl. (2) 13 (1885), 235-250.
[7] Broughan K.A., The gcd-sum function, J. Integer Sequences 4 (2001), Article 01.2.2.
[8] Toth L., The unitary analogue of Pillai's arithmetical function, Collect. Math. 40 (1989), 19-30.
[9] Slavin, Keith R., Q-binomials and the greatest common divisor, Integers: Electronic J. of Comb. Number Theory 8 (2008), Article A5.
[10] Loveless A.D., The general gcd-product function, Integers: Electronic J. of Comb. Number Theory 6 (2006), Article A19.
[11] Schulte J., Über die Jordansche Verallgemeinerung der Eulerschen Funktion, Result. Math. 36 (1999), 354-364.

