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Abstract

For a local field K and n ≥ 2, let Ξn and ∆n denote the affine buildings naturally associated
to the special linear and symplectic groups SLn(K) and Spn(K), respectively. We relate the
number of vertices in Ξn (n ≥ 3) close (i.e., gallery distance 1) to a given vertex in Ξn to
the number of chambers in Ξn containing the given vertex, proving a conjecture of Schwartz
and Shemanske. We then consider the special vertices in ∆n (n ≥ 2) close to a given special
vertex in ∆n (all the vertices in Ξn are special) and establish analogues of our results for ∆n.

1. Introduction

A building is a finite-dimensional simplicial complex in which any two of its chambers (max-
imal simplices) can be connected by a gallery. In other words, if ∆ is a building, then for
any chambers C, D ∈ ∆, there is a sequence C = C0, C1, . . . , Cm = D of chambers in ∆
such that Ci and Ci+1 are adjacent (share a codimension-one face) for all 0 ≤ i ≤ m − 1; in
this case, the number m is the length of the gallery C0, . . . , Cm. The combinatorial distance
between C and D is the minimal length of a gallery in ∆ connecting C and D (see [1, p.
14]). Following [1, p. 15], define the distance between any non-empty simplices A, B ∈ ∆ to
be the minimal length of a gallery in ∆ starting at a chamber containing A and ending at
a chamber containing B (cf. [6, p. 125]). Then the vertices t, t′ ∈ ∆ are distance one apart
or close if and only if there are adjacent chambers C, C ′ ∈ ∆ such that t ∈ C, t′ ∈ C ′, but
t, t′ %∈ C ∩ C ′ (the simplex shared by C and C ′); i.e., if and only if t and t′ are in adjacent
chambers in ∆ but not a common one (cf. [6, p. 127]). Figures 1(a) and 1(b) show close
vertices in the affine buildings naturally associated to SL3(K) and Sp2(K), respectively, for
any local field K. Note that if ∆ is a building and t, t′ ∈ ∆ are close vertices, then as vertices
in the underlying graph of ∆, t and t′ are not graph distance 1 apart but are always graph
distance 2 apart.

Let K be a local field with valuation ring O, uniformizer π, and residue field k ∼= Fq, and
let Ξn denote the affine building naturally associated to SLn(K). Schwartz and Shemanske
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(b) Two close vertices in ∆2.

Figure 1: Examples of close vertices.

[6, Theorem 3.3] show that for all n ≥ 3, the number ωn of vertices in Ξn close to a given
vertex in Ξn is the number of right cosets of GLn(O) in GLn(O)diag(1, π, . . . , π, π2)GLn(O);
i.e., the Hecke operator GLn(O)diag(1, π, . . . , π, π2)GLn(O) acts as a generalized adjacency
operator on Ξn. They also conjecture that for all n ≥ 3, q · rn = rn−2 ωn, where rn is the
number of chambers in Ξn containing a given vertex, with r1 := 1 (see the remark following
[6, Proposition 3.4]).

In Section 2, we prove Schwartz and Shemanske’s conjecture in two ways. Our first
approach is via module theory. More precisely, we use the description of the chambers in
Ξn in terms of lattices in an n-dimensional K-vector space (see, for example, [5, p. 115]) to
obtain an explicit formula for ωn (Proposition 2.1); together with Schwartz and Shemanske’s
formula for rn [6, Proposition 2.4], this proves Theorem 2.1. Our second approach is through
combinatorics (Theorem 2.2). Specifically, we show that if t, t′ ∈ Ξn are close vertices, then
there is a one-to-one correspondence between the galleries of length 1 in Ξn whose initial
chamber contains t and whose ending chamber contains t′ and the chambers in the spherical
An−3(k) building. This gives an explanation for the relationship between ωn and rn in terms
of the structure of Ξn. In Section 3, we consider the special vertices in the affine building ∆n

naturally associated to Spn(K) (n ≥ 2) close to a given special vertex in ∆n (all the vertices
in Ξn are special). Using the fact that ∆n is a subcomplex of Ξ2n, we adapt the proofs of
the results for close vertices in Ξ2n to prove analogues for ∆n. In particular, we establish
analogues of [6, Theorem 3.3] and Theorem 2.1 (Theorems 3.1 and 3.2, respectively) and
a partial analogue of Theorem 2.2 (Proposition 3.11). Note that while every vertex in Ξ2n

is special, only two vertices in each chamber in ∆n are special; hence, our analysis for ∆n

requires more care than that needed for Ξ2n.

After proving Theorems 2.1 and 3.2, we learned that the formulas in Propositions 2.1 and
3.9 are both special cases of a result of Parkinson [4, Theorem 5.15] and that the formula
in Proposition 2.1 also follows from a result of Cartwright [2, Lemma 2.2]. We view the
buildings Ξn and ∆n as combinatorial objects naturally associated to SLn(K) and Spn(K),
respectively, and make use of the lattice descriptions of these buildings (see [3] and [5]). As
a result, our methods require little more than the definition of a building—namely, some
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module theory. In contrast to our approach, Cartwright views Ξn in terms of hyperplanes,
affine transformations, and convex hulls, and Parkinson considers buildings via root systems
and Poincaré polynomials of Weyl groups. The numbers ωn and ω(∆n) that we use are
special cases of Parkinson’s Nλ, which he uses to define vertex set averaging operators on
arbitrary locally finite, regular affine buildings and whose formula he uses to prove results
about those operators.

I thank Paul Garrett for the idea behind the proof of Proposition 2.1, and hence that of
Proposition 3.9. Finally, the results contained here form part of my doctoral thesis, which I
wrote under the guidance of Thomas R. Shemanske.

2. Close Vertices in the Affine Building Ξn of SLn(K)

From now on, K is a local field with discrete valuation “ord,” valuation ring O, uniformizer
π, and residue field k ∼= Fq. For any finite-dimensional K-vector space V , define a lattice in
V to be a free O-submodule of V of rank dimK V , with two lattices L and L′ in V homothetic
if L′ = αL for some α ∈ K×; write [L] for the homothety class of the lattice L.

The affine building Ξn naturally associated to SLn(K) can be modeled as an (n − 1)-
dimensional simplicial complex as follows (see [5, p. 115]). Let V be an n-dimensional
K-vector space. Then a vertex in Ξn is a homothety class of lattices in V , and two vertices
t, t′ ∈ Ξn are incident if there are representatives L ∈ t and L′ ∈ t′ such that πL ⊆ L′ ⊆ L;
i.e., such that L′/πL is a k-subspace of L/πL. Thus, a chamber (maximal simplex) in Ξn has
n vertices t0, . . . , tn−1 with representatives Li ∈ ti such that πL0 ! L1 ! · · · ! Ln−1 ! L0

and [L1 : πL0] = q = [Li : Li−1] for all 2 ≤ i ≤ n− 1. From now on, write that a chamber in
Ξn corresponds to the chain πL0 ! L1 ! · · · ! Ln−1 ! L0 only when the lattices L0, . . . , Ln−1

satisfy the conditions in the last sentence.

For the rest of this section, n ≥ 3. Let t ∈ Ξn be a vertex with representative L. Then a
chamber C ∈ Ξn containing t corresponds to a chain of the form

πL
q
! L1

q
! · · ·

q
! Ln−1

q
! L (1)

(cf. [3, p. 323]). The codimension-one face in C not containing t thus corresponds to the
chain

L1

q
! · · ·

q
! Ln−1,

and a vertex in Ξn is close to t if it has a representative M %= L such that

πM
q
! L1

q
! · · ·

q
! Ln−1

q
! M. (2)

Given the lattices L1 and Ln−1, the possible L and M satisfy Ln−1 ! L %= M ! π−1L1. On
the other hand, if t, t′ ∈ Ξn are close vertices, then there must be representatives L ∈ t and
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Figure 2: Two close vertices in Ξ4.

M ∈ t′ and lattices L1, . . . , Ln−1 as in (1) such that Ln−1 ! L %= M ! π−1L1. Recall that if
M1 and M2 are free, rank n, O-modules with M1 ⊆ M2, then M1 ⊆ M ′ ⊆ M2 implies M ′ is
also a free, rank n, O-module. Thus, both L∩M and L+M are lattices in V . Furthermore,
L %= M and [L : Ln−1] = q = [M : Ln−1] imply L ∩ M = Ln−1 and L + M = π−1L1, but we
can vary L2, . . . , Ln−2 as long as L1 ! L2 ! · · · ! Ln−2 ! Ln−1. In other words, if t and t′

are close vertices in Ξn, there may be two (or more) pairs of adjacent chambers C and C ′ in
Ξn with t ∈ C, t′ ∈ C ′, but t, t′ %∈ C ∩ C ′ (see Figure 2). We return to this later.

Before we count the number of vertices in Ξn close to a given vertex t ∈ Ξn, we make
a few observations. Fix a representative L ∈ t. Since L/πL ∼= kn, the Correspondence
Theorem and the fact that any O-submodule of L containing πL is a lattice in V imply that
the number of L1 is the number of 1-dimensional k-subspaces of L/πL. Similarly, given L1

as above, the number of lattices Ln−1 with L1 ! Ln−1 ! L and [L : Ln−1] = q is the number
of (n − 2)-dimensional k-subspaces of L/L1

∼= kn−1. Finally, given L1 and Ln−1 as above,
the number of lattices M %= L such that Ln−1 ! M ! π−1L1 is one less than the number of
non-trivial, proper k-subspaces of π−1L1/Ln−1

∼= k2.

Proposition 2.1. If t ∈ Ξn is a vertex, then the number ωn of vertices in Ξn close to t is

qn − 1

q − 1
· qn−1 − 1

q − 1
· q

(independent of t).

Proof. This follows from the preceding comments, duality, and the fact that the number of
1-dimensional subspaces of Fm

q is exactly (qm − 1)/(q − 1).

Corollary 2.1. The number of right cosets of GLn(O) in GLn(O)diag(1, π, . . . , π, π2)GLn(O)
is ((qn − 1)(qn−1 − 1) · q)/(q − 1)2.

Proof. This follows from [6, Theorem 3.3] and the last proposition.

Let rn be the number of chambers in Ξn containing a vertex t ∈ Ξn. Then [6, Proposition
2.4] and the last proposition establish the conjecture following Proposition 3.4 of [6]:
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Theorem 2.1. For all n ≥ 3, q · rn = rn−2 ωn, where r1 = 1.

We now use the structure of Ξn to give a combinatorial proof for the relationship given
in Theorem 2.1. Fix a vertex t ∈ Ξn. Then we can try to count the number of vertices in
Ξn close to t by counting the number of galleries (in Ξn) of length 1 starting at a chamber
containing t and ending at a chamber not containing t. By definition, there are rn chambers
C ∈ Ξn containing t. Since a chamber in Ξn adjacent to C and not containing t must
contain the codimension-one face in C not containing t, [3, p. 324] implies that there are q
chambers in Ξn adjacent to C not containing t; hence, there are exactly rn · q galleries of
length 1 in Ξn whose initial chamber contains t and whose ending chamber does not contain
t. On the other hand, if t′ ∈ Ξn is a vertex close to t, we count t′ more than once if there is
more than one gallery of length 1 in Ξn whose initial chamber contains t and whose ending
chamber contains t′ (see Figure 2); hence, ωn = (rn · q)/m(t, t′), where m(t, t′) is the number
of galleries of length 1 in Ξn whose initial chamber contains t and whose ending chamber
contains t′.

To determine m(t, t′), fix the following notation for the rest of this section. For close ver-
tices t, t′ ∈ Ξn, let L ∈ t, M ∈ t′ be representatives such that there are lattices L1, . . . , Ln−1

as in (1) and (2). Recall that L1 = π(L + M) and Ln−1 = L ∩ M , but we can vary
L2, . . . , Ln−2 as long as L1 ! L2 ! · · · ! Ln−2 ! Ln−1. Since any gallery C, C ′ in Ξn such that
C = {t, [L1], . . . , [Ln−1]} and C ′ = {t′, [L1], . . . , [Ln−1]} satisfies C ∩ C ′ = {[L1], . . . , [Ln−1]},
each gallery in Ξn counted by m(t, t′) is uniquely determined by the lattices L2, . . . , Ln−2.
Define two vertices in Ξn to be adjacent if they are distinct and incident.

Proposition 2.2. Let t, t′ ∈ Ξn be adjacent vertices. If L ∈ t, then there is a unique
representative L′ ∈ t′ such that πL ! L′ ! L.

Proof. Since t and t′ are incident and t %= t′, there are representatives M ∈ t and M ′ ∈ t′ such
that πM ! M ′ ! M . Moreover, M and L are homothetic, so L = αM for some α ∈ K×;
hence, πL ! αM ′ ! L. Let L′ = αM ′. If L′′ ∈ t′ such that πL ! L′′ ! L, let β ∈ K× such
that L′′ = βL′. Suppose ord(β) = m. Then πL ! L′ ! L implies πm+1L ! L′′ ! πmL and
L = πmL; i.e., L′′ = L′.

Consider the set of vertices in Ξn that are adjacent to t, t′, [L + M ], and [L ∩M ] (in the
case n = 3, this set is empty), and define two such vertices to be incident if they are incident
as vertices in Ξn. Let Ξc

n(t, t′) be the set consisting of

• the empty set,

• all vertices in Ξn adjacent to t, t′, [L + M ], and [L ∩ M ], and

• all finite sets A of vertices in Ξn adjacent to t, t′, [L + M ], and [L ∩ M ] such that any
two vertices in A are adjacent.

Then Ξc
n(t, t′) is a simplicial complex. In particular, Ξc

n(t, t′) is a subcomplex of Ξn.
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Lemma 2.1. If ∅ %= A ∈ Ξc
n(t, t′) is an i-simplex, then A corresponds to a chain of lattices

M1 ! · · · ! Mi+1, where π(L + M) ! M1 ! · · · ! Mi+1 ! L ∩ M . In particular, A has at
most n − 3 vertices.

Proof. We proceed by induction on i. If i = 0, then A adjacent to [L ∩ M ] implies A
has a unique representative M1 such that π(L ∩ M) ! M1 ! L ∩ M by Proposition 2.2.
Then by [3, p. 322], either M1 ! π(L + M) or M1 " π(L + M). In the second case,
we are done, so assume M1 ! π(L + M). Then π(L ∩ M) ! M1 ! π(L + M). On
the other hand, π(L ∩ M) ! πL ! π(L + M) and [π(L + M) : π(L ∩ M)] = q2. Since
A is adjacent to t, [3, p. 322] implies that either M1 ! πL or M1 " πL. Thus, either
π(L ∩ M) ! M1 ! πL ! π(L + M) or π(L ∩ M) ! πL ! M1 ! π(L + M), which is
impossible given the previous index computation.

Now suppose 0 ≤ i ≤ n − 5 and that the claim holds for any i-simplex in Ξc
n(t, t′). Let

A ∈ Ξc
n(t, t′) be an (i+1)-simplex and x ∈ A a vertex. Then the i-simplex A−{x} corresponds

to a chain of lattices M ′
1 ! · · · ! M ′

i+1 such that π(L + M) ! M ′
1 ! · · · ! M ′

i+1 ! L ∩ M .
By the last paragraph, x has a representative M ′ such that π(L + M) ! M ′ ! L ∩ M .
If M ′ ! M ′

1, set M1 = M ′ and Mj = M ′
j−1 for all 2 ≤ j ≤ i + 2. Otherwise, M ′ " M ′

1

by [3, p. 322]. Let j ∈ {1, . . . , i + 1} be maximal such that M ′ " M ′
j . If j = i + 1, set

M" = M ′
" for all 1 ≤ % ≤ i + 1 and Mi+2 = M ′. Setting M" = M ′

" for all 1 ≤ % ≤ j,
Mj+1 = M ′, and M" = M ′

"−1 for all j + 2 ≤ % ≤ i + 2 finishes the proof if j %= i + 1.
Finally, note that if the claim holds for i ≥ n − 3, then A corresponds to a chain of lattices
M1 ! · · · ! Mi+1, where π(L + M) ! M1 ! · · · ! Mi+1 ! L ∩ M , contradicting the fact
that [L ∩ M : π(L + M)] = qn−2.

Write Ξs
n(k) for the spherical An(k) building described in [5, p. 4].

Proposition 2.3. For any close vertices t, t′ ∈ Ξn, Ξc
n(t, t′) is isomorphic (as a poset) to

Ξs
n−3(k) (independent of t and t′), where Ξs

0(k) = ∅.

Proof. Let L ∈ t, M ∈ t′ be as in the paragraph preceding Proposition 2.2, and let Ξs
n−3(k)

be the spherical An−3(k) building with simplices the empty set, together with the nested
sequences of non-trivial, proper k-subspaces of (L∩M)/π(L +M). Then by the Correspon-
dence Theorem and the last lemma, there is a bijection between the i-simplices in Ξc

n(t, t′)
and the i-simplices in Ξs

n−3(k) for all i. Since this bijection preserves the partial order (face)
relation, it is a poset isomorphism.

Theorem 2.2. If t, t′ ∈ Ξn are close vertices, then m(t, t′) = rn−2 (independent of t and t′).
In particular, ωn = (rn · q)/rn−2.

Proof. By the last proposition and previous comments, m(t, t′) is the number of chambers
in Ξs

n−3(k). The proof now follows from [6, Proposition 2.4].
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3. Close Vertices in the Affine Building ∆n of Spn(K)

Let ∆n denote the affine building naturally associated to Spn(K). Then ∆n is a subcomplex
of Ξ2n, and there is a natural embedding of ∆n in Ξ2n. As we will see, this embedding allows
us to derive information about ∆n and to prove results for ∆n by adapting the proofs of
the analogous results for Ξ2n. As noted in the introduction, while all the vertices in Ξ2n are
special, only two vertices in each chamber in ∆n are special. Consequently, the Spn case
requires more care than that needed in the last section. We start by looking at properties
of ∆n that we need to consider close vertices in ∆n.

3.1 The Building ∆n

The building ∆n can be modeled as an n-dimensional simplicial complex as follows (see [3,
pp. 336 – 337]). Fix a 2n-dimensional K-vector space V endowed with a non-degenerate,
alternating bilinear form 〈·, ·〉, and recall that a subspace U of V is totally isotropic if 〈u, u′〉 =
0 for all u, u′ ∈ U . A lattice L in V is primitive if 〈L, L〉 ⊆ O and 〈·, ·〉 induces a non-
degenerate, alternating k-bilinear form on L/πL. Then a vertex in ∆n is a homothety
class of lattices in V with a representative L such that there is a primitive lattice L0 with
〈L, L〉 ⊆ πO and πL0 ⊆ L ⊆ L0; equivalently, L/πL0 is a totally isotropic k-subspace
of L0/πL0. Two vertices t, t′ ∈ ∆n are incident if there are representatives L ∈ t and
L′ ∈ t′ such that there is a primitive lattice L0 with 〈L, L〉 ⊆ πO, 〈L′, L′〉 ⊆ πO, and
either πL0 ⊆ L ⊆ L′ ⊆ L0 or πL0 ⊆ L′ ⊆ L ⊆ L0. Thus, a chamber in ∆n has n + 1
vertices t0, . . . , tn with representatives Li ∈ ti such that L0 is primitive, 〈Li, Li〉 ⊆ πO for
all 1 ≤ i ≤ n, and πL0 ! L1 ! · · · ! Ln ! L0. From now on, write that a chamber in
∆n corresponds to the chain πL0 ! L1 ! · · · ! Ln ! L0 only when the lattices L0, . . . , Ln

satisfy the conditions in the last sentence.

Recall that a basis {u1, . . . , un, w1, . . . , wn} for V is symplectic if 〈ui, wj〉 = δij (Kronecker
delta) and 〈ui, uj〉 = 0 = 〈wi, wj〉 for all i, j. If a 2-dimensional, totally isotropic subspace
U of V is a hyperbolic plane, then a frame is an unordered n-tuple {λ1

1, λ
2
1}, . . . , {λ1

n, λ2
n} of

pairs of lines (1-dimensional K-subspaces) in V such that

1. λ1
i + λ2

i is a hyperbolic plane for all 1 ≤ i ≤ n,

2. λ1
i + λ2

i is orthogonal to λ1
j + λ2

j for all i %= j, and

3. V = (λ1
1 + λ2

1) + · · · + (λ1
n + λ2

n).

A vertex t ∈ ∆n lies in the apartment specified by the frame {λ1
1, λ

2
1}, . . . , {λ1

n, λ
2
n} if for any

representative L ∈ t, there are lattices M j
i in λj

i for all i, j such that L = M1
1 + M2

1 + · · · +
M1

n + M2
n . The following lemma is easily established.
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Lemma 3.1.

1. Every symplectic basis for V specifies an apartment of ∆n.

2. If Σ is an apartment of ∆n, there is a symplectic basis {u1, . . . , un, w1, . . . , wn} for V
such that every vertex in Σ has the form

[Oπa1u1 + · · ·+ Oπanun + Oπb1w1 + · · · + Oπbnwn]

for some ai, bi ∈ Z.

Remark. A frame specifying an apartment of ∆n also specifies an apartment of Ξ2n (see [3,
p. 323]). In particular, a symplectic basis for V specifies an apartment of Ξ2n.

Since π is fixed, if B = {u1, . . . , un, w1, . . . , wn} is a symplectic basis for V , follow [7, p.
3411] and write (a1, . . . , an; b1, . . . , bn)B for the lattice Oπa1u1 + · · · + Oπanun + Oπb1w1 +
· · · + Oπbnwn and [a1, . . . , an; b1, . . . , bn]B for its homothety class. Then the lattice L =
(a1, . . . , an; b1, . . . , bn)B is primitive if and only if ai + bi = 0 for all i by [7, p. 3411], and [L]
is a special vertex in ∆n if and only if ai + bi = µ is constant for all i by [7, Corollary 3.4].
Note that by [7, p. 3412], a chamber in ∆n has exactly two special vertices.

Lemma 3.2. Let t ∈ ∆n be a vertex with a primitive representative L, and let Σ be an
apartment of ∆n containing t. Then there is a symplectic basis B for V specifying Σ as in
Lemma 3.1 such that L = (0, . . . , 0; 0, . . . , 0)B.

Proof. This follows from Lemma 3.1 and [7, p. 3411].

Let t ∈ ∆n be a vertex. Then the link of t in ∆n, denoted lk∆nt, is a building (see [1,
Proposition IV.1.3]) that is isomorphic (as a poset) to the subposet of ∆n consisting of those
simplices containing t by [1, p. 31]. In particular, if A ∈ ∆n is a codimension-one simplex
containing t and A′ ∈ lk∆nt is the codimension-one simplex corresponding to A, then the
number of chambers in ∆n containing A is the number of chambers in lk∆nt containing A′.
Note that if t is special, then [8, p. 35] implies lk∆nt is isomorphic to the spherical Cn(k)
building ∆s

n(k) described in [5, pp. 5 – 6].

Proposition 3.1. Every special vertex in ∆n is contained in exactly r(∆n) =
∏n

m=1 ((q2m−
1)/(q − 1)) chambers in ∆n.

Proof. Let t ∈ ∆n be a special vertex. By the preceding comments and [5, pp. 5 – 6], it
suffices to count the number of maximal flags of non-trivial, totally isotropic subspaces of
a 2n-dimensional k-vector space endowed with a non-degenerate, alternating bilinear form.
An obvious modification of the proof of [6, Proposition 2.4] finishes the proof.

Remark. The number r(∆n) in the last proposition corresponds to the number rn given in
[6, Proposition 2.4]. Since Sp1(K) = SL2(K), set r(∆1) = q + 1 for completeness.
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Proposition 3.2. If A ∈ ∆n is a codimension-one simplex, then A is contained in exactly
q + 1 chambers in ∆n.

Proof. Let t be a special vertex in A and A′ the codimension-one simplex in lk∆nt corre-
sponding to A. By the comments preceding the last proposition, it suffices to count the
number of chambers in ∆s

n(k) containing A′. A case-by-case analysis finishes the proof.

We now use the fact that ∆n is a subcomplex of Ξ2n to derive information about ∆n.
For a vertex t ∈ Ξ2n with representative L = Ov1 + · · · + Ov2n and g ∈ GL2n(K), define
gt = [O(gv1) + · · ·+ O(gv2n)]. Then GL2n(K) acts transitively on the lattices in V .

Let

Jn =
(

0 In
−In 0

)
and GSpn(K) =

{
g ∈ M2n(K) : gtJng = ν(g)Jn for some ν(g) ∈ K×}

,

so that Spn(K) consists of the matrices g ∈ GSpn(K) with ν(g) = 1. Alternatively, abuse
notation and think of GSpn(K) as

{g ∈ GLK(V ) : ∀ v1, v2 ∈ V, ∃ ν(g) ∈ K× such that 〈gv1, gv2〉 = ν(g)〈v1, v2〉}.

If g ∈ GL2n(K) and B = {v1, . . . , v2n} is a basis for V , write gB for {gv1, . . . , gv2n}.

Lemma 3.3. The group Spn(K) acts on the set of primitive lattices in V .

Proof. Let L be a primitive lattice in V , and let Σ be an apartment of ∆n containing [L] and B
a symplectic basis for V specifying Σ as in Lemma 3.1. Then L = (a1, . . . , an;−a1, . . . ,−an)B
by [7, p. 3411]; hence, for g ∈ Spn(K), gB a symplectic basis for V implies that gL is
primitive.

For the rest of this section, let B0 = {e1, . . . , en, f1, . . . , fn} be the standard symplectic
basis for V (fi = en+i for all i), L0 = (0, . . . , 0; 0, . . . , 0)B0 , and t0 = [L0]. Following [5, p.
116], assign types to the vertices in Ξ2n as follows: assign type 0 to t0 and type ord(det g)
mod 2n to any other vertex t = [L] ∈ Ξ2n, where g ∈ GL2n(K) such that L = gL0. This
induces a labelling on the vertices in ∆n. For the rest of this section, let C0 be the chamber
in ∆n whose vertices are the homothety classes of the lattices

L0 = (0, . . . , 0; 0, . . . , 0)B0, L1 = (0, 1, . . . , 1; 1, . . . , 1)B0, . . . , Ln = (0, . . . , 0; 1, . . . , 1)B0 . (3)

Note that [Li] has type 2n − i for all 1 ≤ i ≤ n. Recall that since ∆n is the affine building
naturally associated to Spn(K), Spn(K) acts on the vertices in ∆n in a type-preserving
manner and also acts transitively on the chambers in ∆n.

Proposition 3.3. If t ∈ ∆n is a vertex, then t has type i for some i ≡ n, . . . , 2n mod 2n.

Proof. By the preceding comments, it suffices to show that for all 0 ≤ j ≤ n, [Lj ] (as in (3))
has type i for some i ≡ n, . . . , 2n mod 2n, which we already observed.

We now use types to characterize the vertices in ∆n with a primitive representative, as
well as those that are special.
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Proposition 3.4. A vertex in ∆n has a primitive representative if and only if it has type 0.

Proof. Let t ∈ ∆n be a type 0 vertex and C ∈ ∆n a chamber containing t. Choose
g ∈ Spn(K) such that gC0 = C. Then gL0 ∈ t. Since L0 is primitive, Lemma 3.3 implies
that gL0 is primitive. Conversely, let t ∈ ∆n be a vertex with a primitive representative
L, and let C ∈ ∆n be a chamber containing t. Let g ∈ Spn(K) such that gC = C0. Then
gL = πmLj for some 0 ≤ j ≤ n and some m ∈ Z. If Lj = (a1, . . . , an; b1, . . . , bn)B0 as in (3),
then gL = (a1 + m, . . . , an + m; b1 + m, . . . , bn + m)B0 . But gL primitive (by Lemma 3.3)
implies that ai + bi = −2m for all i. By (3), m = 0 and gt = [L0]; hence, t has type 0.

Proposition 3.5. A vertex in ∆n is special if and only if it has type 0 or n.

Proof. Let t ∈ ∆n be a type 0 (resp., type n) vertex, and let C ∈ ∆n be a chamber containing
t. If g ∈ Spn(K) such that gC0 = C, then t = g[L0] (resp., t = g[Ln]), and t is special by
[7, Corollary 3.4]. Conversely, let t ∈ ∆n be a special vertex. Let C ∈ ∆n be a chamber
containing t, Σ an apartment of ∆n containing C, and B a symplectic basis for V specifying
Σ as in Lemma 3.1. By [7, Corollary 3.4], t = [a1, . . . , an; µ−a1, . . . , µ−an]B for some µ ∈ Z.
If g ∈ Spn(K) such that gC = C0, then gt = [Li] for some 0 ≤ i ≤ n; hence, gt special, [7,
Corollary 3.4], and (3) imply i = 0 or i = n, and t has type 0 or n.

We now consider the action of GSpn(K) on the vertices in Ξ2n.

Proposition 3.6. If [L] is a type i vertex in Ξ2n, then for any g ∈ GL2n(K), the vertex
g[L] ∈ Ξ2n has type i + ord(det g) mod 2n.

Proof. Since [L] has type i, we can write L = giL0, where gi ∈ GL2n(K) with ord(det gi) ≡ i
mod 2n. Then g[L] has type ord(det(ggi)) mod 2n ≡ i + ord(det g) mod 2n.

Corollary 3.1. If g ∈ GSpn(K) with ord(ν(g)) ≡ 1 mod 2, then g maps a non-special
vertex in ∆n to a vertex in Ξ2n that is not in ∆n.

Proof. First note that g ∈ GSpn(K) with ord(ν(g)) ≡ 1 mod 2 implies ord(det g) ≡ n
mod 2n. If t is a non-special vertex in ∆n, then t has type i for some n + 1 ≤ i ≤ 2n − 1
by Propositions 3.3 and 3.5. Thus, the last proposition implies gt has type i + n mod 2n ∈
{1, . . . , n − 1}. Proposition 3.3 finishes the proof.

3.2 The Building ∆n in the Building Ξ2n

Let C ∈ ∆n be a chamber corresponding to the chain πL0 ! L1 ! · · · ! Ln ! L0. Let Σ
be an apartment of ∆n containing C, B a symplectic basis for V specifying Σ as in Lemma
3.1, and Σ̃ the apartment of Ξ2n specified by B. Let D ∈ Σ̃ be any chamber containing C.
Then D corresponds to the chain πL0 ! L1 ! · · · ! Ln ! Ln+1 ! · · · ! L2n−1 ! L0 for
some lattices Ln+1, . . . , L2n−1 in V . For 0 ≤ j ≤ 2n − 1, write

Lj = (a(j)
1 , . . . , a(j)

n ; b(j)
1 , . . . , b(j)

n )B.
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Lemma 3.4. The two special vertices in C are [L0] and [Ln].

Proof. The fact that [L0] is special follows from [7, Corollary 3.4] and [7, p. 3411]. To see
that [Ln] is special, note that if Lj represents a special vertex in C for 1 ≤ j ≤ n, then

a(j)
i + b(j)

i = µ for all i (by [7, Corollary 3.4]), where µ ∈ {1, 2} (since 〈Lj , Lj〉 ⊆ πO). But

µ = 2 implies Lj = πL0, which is impossible. Thus, a(j)
i + b(j)

i = 1 for all i and Lj/πL0
∼= kn;

hence, j = n.

For B = {u1, . . . , un, w1, . . . , wn} a symplectic basis for V and g ∈ GSpn(K), let

Bg := {ν(g)−1gu1, . . . , ν(g)−1gun, gw1, . . . , gwn}.

Note that Bg is a symplectic basis for V ; hence, L = (a1, . . . , an; b1, . . . , bn)B and ord(ν(g)) =
m imply gL = (a1 + m, . . . , an + m; b1, . . . , bn)Bg .

Proposition 3.7. The group GSpn(K) acts transitively on the special vertices in ∆n.

Proof. Note that if GSpn(K) acts on the special vertices in ∆n, then [7, Proposition 3.3]
implies that the action is transitive. We thus show that GSpn(K) acts on the special vertices
in ∆n. Let t ∈ ∆n be a special vertex and L ∈ t a representative such that there is a primitive
lattice L0 with 〈L, L〉 ⊆ πO and πL0 ⊆ L ⊆ L0. Let Σ be an apartment of ∆n containing t
and [L0], and let B be a symplectic basis for V specifying Σ as in Lemma 3.1. Then [7, p.
3411], the last lemma, and [7, Corollary 3.4] imply

L0 = (c1, . . . , cn;−c1, . . . ,−cn)B and L = (a1, . . . , an; µ − a1, . . . , µ − an)B,

where µ ∈ {1, 2}. Let g ∈ GSpn(K) with ord(ν(g)) = m. Since gt = [a1 + m, . . . , an +
m; µ−a1, . . . , µ−an]Bg , [7, Corollary 3.4] implies that it suffices to show gt is a vertex in ∆n.
First suppose m ≡ 0 mod 2, say m = 2r. Then π−rgL0 is primitive, 〈π−rgL, π−rgL〉 ⊆ πO,
and π−rg(πL0) ⊆ π−rgL ⊆ π−rgL0; i.e., gt is a vertex in ∆n. Now suppose m = 2r + 1.
If µ = 1, then π−r−1gL is primitive and gt is a vertex in ∆n. Otherwise, µ = 2, and
〈π−r−1gL, π−r−1gL〉 ⊆ πO. Let πM0 = (a1 +r, . . . , an +r; µ−a1−r, . . . , µ−an−r)Bg . Then
M0 is primitive and πM0 ⊆ π−r−1gL ⊆ M0; i.e., gt is a vertex in ∆n. Thus, GSpn(K) acts
on the special vertices in ∆n.

Note that by Propositions 3.4 and 3.5, [Ln] has type n. Then by Proposition 3.3, the type
of [Lj ] is in {n + 1, . . . , 2n− 1} for all 1 ≤ j ≤ n− 1 and the type of [Li] is in {1, . . . , n− 1}
for all n + 1 ≤ i ≤ 2n − 1.

Lemma 3.5. Let g ∈ GSpn(K) with ord(ν(g)) ≡ 1 mod 2. If L0, Ln, . . . , L2n−1 are lattices
in V as above, then the vertices g[Ln], . . . , g[L2n−1], g[L0] in Ξ2n are the vertices in a chamber
in ∆n.

Proof. Write ord(ν(g)) = 2r + 1. Then Lemma 3.4 and [7, p. 3411] imply that L′
n =

π−(r+1)gLn is primitive (see the proof of Proposition 3.7). Furthermore, if L′
j = π−rgLj for

j = 0, n + 1, . . . , 2n − 1, then πL′
n ! L′

n+1 ! · · · ! L′
2n−1 ! L′

0 ! L′
n and 〈L′

j, L
′
j〉 ⊆ πO for

j = 0, n + 1, . . . , 2n − 1; i.e., [L′
n], . . . , [L′

2n−1], [L
′
0] are the vertices in a chamber in ∆n.
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Lemma 3.6. Let Σ be an apartment of ∆n and Σ̃ the apartment of Ξ2n such that B a
symplectic basis for V specifying Σ implies B specifies Σ̃. If C, C ′ is a gallery in Σ, then
there is a gallery D, D′ in Σ̃ such that D (resp., D′) contains C (resp., C ′) and C %= C ′

implies D %= D′.

Remark. More generally, if C0, . . . , Cm is a gallery in ∆n, then there is a gallery D0, . . . , D"

in Ξ2n and integers 0 ≤ i0 < · · · < im ≤ % such that Dj contains C0 for all 0 ≤ j ≤ i0 and
Dj contains Cr for all ir−1 < j ≤ ir and all 1 ≤ r ≤ m.

Proof of Lemma 3.6. If C = C ′, set D = D′, where D ∈ Σ̃ is a chamber containing C. Now
suppose C %= C ′, with C corresponding to the chain

πL0 ! L1 ! · · · ! Ln ! L0. (4)

Let B be a symplectic basis for V specifying Σ as in Lemma 3.1, and let 0 ≤ j ≤ n such that
C ∩ C ′ corresponds to (4) with Lj deleted if 1 ≤ j ≤ n or with both πL0 and L0 deleted if
j = 0. Note that if t′ is the vertex in C ′ not in C, then t′ has a representative L′ such that
C ′ corresponds to (4) with Lj replaced by L′.

If 1 ≤ j ≤ n − 1, then the result in [7, p. 3411], Lemma 3.4, and (4) imply L0 =
(a1, . . . , an;−a1, . . . ,−an)B and Ln = (b1, . . . , bn; 1 − b1, . . . , 1 − bn)B, where ai + 1 ≥ bi ≥ ai

for all i. For 1 ≤ i ≤ n, let an+i = −ai and bn+i = 1 − bi. Let {i1, . . . , in} be the n values of
i such that bi = ai + 1, and for 1 ≤ r ≤ n − 1, set Ln+r = (c1, . . . , cn; cn+1, . . . , c2n)B, where
c" = b"−1 = a" if % ∈ {i1, . . . , ir} and c" = b" otherwise. Then Ln ! Ln+1 ! · · · ! L2n−1 ! L0,
and letting D ∈ Σ̃ (resp., D′ ∈ Σ̃) be the simplex with vertices the vertices in C (resp., the
vertices in C ′), together with [Ln+1], . . . , [L2n−1] finishes the proof in this case

If j = n, write L0 = (a1, . . . , an;−a1, . . . ,−an)B, Ln = (b1, . . . , bn; 1 − b1, . . . , 1 − bn)B,
and L′ = (b′1, . . . , b

′
n; 1 − b′1, . . . , 1 − b′n)B. Note that ai + 1 ≥ bi, b′i ≥ ai for all i and bi %= b′i

for at least one value of i. Let Ln+1 = (c1, . . . , cn; cn+1, . . . , c2n)B, where ci = min{bi, b′i}
and cn+i = min{1 − bi, 1 − b′i} for 1 ≤ i ≤ n. Then Ln+1 = Ln + L′, so Ln, L′ ! Ln+1

and [Ln+1 : Ln] = q = [Ln+1 : L′]. An obvious modification of the second half of the last
paragraph finishes the proof in this case.

Finally, if j = 0, write L0 = (a1, . . . , an;−a1, . . . ,−an)B, L′ = (a′
1, . . . , a

′
n;−a′

1, . . . ,−a′
n)B,

and Ln = (b1, . . . , bn; 1 − b1, . . . , 1 − bn)B. Note that ai + 1, a′
i + 1 ≥ bi ≥ ai, a′

i for all
i and ai %= a′

i for at least one value of i. Let L2n−1 = (c1, . . . , cn; cn+1, . . . , c2n)B, where
ci = max{ai, a′

i} and cn+i = max{−ai,−a′
i} for 1 ≤ i ≤ n. Then L2n−1 = L0 ∩ L′, so

L2n−1 ! L0, L′ and [L0 : L2n−1] = q = [L′ : L2n−1]. An obvious modification of the second
half of the first paragraph finishes the proof in this case.

It will turn out to be convenient to first prove results about the type 0 vertices in ∆n and
to then use the transitive action of GSpn(K) on the special vertices in ∆n (see Proposition
3.7) to deduce the same results about the type n vertices in ∆n. For g ∈ GL2n(K) and a
chamber C ∈ Ξ2n, abuse notation and write gC for the image of the vertices in C under the
action of g.
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Proposition 3.8. The group GL2n(K) (resp., GSpn(K)) maps a gallery in Ξ2n of length m
to a gallery in Ξ2n of length m. In particular, if C %= C ′ are adjacent chambers in Ξ2n and
g ∈ GL2n(K) (resp., g ∈ GSpn(K)), then gC %= gC ′ are adjacent chambers in Ξ2n.

Proof. Let C0, . . . , Cm be a gallery in Ξ2n, and let g ∈ GL2n(K). If m = 0 and C0 corresponds
to the chain πL0 ! L1 ! · · · ! L2n−1 ! L0, then g(πL0) ! gL1 ! · · · ! gL2n−1 ! gL0;
i.e., gC0 is a chamber in Ξ2n. If m = 1 and C0 = C1, then gC0, gC1 is a gallery in Ξ2n,
so suppose C0 %= C1. Let t0, . . . , t2n−1 (resp., x0, . . . , x2n−1) be the vertices in C0 (resp., in
C1), and let 0 ≤ j ≤ 2n − 1 such that tj %= xj . For 0 ≤ i ≤ 2n − 1, let Li ∈ ti (resp., let
Mi ∈ xi) such that πL0 ! L1 ! · · · ! L2n−1 ! L0 (resp., πM0 ! M1 ! · · · ! M2n−1 ! M0)
corresponds to C0 (resp., to C1). Then g(πL0) ! gL1 ! · · · ! gL2n−1 ! gL0 (resp.,
g(πM0) ! gM1 ! · · · ! gM2n−1 ! gM0). Since ti = xi implies gti = gxi, gC0, gC1 is a
gallery in Ξ2n. The fact that gC0 %= gC1 follows from the fact that gxj %= gtj. The proof for
m ≥ 2 follows from the fact that gCi, gCi+1 is a gallery in Ξ2n for all 0 ≤ i ≤ m − 1.

3.3 Counting Close Vertices in ∆n

Let Γ = Spn(O), and note that the analogues of the results in section 4.1 of [7] hold if
GSpn(K) acts on the lattices in V on the left (rather than on the right). The following is
an analogue of Theorem 3.3 of [6] for the special vertices in ∆n.

Theorem 3.1. If t ∈ ∆n is a special vertex, then the number of vertices in ∆n close to t is
the number of left cosets of Γ in

Γdiag(1, π, . . . , π︸ ︷︷ ︸
n−1

, π2, π, . . . , π)Γ.

Proof. First note that by Proposition 3.5, a special vertex in ∆n has type either 0 or n. Let
t ∈ ∆n be a special vertex and t′ ∈ ∆n a vertex close to t. Then there are adjacent chambers
C, C ′ ∈ ∆n such that t ∈ C, t′ ∈ C ′, but t, t′ %∈ C ∩ C ′. Let Σ be an apartment of ∆n

containing C and C ′. If t has type 0, then by Lemma 3.2, we may assume that relative to
some symplectic basis B for V specifying Σ, t = [0, . . . , 0; 0, . . . , 0]B ∈ C0, where C0 ∈ Σ is
the chamber with vertices [0, . . . , 0; 0, . . . , 0]B, [0, 1, . . . , 1; 1, . . . , 1]B, . . . , [0, . . . , 0; 1, . . . , 1]B.
A straightforward modification of the fourth and fifth paragraphs of the proof of [6, Theorem
3.3] using the reflections defined in [7, p. 3411] finishes the proof in this case.

Now suppose t has type n, and let B be a symplectic basis for V specifying Σ as in
Lemma 3.1. Let Σ̃ be the apartment of Ξ2n specified by B, and let D, D′ ∈ Σ̃ be adjacent
chambers with C in D, C ′ in D′, and D %= D′ as in Lemma 3.6. Let g ∈ GSpn(K) with
ord(ν(g)) ≡ 1 mod 2. Then by Proposition 3.6, gt has type 0. By Lemma 3.5, gD (resp.,
gD′) contains a chamber C1 ∈ ∆n (resp., a chamber C ′

1 ∈ ∆n) with gt ∈ C1 (resp., with
gt′ ∈ C ′

1). Furthermore, gD %= gD′ are adjacent chambers in Ξ2n and gt, gt′ %∈ gD ∩ gD′ by
Proposition 3.8; i.e., gt and gt′ are close vertices in ∆n. Finally, if St and Sgt are the sets
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•
t

•
t′

• • •

Figure 3: Two close special vertices, both of type 0, in ∆2.

of vertices in ∆n close to t and gt, respectively, then Card(St) = Card(Sgt), and the last
paragraph finishes the proof.

Remark. The analogues of the results in [7, Section 4.1] also hold if Spn(O) and GSpS
n(K)

are replaced by GSpn(O) = GL2n(O) ∩ GSpn(K) and GSpn(K), respectively, and with
GSpn(K) acting on the left rather than on the right. In addition, the analogue of the above
theorem holds with Γ = GSpn(O); hence, so does Corollary 3.2.

We now count the number of vertices in ∆n close to a given special vertex t ∈ ∆n. By
Proposition 3.5 and Theorem 3.1, it suffices to assume t has type 0. By Proposition 3.4, t
has a primitive representative L, so a chamber C ∈ ∆n containing t corresponds to a chain
of the form

πL
q
! L1

q
! · · ·

q
! Ln

qn

! L. (5)

The codimension-one face in C not containing t thus corresponds to the chain

L1

q
! · · ·

q
! Ln,

and a vertex in ∆n is close to t if it has a primitive representative M %= L such that

πM
q
! L1

q
! · · ·

q
! Ln

qn

! M. (6)

Given the lattice L1, the possible L and M satisfy L %= M ! π−1L1 with [π−1L1 : L] =
q = [π−1L1 : M ] and both L and M primitive. On the other hand, if t, t′ ∈ ∆n are close
type 0 vertices, then there must be primitive representatives L ∈ t and M ∈ t′ and lattices
L1, . . . , Ln as in (5) such that L %= M ! π−1L1. The same argument as in Section 2 shows
that π−1L1 = L + M , but we can vary L2, . . . , Ln as long as 〈Li, Li〉 ⊆ πO for all 2 ≤ i ≤ n
and the chains πL ! L1 ! L2 ! · · · ! Ln ! L and πM ! L1 ! L2 ! · · · ! Ln ! M
correspond to chambers in ∆n. In other words (as in the case of Ξn), if t, t′ ∈ ∆n are close
type 0 vertices, there may be more than one pair of adjacent chambers C, C ′ ∈ ∆n such that
t ∈ C, t′ ∈ C ′, and t, t′ %∈ C ∩ C ′ (see Figure 3). We return to this later.

Before we count the number of vertices in ∆n close to t, we make a few observations
similar to those preceding Proposition 2.1. Fix a primitive representative L ∈ t. Then
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L/πL ∼= k2n is endowed with a non-degenerate, alternating k-bilinear form. Moreover, the
Correspondence Theorem, the fact that any O-submodule of L containing πL is a lattice
in V , and the fact that every 1-dimensional k-subspace of L/πL is totally isotropic imply
that the number of L1 is the number of 1-dimensional k-subspaces of L/πL. Given L1, let
C ∈ ∆n be a chamber containing [L1] and t, and let A be the codimension-one face in C not
containing t. Then the number of primitive lattices M %= L in V such that M ! π−1L1 and
[π−1L1 : M ] = q is one less than the number of chambers in ∆n containing A.

Proposition 3.9. If t ∈ ∆n is a special vertex, then the number ω(∆n) of vertices in ∆n

close to t is
q2n − 1

q − 1
· q

(independent of t).

Proof. This follows from the preceding comments, the fact that the number of 1-dimensional
subspaces of Fm

q is exactly (qm − 1)/(q − 1), and Proposition 3.2.

Corollary 3.2. The number of left cosets of Γ = Spn(O) in

Γdiag(1, π, . . . , π︸ ︷︷ ︸
n−1

, π2, π, . . . , π)Γ

is ((q2n − 1) · q)/(q − 1).

Proof. This follows from Theorem 3.1 and the last proposition.

Proposition 3.1 and the last proposition prove the following analogue of Theorem 2.1.

Theorem 3.2. Let r(∆n) be the number of chambers in ∆n containing a given special
vertex (as in Proposition 3.1) and ω(∆n) the number of vertices in ∆n close to a given
special vertex in ∆n (as in Proposition 3.9). Then for all n ≥ 2, q · r(∆n) = r(∆n−1) ω(∆n),
where r(∆1) = q + 1.

When the given vertex in ∆n has type 0, we can also give a combinatorial proof of
Theorem 3.2. As in Section 2, if t ∈ ∆n is a fixed type 0 vertex, then we can try to count
the number of vertices in ∆n close to t by counting the number of galleries (in ∆n) of
length 1 starting at a chamber containing t and ending at a chamber not containing t. An
argument analogous to that in Section 2 shows that if t′ ∈ ∆n is a vertex close to t, then
ω(∆n) = (r(∆n) · q)/m(∆n, t, t′), where m(∆n, t, t′) is the number of galleries of length 1 in
∆n whose initial chamber contains t and whose ending chamber contains t′.

To determine m(∆n, t, t′), fix the following notation for the rest of this section. For close
special vertices t, t′ ∈ ∆n with t of type 0, let L ∈ t, M ∈ t′ be primitive representatives (by
Proposition 3.4) such that there are lattices L1, . . . , Ln as in (5) and (6) with 〈Li, Li〉 ⊆ πO
for all 1 ≤ i ≤ n. Recall that L1 = π(L + M), but we can vary L2, . . . , Ln as long as
〈Li, Li〉 ⊆ πO for all 2 ≤ i ≤ n and the chains

πL ! L1 ! L2 ! · · · ! Ln ! L and πM ! L1 ! L2 ! · · · ! Ln ! M
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correspond to chambers in ∆n. As in Section 2, each gallery in ∆n counted by m(∆n, t, t′)
is uniquely determined by L2, . . . , Ln. Define two vertices in ∆n to be adjacent if they are
distinct and incident.

Lemma 3.7. Let t, t′ ∈ ∆n be adjacent vertices such that t has a primitive representative
L. Then t′ has a unique representative L′ such that 〈L′, L′〉 ⊆ πO and πL ! L′ ! L.

Proof. Since t and t′ are adjacent vertices in Ξ2n, by Proposition 2.2, t′ has a unique
representative L′ such that πL ! L′ ! L. It thus suffices to show that 〈L′, L′〉 ⊆ πO. But
t and t′ incident vertices in ∆n with t %= t′ implies they have representatives M ∈ t and
M ′ ∈ t′ such that there is a primitive lattice L0 with 〈M, M〉 ⊆ πO, 〈M ′, M ′〉 ⊆ πO, and
either πL0 ⊆ M ! M ′ ⊆ L0 or πL0 ⊆ M ′ ! M ⊆ L0. Suppose πL0 ⊆ M ! M ′ ⊆ L0

(resp., πL0 ⊆ M ′ ! M ⊆ L0). Then M and πL (resp., M and L) homothetic implies
πL = πrM (resp., L = πrM) for some r ∈ Z; hence, πL ! πrM ′ ! L. Let L′ = πrM ′.
Since L is primitive, 〈πr−1M, πr−1M〉 ⊆ O (resp., 〈πrM, πrM〉 ⊆ O). On the other hand,
〈πr−1M, πr−1M〉 ⊆ π2(r−1)+1O (resp., 〈πrM, πrM〉 ⊆ π2r+1O), so r ∈ Z+ (resp., r ∈ Z≥0)
and 〈L′, L′〉 ⊆ πO.

Consider the set of vertices in ∆n that are adjacent to t, t′, and [L + M ], and define two
such vertices to be incident if they are incident as vertices in ∆n. Let ∆c

n(t, t′) be the set
consisting of

• the empty set,

• all vertices in ∆n adjacent to t, t′, and [L + M ], and

• all finite sets A of vertices in ∆n adjacent to t, t′, and [L + M ] such that any two
vertices in A are adjacent.

Then ∆c
n(t, t′) is a simplicial complex. In particular, ∆c

n(t, t′) is a subcomplex of ∆n.

Lemma 3.8. If ∅ %= A ∈ ∆c
n(t, t′) is an i-simplex, then A corresponds to a chain of lattices

M1 ! · · · ! Mi+1, where 〈Mj , Mj〉 ⊆ πO for all 1 ≤ j ≤ i + 1 and π(L + M) ! M1 ! · · · !
Mi+1 ! L ∩ M . In particular, A has at most n − 1 vertices.

Proof. As in the proof of Lemma 2.1, we proceed by induction on i. If i = 0, then L
primitive, A adjacent to t, and Lemma 3.7 imply A has a unique representative M1 such
that 〈M1, M1〉 ⊆ πO and πL ! M1 ! L. Since A and [L + M ] are adjacent vertices in
Ξ2n, either M1 ! π(L + M) or M1 " π(L + M) by [3, p. 322]. But M1 ! π(L + M)
means πL ! M1 ! π(L + M), which is impossible since [π(L + M) : πL] = q; hence,
M1 " π(L + M). Then A and t′ adjacent vertices in Ξ2n and [3, p. 322] imply that either
M1 ! M or M1 " M . Since M1 " M means M ! M1 ! L, which contradicts the fact that
[M : π(L + M)] = [L : π(L + M)], M1 ! M and M1 ⊆ L ∩ M . Moreover, 〈M1, M1〉 ⊆ πO
implies M1/πL is a totally isotropic k-subspace of L/πL and [M1 : πL] ≤ qn. The fact that
[L ∩ M : πL] = q2n−1 finishes the proof in this case.
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Recall that 〈·, ·〉 induces a non-degenerate, alternating k-bilinear form on L/πL. Then
with respect to this induced bilinear form, (L ∩ M)/πL is the orthogonal complement of
π(L + M)/πL in L/πL. In addition, 〈·, ·〉 induces a non-degenerate, alternating k-bilinear
form on (L ∩ M)/π(L + M) ∼= k2(n−1), and there is a bijection between nested sequences
S1 ! · · · ! Si+1 of totally isotropic k-subspaces of (L ∩ M)/π(L + M) and chains of O-
submodules M1 ! · · · ! Mi+1 of L ∩ M containing π(L + M) with 〈Mj , Mj〉 ⊆ πO for all
1 ≤ j ≤ i + 1. An obvious modification of the second paragraph of the proof of Lemma 2.1
finishes the proof.

Recall that ∆s
n(k) denotes the spherical Cn(k) building described in [5, pp. 5 – 6].

Proposition 3.10. For any close special vertices t, t′ ∈ ∆n with t of type 0, ∆c
n(t, t′) is

isomorphic (as a poset) to ∆s
n−1(k) (independent of t and t′ with t of type 0).

Proof. Let L ∈ t, M ∈ t′ be primitive representatives as in the paragraph preceding Lemma
3.7, and let ∆s

n−1(k) be the spherical Cn−1(k) building with simplices the empty set, together
with the nested sequences of non-trivial, totally isotropic k-subspaces of (L∩M)/π(L+M).
Then the last lemma implies that there is a bijection between the i-simplices in ∆c

n(t, t′) and
the i-simplices in ∆s

n−1(k) for all i. Since this bijection preserves the partial order (face)
relation, it is a poset isomorphism.

Proposition 3.11. If t, t′ ∈ ∆n are close special vertices with t of type 0, then m(∆n, t, t′) =
r(∆n−1) (independent of t and t′). In particular, ω(∆n) = (r(∆n) · q)/r(∆n−1).

Proof. The proof is an obvious modification of the proof of Theorem 2.2.
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