DISTANCE IN THE AFFINE BUILDINGS OF SL $_{n}$ AND Sp_{n}

Alison Setyadi
Department of Mathematics, Dartmouth College, Hanover, NH 03755, USA
Alison.C.Setyadi.Adv04@Alum.Dartmouth.ORG

Received: 5/29/08, Accepted: 10/15/08, Published: 11/24/08

Abstract

For a local field K and $n \geq 2$, let Ξ_{n} and Δ_{n} denote the affine buildings naturally associated to the special linear and symplectic groups $\mathrm{SL}_{n}(K)$ and $\mathrm{Sp}_{n}(K)$, respectively. We relate the number of vertices in $\Xi_{n}(n \geq 3)$ close (i.e., gallery distance 1) to a given vertex in Ξ_{n} to the number of chambers in Ξ_{n} containing the given vertex, proving a conjecture of Schwartz and Shemanske. We then consider the special vertices in $\Delta_{n}(n \geq 2)$ close to a given special vertex in Δ_{n} (all the vertices in Ξ_{n} are special) and establish analogues of our results for Δ_{n}.

1. Introduction

A building is a finite-dimensional simplicial complex in which any two of its chambers (maximal simplices) can be connected by a gallery. In other words, if Δ is a building, then for any chambers $C, D \in \Delta$, there is a sequence $C=C_{0}, C_{1}, \ldots, C_{m}=D$ of chambers in Δ such that C_{i} and C_{i+1} are adjacent (share a codimension-one face) for all $0 \leq i \leq m-1$; in this case, the number m is the length of the gallery C_{0}, \ldots, C_{m}. The combinatorial distance between C and D is the minimal length of a gallery in Δ connecting C and D (see [1, p. 14]). Following [1, p. 15], define the distance between any non-empty simplices $A, B \in \Delta$ to be the minimal length of a gallery in Δ starting at a chamber containing A and ending at a chamber containing B (cf. [6, p. 125]). Then the vertices $t, t^{\prime} \in \Delta$ are distance one apart or close if and only if there are adjacent chambers $C, C^{\prime} \in \Delta$ such that $t \in C, t^{\prime} \in C^{\prime}$, but $t, t^{\prime} \notin C \cap C^{\prime}$ (the simplex shared by C and C^{\prime}); i.e., if and only if t and t^{\prime} are in adjacent chambers in Δ but not a common one (cf. [6, p. 127]). Figures 1(a) and 1(b) show close vertices in the affine buildings naturally associated to $\mathrm{SL}_{3}(K)$ and $\mathrm{Sp}_{2}(K)$, respectively, for any local field K. Note that if Δ is a building and $t, t^{\prime} \in \Delta$ are close vertices, then as vertices in the underlying graph of Δ, t and t^{\prime} are not graph distance 1 apart but are always graph distance 2 apart.

Let K be a local field with valuation ring \mathcal{O}, uniformizer π, and residue field $k \cong \mathbb{F}_{q}$, and let Ξ_{n} denote the affine building naturally associated to $\mathrm{SL}_{n}(K)$. Schwartz and Shemanske

Figure 1: Examples of close vertices.
[6, Theorem 3.3] show that for all $n \geq 3$, the number ω_{n} of vertices in Ξ_{n} close to a given vertex in Ξ_{n} is the number of right cosets of $\mathrm{GL}_{n}(\mathcal{O})$ in $\mathrm{GL}_{n}(\mathcal{O}) \operatorname{diag}\left(1, \pi, \ldots, \pi, \pi^{2}\right) \mathrm{GL}_{n}(\mathcal{O})$; i.e., the Hecke operator $\mathrm{GL}_{n}(\mathcal{O}) \operatorname{diag}\left(1, \pi, \ldots, \pi, \pi^{2}\right) \mathrm{GL}_{n}(\mathcal{O})$ acts as a generalized adjacency operator on Ξ_{n}. They also conjecture that for all $n \geq 3, q \cdot r_{n}=r_{n-2} \omega_{n}$, where r_{n} is the number of chambers in Ξ_{n} containing a given vertex, with $r_{1}:=1$ (see the remark following [6, Proposition 3.4]).

In Section 2, we prove Schwartz and Shemanske's conjecture in two ways. Our first approach is via module theory. More precisely, we use the description of the chambers in Ξ_{n} in terms of lattices in an n-dimensional K-vector space (see, for example, [5, p. 115]) to obtain an explicit formula for ω_{n} (Proposition 2.1); together with Schwartz and Shemanske's formula for r_{n} [6, Proposition 2.4], this proves Theorem 2.1. Our second approach is through combinatorics (Theorem 2.2). Specifically, we show that if $t, t^{\prime} \in \Xi_{n}$ are close vertices, then there is a one-to-one correspondence between the galleries of length 1 in Ξ_{n} whose initial chamber contains t and whose ending chamber contains t^{\prime} and the chambers in the spherical $A_{n-3}(k)$ building. This gives an explanation for the relationship between ω_{n} and r_{n} in terms of the structure of Ξ_{n}. In Section 3, we consider the special vertices in the affine building Δ_{n} naturally associated to $\operatorname{Sp}_{n}(K)(n \geq 2)$ close to a given special vertex in Δ_{n} (all the vertices in Ξ_{n} are special). Using the fact that Δ_{n} is a subcomplex of $\Xi_{2 n}$, we adapt the proofs of the results for close vertices in $\Xi_{2 n}$ to prove analogues for Δ_{n}. In particular, we establish analogues of [6, Theorem 3.3] and Theorem 2.1 (Theorems 3.1 and 3.2, respectively) and a partial analogue of Theorem 2.2 (Proposition 3.11). Note that while every vertex in $\Xi_{2 n}$ is special, only two vertices in each chamber in Δ_{n} are special; hence, our analysis for Δ_{n} requires more care than that needed for $\Xi_{2 n}$.

After proving Theorems 2.1 and 3.2, we learned that the formulas in Propositions 2.1 and 3.9 are both special cases of a result of Parkinson [4, Theorem 5.15] and that the formula in Proposition 2.1 also follows from a result of Cartwright [2, Lemma 2.2]. We view the buildings Ξ_{n} and Δ_{n} as combinatorial objects naturally associated to $\mathrm{SL}_{n}(K)$ and $\mathrm{Sp}_{n}(K)$, respectively, and make use of the lattice descriptions of these buildings (see [3] and [5]). As a result, our methods require little more than the definition of a building-namely, some
module theory. In contrast to our approach, Cartwright views Ξ_{n} in terms of hyperplanes, affine transformations, and convex hulls, and Parkinson considers buildings via root systems and Poincaré polynomials of Weyl groups. The numbers ω_{n} and $\omega\left(\Delta_{n}\right)$ that we use are special cases of Parkinson's N_{λ}, which he uses to define vertex set averaging operators on arbitrary locally finite, regular affine buildings and whose formula he uses to prove results about those operators.

I thank Paul Garrett for the idea behind the proof of Proposition 2.1, and hence that of Proposition 3.9. Finally, the results contained here form part of my doctoral thesis, which I wrote under the guidance of Thomas R. Shemanske.

2. Close Vertices in the Affine Building Ξ_{n} of $\mathrm{SL}_{n}(K)$

From now on, K is a local field with discrete valuation "ord," valuation ring \mathcal{O}, uniformizer π, and residue field $k \cong \mathbb{F}_{q}$. For any finite-dimensional K-vector space V, define a lattice in V to be a free \mathcal{O}-submodule of V of rank $\operatorname{dim}_{K} V$, with two lattices L and L^{\prime} in V homothetic if $L^{\prime}=\alpha L$ for some $\alpha \in K^{\times}$; write $[L]$ for the homothety class of the lattice L.

The affine building Ξ_{n} naturally associated to $\mathrm{SL}_{n}(K)$ can be modeled as an $(n-1)$ dimensional simplicial complex as follows (see [5, p. 115]). Let V be an n-dimensional K-vector space. Then a vertex in Ξ_{n} is a homothety class of lattices in V, and two vertices $t, t^{\prime} \in \Xi_{n}$ are incident if there are representatives $L \in t$ and $L^{\prime} \in t^{\prime}$ such that $\pi L \subseteq L^{\prime} \subseteq L$; i.e., such that $L^{\prime} / \pi L$ is a k-subspace of $L / \pi L$. Thus, a chamber (maximal simplex) in Ξ_{n} has n vertices t_{0}, \ldots, t_{n-1} with representatives $L_{i} \in t_{i}$ such that $\pi L_{0} \subsetneq L_{1} \subsetneq \cdots \subsetneq L_{n-1} \subsetneq L_{0}$ and $\left[L_{1}: \pi L_{0}\right]=q=\left[L_{i}: L_{i-1}\right]$ for all $2 \leq i \leq n-1$. From now on, write that a chamber in Ξ_{n} corresponds to the chain $\pi L_{0} \subsetneq L_{1} \subsetneq \cdots \subsetneq L_{n-1} \subsetneq L_{0}$ only when the lattices L_{0}, \ldots, L_{n-1} satisfy the conditions in the last sentence.

For the rest of this section, $n \geq 3$. Let $t \in \Xi_{n}$ be a vertex with representative L. Then a chamber $C \in \Xi_{n}$ containing t corresponds to a chain of the form

$$
\begin{equation*}
\pi L \stackrel{q}{\subsetneq} L_{1} \stackrel{q}{\subsetneq} \cdots \stackrel{q}{\subsetneq} L_{n-1} \stackrel{q}{\subsetneq} L \tag{1}
\end{equation*}
$$

(cf. [3, p. 323]). The codimension-one face in C not containing t thus corresponds to the chain

$$
L_{1} \stackrel{q}{\subsetneq} \ldots \stackrel{q}{\subsetneq} L_{n-1},
$$

and a vertex in Ξ_{n} is close to t if it has a representative $M \neq L$ such that

$$
\begin{equation*}
\pi M \stackrel{q}{\subsetneq} L_{1} \stackrel{q}{\subsetneq} \cdots \stackrel{q}{\subsetneq} L_{n-1} \stackrel{q}{\subsetneq} M . \tag{2}
\end{equation*}
$$

Given the lattices L_{1} and L_{n-1}, the possible L and M satisfy $L_{n-1} \subsetneq L \neq M \subsetneq \pi^{-1} L_{1}$. On the other hand, if $t, t^{\prime} \in \Xi_{n}$ are close vertices, then there must be representatives $L \in t$ and

Figure 2: Two close vertices in Ξ_{4}.
$M \in t^{\prime}$ and lattices L_{1}, \ldots, L_{n-1} as in (1) such that $L_{n-1} \subsetneq L \neq M \subsetneq \pi^{-1} L_{1}$. Recall that if M_{1} and M_{2} are free, rank n, \mathcal{O}-modules with $M_{1} \subseteq M_{2}$, then $M_{1} \subseteq M^{\prime} \subseteq M_{2}$ implies M^{\prime} is also a free, rank n, \mathcal{O}-module. Thus, both $L \cap M$ and $L+M$ are lattices in V. Furthermore, $L \neq M$ and $\left[L: L_{n-1}\right]=q=\left[M: L_{n-1}\right]$ imply $L \cap M=L_{n-1}$ and $L+M=\pi^{-1} L_{1}$, but we can vary L_{2}, \ldots, L_{n-2} as long as $L_{1} \subsetneq L_{2} \subsetneq \cdots \subsetneq L_{n-2} \subsetneq L_{n-1}$. In other words, if t and t^{\prime} are close vertices in Ξ_{n}, there may be two (or more) pairs of adjacent chambers C and C^{\prime} in Ξ_{n} with $t \in C, t^{\prime} \in C^{\prime}$, but $t, t^{\prime} \notin C \cap C^{\prime}$ (see Figure 2). We return to this later.

Before we count the number of vertices in Ξ_{n} close to a given vertex $t \in \Xi_{n}$, we make a few observations. Fix a representative $L \in t$. Since $L / \pi L \cong k^{n}$, the Correspondence Theorem and the fact that any \mathcal{O}-submodule of L containing πL is a lattice in V imply that the number of L_{1} is the number of 1-dimensional k-subspaces of $L / \pi L$. Similarly, given L_{1} as above, the number of lattices L_{n-1} with $L_{1} \subsetneq L_{n-1} \subsetneq L$ and $\left[L: L_{n-1}\right]=q$ is the number of ($n-2$)-dimensional k-subspaces of $L / L_{1} \cong k^{n-1}$. Finally, given L_{1} and L_{n-1} as above, the number of lattices $M \neq L$ such that $L_{n-1} \subsetneq M \subsetneq \pi^{-1} L_{1}$ is one less than the number of non-trivial, proper k-subspaces of $\pi^{-1} L_{1} / L_{n-1} \cong k^{2}$.

Proposition 2.1. If $t \in \Xi_{n}$ is a vertex, then the number ω_{n} of vertices in Ξ_{n} close to t is

$$
\frac{q^{n}-1}{q-1} \cdot \frac{q^{n-1}-1}{q-1} \cdot q
$$

(independent of t).
Proof. This follows from the preceding comments, duality, and the fact that the number of 1-dimensional subspaces of \mathbb{F}_{q}^{m} is exactly $\left(q^{m}-1\right) /(q-1)$.

Corollary 2.1. The number of right cosets of $\mathrm{GL}_{n}(\mathcal{O})$ in $\operatorname{GL}_{n}(\mathcal{O}) \operatorname{diag}\left(1, \pi, \ldots, \pi, \pi^{2}\right) \mathrm{GL}_{n}(\mathcal{O})$ is $\left(\left(q^{n}-1\right)\left(q^{n-1}-1\right) \cdot q\right) /(q-1)^{2}$.

Proof. This follows from [6, Theorem 3.3] and the last proposition.
Let r_{n} be the number of chambers in Ξ_{n} containing a vertex $t \in \Xi_{n}$. Then $[6$, Proposition 2.4] and the last proposition establish the conjecture following Proposition 3.4 of [6]:

Theorem 2.1. For all $n \geq 3, q \cdot r_{n}=r_{n-2} \omega_{n}$, where $r_{1}=1$.
We now use the structure of Ξ_{n} to give a combinatorial proof for the relationship given in Theorem 2.1. Fix a vertex $t \in \Xi_{n}$. Then we can try to count the number of vertices in Ξ_{n} close to t by counting the number of galleries (in Ξ_{n}) of length 1 starting at a chamber containing t and ending at a chamber not containing t. By definition, there are r_{n} chambers $C \in \Xi_{n}$ containing t. Since a chamber in Ξ_{n} adjacent to C and not containing t must contain the codimension-one face in C not containing $t,[3$, p. 324] implies that there are q chambers in Ξ_{n} adjacent to C not containing t; hence, there are exactly $r_{n} \cdot q$ galleries of length 1 in Ξ_{n} whose initial chamber contains t and whose ending chamber does not contain t. On the other hand, if $t^{\prime} \in \Xi_{n}$ is a vertex close to t, we count t^{\prime} more than once if there is more than one gallery of length 1 in Ξ_{n} whose initial chamber contains t and whose ending chamber contains t^{\prime} (see Figure 2); hence, $\omega_{n}=\left(r_{n} \cdot q\right) / m\left(t, t^{\prime}\right)$, where $m\left(t, t^{\prime}\right)$ is the number of galleries of length 1 in Ξ_{n} whose initial chamber contains t and whose ending chamber contains t^{\prime}.

To determine $m\left(t, t^{\prime}\right)$, fix the following notation for the rest of this section. For close vertices $t, t^{\prime} \in \Xi_{n}$, let $L \in t, M \in t^{\prime}$ be representatives such that there are lattices L_{1}, \ldots, L_{n-1} as in (1) and (2). Recall that $L_{1}=\pi(L+M)$ and $L_{n-1}=L \cap M$, but we can vary L_{2}, \ldots, L_{n-2} as long as $L_{1} \subsetneq L_{2} \subsetneq \cdots \subsetneq L_{n-2} \subsetneq L_{n-1}$. Since any gallery C, C^{\prime} in Ξ_{n} such that $C=\left\{t,\left[L_{1}\right], \ldots,\left[L_{n-1}\right]\right\}$ and $C^{\prime}=\left\{t^{\prime},\left[L_{1}\right], \ldots,\left[L_{n-1}\right]\right\}$ satisfies $C \cap C^{\prime}=\left\{\left[L_{1}\right], \ldots,\left[L_{n-1}\right]\right\}$, each gallery in Ξ_{n} counted by $m\left(t, t^{\prime}\right)$ is uniquely determined by the lattices L_{2}, \ldots, L_{n-2}. Define two vertices in Ξ_{n} to be adjacent if they are distinct and incident.

Proposition 2.2. Let $t, t^{\prime} \in \Xi_{n}$ be adjacent vertices. If $L \in t$, then there is a unique representative $L^{\prime} \in t^{\prime}$ such that $\pi L \subsetneq L^{\prime} \subsetneq L$.

Proof. Since t and t^{\prime} are incident and $t \neq t^{\prime}$, there are representatives $M \in t$ and $M^{\prime} \in t^{\prime}$ such that $\pi M \subsetneq M^{\prime} \subsetneq M$. Moreover, M and L are homothetic, so $L=\alpha M$ for some $\alpha \in K^{\times}$; hence, $\pi L \subsetneq \alpha M^{\prime} \subsetneq L$. Let $L^{\prime}=\alpha M^{\prime}$. If $L^{\prime \prime} \in t^{\prime}$ such that $\pi L \subsetneq L^{\prime \prime} \subsetneq L$, let $\beta \in K^{\times}$such that $L^{\prime \prime}=\beta L^{\prime}$. Suppose $\operatorname{ord}(\beta)=m$. Then $\pi L \subsetneq L^{\prime} \subsetneq L$ implies $\pi^{m+1} L \subsetneq L^{\prime \prime} \subsetneq \pi^{m} L$ and $L=\pi^{m} L$; i.e., $L^{\prime \prime}=L^{\prime}$.

Consider the set of vertices in Ξ_{n} that are adjacent to $t, t^{\prime},[L+M]$, and $[L \cap M]$ (in the case $n=3$, this set is empty), and define two such vertices to be incident if they are incident as vertices in Ξ_{n}. Let $\Xi_{n}^{c}\left(t, t^{\prime}\right)$ be the set consisting of

- the empty set,
- all vertices in Ξ_{n} adjacent to $t, t^{\prime},[L+M]$, and $[L \cap M]$, and
- all finite sets A of vertices in Ξ_{n} adjacent to $t, t^{\prime},[L+M]$, and $[L \cap M]$ such that any two vertices in A are adjacent.

Then $\Xi_{n}^{c}\left(t, t^{\prime}\right)$ is a simplicial complex. In particular, $\Xi_{n}^{c}\left(t, t^{\prime}\right)$ is a subcomplex of Ξ_{n}.

Lemma 2.1. If $\emptyset \neq A \in \Xi_{n}^{c}\left(t, t^{\prime}\right)$ is an i-simplex, then A corresponds to a chain of lattices $M_{1} \subsetneq \cdots \subsetneq M_{i+1}$, where $\pi(L+M) \subsetneq M_{1} \subsetneq \cdots \subsetneq M_{i+1} \subsetneq L \cap M$. In particular, A has at most $n-3$ vertices.

Proof. We proceed by induction on i. If $i=0$, then A adjacent to [$L \cap M$] implies A has a unique representative M_{1} such that $\pi(L \cap M) \subsetneq M_{1} \subsetneq L \cap M$ by Proposition 2.2. Then by [3, p. 322], either $M_{1} \subsetneq \pi(L+M)$ or $M_{1} \supsetneq \pi(L+M)$. In the second case, we are done, so assume $M_{1} \subsetneq \pi(L+M)$. Then $\pi(L \cap M) \subsetneq M_{1} \subsetneq \pi(L+M)$. On the other hand, $\pi(L \cap M) \subsetneq \pi L \subsetneq \pi(L+M)$ and $[\pi(L+M): \pi(L \cap M)]=q^{2}$. Since A is adjacent to t, [3, p. 322] implies that either $M_{1} \subsetneq \pi L$ or $M_{1} \supsetneq \pi L$. Thus, either $\pi(L \cap M) \subsetneq M_{1} \subsetneq \pi L \subsetneq \pi(L+M)$ or $\pi(L \cap M) \subsetneq \pi L \subsetneq M_{1} \subsetneq \pi(L+M)$, which is impossible given the previous index computation.

Now suppose $0 \leq i \leq n-5$ and that the claim holds for any i-simplex in $\Xi_{n}^{c}\left(t, t^{\prime}\right)$. Let $A \in \Xi_{n}^{c}\left(t, t^{\prime}\right)$ be an $(i+1)$-simplex and $x \in A$ a vertex. Then the i-simplex $A-\{x\}$ corresponds to a chain of lattices $M_{1}^{\prime} \subsetneq \cdots \subsetneq M_{i+1}^{\prime}$ such that $\pi(L+M) \subsetneq M_{1}^{\prime} \subsetneq \cdots \subsetneq M_{i+1}^{\prime} \subsetneq L \cap M$. By the last paragraph, x has a representative M^{\prime} such that $\pi(L+M) \subsetneq M^{\prime} \subsetneq L \cap M$. If $M^{\prime} \subsetneq M_{1}^{\prime}$, set $M_{1}=M^{\prime}$ and $M_{j}=M_{j-1}^{\prime}$ for all $2 \leq j \leq i+2$. Otherwise, $M^{\prime} \supsetneq M_{1}^{\prime}$ by [3, p. 322]. Let $j \in\{1, \ldots, i+1\}$ be maximal such that $M^{\prime} \supsetneq M_{j}^{\prime}$. If $j=i+1$, set $M_{\ell}=M_{\ell}^{\prime}$ for all $1 \leq \ell \leq i+1$ and $M_{i+2}=M^{\prime}$. Setting $M_{\ell}=M_{\ell}^{\prime}$ for all $1 \leq \ell \leq j$, $M_{j+1}=M^{\prime}$, and $M_{\ell}=M_{\ell-1}^{\prime}$ for all $j+2 \leq \ell \leq i+2$ finishes the proof if $j \neq i+1$. Finally, note that if the claim holds for $i \geq n-3$, then A corresponds to a chain of lattices $M_{1} \subsetneq \cdots \subsetneq M_{i+1}$, where $\pi(L+M) \subsetneq M_{1} \subsetneq \cdots \subsetneq M_{i+1} \subsetneq L \cap M$, contradicting the fact that $[L \cap M: \pi(L+M)]=q^{n-2}$.

Write $\Xi_{n}^{s}(k)$ for the spherical $A_{n}(k)$ building described in [5, p. 4].
Proposition 2.3. For any close vertices $t, t^{\prime} \in \Xi_{n}, \Xi_{n}^{c}\left(t, t^{\prime}\right)$ is isomorphic (as a poset) to $\Xi_{n-3}^{s}(k)$ (independent of t and t^{\prime}), where $\Xi_{0}^{s}(k)=\emptyset$.

Proof. Let $L \in t, M \in t^{\prime}$ be as in the paragraph preceding Proposition 2.2, and let $\Xi_{n-3}^{s}(k)$ be the spherical $A_{n-3}(k)$ building with simplices the empty set, together with the nested sequences of non-trivial, proper k-subspaces of $(L \cap M) / \pi(L+M)$. Then by the Correspondence Theorem and the last lemma, there is a bijection between the i-simplices in $\Xi_{n}^{c}\left(t, t^{\prime}\right)$ and the i-simplices in $\Xi_{n-3}^{s}(k)$ for all i. Since this bijection preserves the partial order (face) relation, it is a poset isomorphism.

Theorem 2.2. If $t, t^{\prime} \in \Xi_{n}$ are close vertices, then $m\left(t, t^{\prime}\right)=r_{n-2}$ (independent of t and t^{\prime}). In particular, $\omega_{n}=\left(r_{n} \cdot q\right) / r_{n-2}$.

Proof. By the last proposition and previous comments, $m\left(t, t^{\prime}\right)$ is the number of chambers in $\Xi_{n-3}^{s}(k)$. The proof now follows from [6, Proposition 2.4].

3. Close Vertices in the Affine Building Δ_{n} of $\operatorname{Sp}_{n}(K)$

Let Δ_{n} denote the affine building naturally associated to $\operatorname{Sp}_{n}(K)$. Then Δ_{n} is a subcomplex of $\Xi_{2 n}$, and there is a natural embedding of Δ_{n} in $\Xi_{2 n}$. As we will see, this embedding allows us to derive information about Δ_{n} and to prove results for Δ_{n} by adapting the proofs of the analogous results for $\Xi_{2 n}$. As noted in the introduction, while all the vertices in $\Xi_{2 n}$ are special, only two vertices in each chamber in Δ_{n} are special. Consequently, the Sp_{n} case requires more care than that needed in the last section. We start by looking at properties of Δ_{n} that we need to consider close vertices in Δ_{n}.

3.1 The Building Δ_{n}

The building Δ_{n} can be modeled as an n-dimensional simplicial complex as follows (see [3, pp. $336-337]$). Fix a $2 n$-dimensional K-vector space V endowed with a non-degenerate, alternating bilinear form $\langle\cdot, \cdot\rangle$, and recall that a subspace U of V is totally isotropic if $\left\langle u, u^{\prime}\right\rangle=$ 0 for all $u, u^{\prime} \in U$. A lattice L in V is primitive if $\langle L, L\rangle \subseteq \mathcal{O}$ and $\langle\cdot, \cdot\rangle$ induces a nondegenerate, alternating k-bilinear form on $L / \pi L$. Then a vertex in Δ_{n} is a homothety class of lattices in V with a representative L such that there is a primitive lattice L_{0} with $\langle L, L\rangle \subseteq \pi \mathcal{O}$ and $\pi L_{0} \subseteq L \subseteq L_{0}$; equivalently, $L / \pi L_{0}$ is a totally isotropic k-subspace of $L_{0} / \pi L_{0}$. Two vertices $t, t^{\prime} \in \Delta_{n}$ are incident if there are representatives $L \in t$ and $L^{\prime} \in t^{\prime}$ such that there is a primitive lattice L_{0} with $\langle L, L\rangle \subseteq \pi \mathcal{O},\left\langle L^{\prime}, L^{\prime}\right\rangle \subseteq \pi \mathcal{O}$, and either $\pi L_{0} \subseteq L \subseteq L^{\prime} \subseteq L_{0}$ or $\pi L_{0} \subseteq L^{\prime} \subseteq L \subseteq L_{0}$. Thus, a chamber in Δ_{n} has $n+1$ vertices t_{0}, \ldots, t_{n} with representatives $L_{i} \in t_{i}$ such that L_{0} is primitive, $\left\langle L_{i}, L_{i}\right\rangle \subseteq \pi \mathcal{O}$ for all $1 \leq i \leq n$, and $\pi L_{0} \subsetneq L_{1} \subsetneq \cdots \subsetneq L_{n} \subsetneq L_{0}$. From now on, write that a chamber in Δ_{n} corresponds to the chain $\pi L_{0} \subsetneq L_{1} \subsetneq \cdots \subsetneq L_{n} \subsetneq L_{0}$ only when the lattices L_{0}, \ldots, L_{n} satisfy the conditions in the last sentence.

Recall that a basis $\left\{u_{1}, \ldots, u_{n}, w_{1}, \ldots, w_{n}\right\}$ for V is symplectic if $\left\langle u_{i}, w_{j}\right\rangle=\delta_{i j}$ (Kronecker delta) and $\left\langle u_{i}, u_{j}\right\rangle=0=\left\langle w_{i}, w_{j}\right\rangle$ for all i, j. If a 2 -dimensional, totally isotropic subspace U of V is a hyperbolic plane, then a frame is an unordered n-tuple $\left\{\lambda_{1}^{1}, \lambda_{1}^{2}\right\}, \ldots,\left\{\lambda_{n}^{1}, \lambda_{n}^{2}\right\}$ of pairs of lines (1-dimensional K-subspaces) in V such that

1. $\lambda_{i}^{1}+\lambda_{i}^{2}$ is a hyperbolic plane for all $1 \leq i \leq n$,
2. $\lambda_{i}^{1}+\lambda_{i}^{2}$ is orthogonal to $\lambda_{j}^{1}+\lambda_{j}^{2}$ for all $i \neq j$, and
3. $V=\left(\lambda_{1}^{1}+\lambda_{1}^{2}\right)+\cdots+\left(\lambda_{n}^{1}+\lambda_{n}^{2}\right)$.

A vertex $t \in \Delta_{n}$ lies in the apartment specified by the frame $\left\{\lambda_{1}^{1}, \lambda_{1}^{2}\right\}, \ldots,\left\{\lambda_{n}^{1}, \lambda_{n}^{2}\right\}$ if for any representative $L \in t$, there are lattices M_{i}^{j} in λ_{i}^{j} for all i, j such that $L=M_{1}^{1}+M_{1}^{2}+\cdots+$ $M_{n}^{1}+M_{n}^{2}$. The following lemma is easily established.

Lemma 3.1.

1. Every symplectic basis for V specifies an apartment of Δ_{n}.
2. If Σ is an apartment of Δ_{n}, there is a symplectic basis $\left\{u_{1}, \ldots, u_{n}, w_{1}, \ldots, w_{n}\right\}$ for V such that every vertex in Σ has the form

$$
\left[\mathcal{O} \pi^{a_{1}} u_{1}+\cdots+\mathcal{O} \pi^{a_{n}} u_{n}+\mathcal{O} \pi^{b_{1}} w_{1}+\cdots+\mathcal{O} \pi^{b_{n}} w_{n}\right]
$$

for some $a_{i}, b_{i} \in \mathbb{Z}$.

Remark. A frame specifying an apartment of Δ_{n} also specifies an apartment of $\Xi_{2 n}$ (see [3, p. 323]). In particular, a symplectic basis for V specifies an apartment of $\Xi_{2 n}$.

Since π is fixed, if $\mathcal{B}=\left\{u_{1}, \ldots, u_{n}, w_{1}, \ldots, w_{n}\right\}$ is a symplectic basis for V, follow [7, p. 3411] and write $\left(a_{1}, \ldots, a_{n} ; b_{1}, \ldots, b_{n}\right)_{\mathcal{B}}$ for the lattice $\mathcal{O} \pi^{a_{1}} u_{1}+\cdots+\mathcal{O} \pi^{a_{n}} u_{n}+\mathcal{O} \pi^{b_{1}} w_{1}+$ $\cdots+\mathcal{O} \pi^{b_{n}} w_{n}$ and $\left[a_{1}, \ldots, a_{n} ; b_{1}, \ldots, b_{n}\right]_{\mathcal{B}}$ for its homothety class. Then the lattice $L=$ $\left(a_{1}, \ldots, a_{n} ; b_{1}, \ldots, b_{n}\right)_{\mathcal{B}}$ is primitive if and only if $a_{i}+b_{i}=0$ for all i by [7, p. 3411], and [L] is a special vertex in Δ_{n} if and only if $a_{i}+b_{i}=\mu$ is constant for all i by [7, Corollary 3.4]. Note that by [7, p. 3412], a chamber in Δ_{n} has exactly two special vertices.

Lemma 3.2. Let $t \in \Delta_{n}$ be a vertex with a primitive representative L, and let Σ be an apartment of Δ_{n} containing t. Then there is a symplectic basis \mathcal{B} for V specifying Σ as in Lemma 3.1 such that $L=(0, \ldots, 0 ; 0, \ldots, 0)_{\mathcal{B}}$.

Proof. This follows from Lemma 3.1 and [7, p. 3411].
Let $t \in \Delta_{n}$ be a vertex. Then the link of t in Δ_{n}, denoted $\mathrm{lk}_{\Delta_{n}} t$, is a building (see [1, Proposition IV.1.3]) that is isomorphic (as a poset) to the subposet of Δ_{n} consisting of those simplices containing t by [1, p. 31]. In particular, if $A \in \Delta_{n}$ is a codimension-one simplex
 number of chambers in Δ_{n} containing A is the number of chambers in $\mathrm{lk}_{\Delta_{n}} t$ containing A^{\prime}. Note that if t is special, then [8, p. 35] implies $\mathrm{lk}_{\Delta_{n}} t$ is isomorphic to the spherical $C_{n}(k)$ building $\Delta_{n}^{s}(k)$ described in [5, pp. $\left.5-6\right]$.

Proposition 3.1. Every special vertex in Δ_{n} is contained in exactly $r\left(\Delta_{n}\right)=\prod_{m=1}^{n}\left(\left(q^{2 m}-\right.\right.$ 1) $/(q-1))$ chambers in Δ_{n}.

Proof. Let $t \in \Delta_{n}$ be a special vertex. By the preceding comments and [5, pp. $\left.5-6\right]$, it suffices to count the number of maximal flags of non-trivial, totally isotropic subspaces of a $2 n$-dimensional k-vector space endowed with a non-degenerate, alternating bilinear form. An obvious modification of the proof of [6, Proposition 2.4] finishes the proof.

Remark. The number $r\left(\Delta_{n}\right)$ in the last proposition corresponds to the number r_{n} given in [6, Proposition 2.4]. Since $\mathrm{Sp}_{1}(K)=\mathrm{SL}_{2}(K)$, set $r\left(\Delta_{1}\right)=q+1$ for completeness.

Proposition 3.2. If $A \in \Delta_{n}$ is a codimension-one simplex, then A is contained in exactly $q+1$ chambers in Δ_{n}.

Proof. Let t be a special vertex in A and A^{\prime} the codimension-one simplex in $\mathrm{lk}_{\Delta_{n}} t$ corresponding to A. By the comments preceding the last proposition, it suffices to count the number of chambers in $\Delta_{n}^{s}(k)$ containing A^{\prime}. A case-by-case analysis finishes the proof.

We now use the fact that Δ_{n} is a subcomplex of $\Xi_{2 n}$ to derive information about Δ_{n}. For a vertex $t \in \Xi_{2 n}$ with representative $L=\mathcal{O} v_{1}+\cdots+\mathcal{O} v_{2 n}$ and $g \in \mathrm{GL}_{2 n}(K)$, define $g t=\left[\mathcal{O}\left(g v_{1}\right)+\cdots+\mathcal{O}\left(g v_{2 n}\right)\right]$. Then $\mathrm{GL}_{2 n}(K)$ acts transitively on the lattices in V.

Let

$$
J_{n}=\left(\begin{array}{cc}
0 & I_{n} \\
-I_{n} & 0
\end{array}\right) \text { and } \operatorname{GSp}_{n}(K)=\left\{g \in M_{2 n}(K): g^{t} J_{n} g=\nu(g) J_{n} \text { for some } \nu(g) \in K^{\times}\right\},
$$

so that $\operatorname{Sp}_{n}(K)$ consists of the matrices $g \in \operatorname{GSp}_{n}(K)$ with $\nu(g)=1$. Alternatively, abuse notation and think of $\operatorname{GSp}_{n}(K)$ as

$$
\left\{g \in \mathrm{GL}_{K}(V): \forall v_{1}, v_{2} \in V, \exists \nu(g) \in K^{\times} \text {such that }\left\langle g v_{1}, g v_{2}\right\rangle=\nu(g)\left\langle v_{1}, v_{2}\right\rangle\right\}
$$

If $g \in \mathrm{GL}_{2 n}(K)$ and $\mathcal{B}=\left\{v_{1}, \ldots, v_{2 n}\right\}$ is a basis for V, write $g \mathcal{B}$ for $\left\{g v_{1}, \ldots, g v_{2 n}\right\}$.
Lemma 3.3. The group $\mathrm{Sp}_{n}(K)$ acts on the set of primitive lattices in V.
Proof. Let L be a primitive lattice in V, and let Σ be an apartment of Δ_{n} containing $[L]$ and \mathcal{B} a symplectic basis for V specifying Σ as in Lemma 3.1. Then $L=\left(a_{1}, \ldots, a_{n} ;-a_{1}, \ldots,-a_{n}\right)_{\mathcal{B}}$ by [7, p. 3411]; hence, for $g \in \operatorname{Sp}_{n}(K), g \mathcal{B}$ a symplectic basis for V implies that $g L$ is primitive.

For the rest of this section, let $\mathcal{B}_{0}=\left\{e_{1}, \ldots, e_{n}, f_{1}, \ldots, f_{n}\right\}$ be the standard symplectic basis for $V\left(f_{i}=e_{n+i}\right.$ for all $\left.i\right), L_{0}=(0, \ldots, 0 ; 0, \ldots, 0)_{\mathcal{B}_{0}}$, and $t_{0}=\left[L_{0}\right]$. Following [5, p. 116], assign types to the vertices in $\Xi_{2 n}$ as follows: assign type 0 to t_{0} and type $\operatorname{ord}(\operatorname{det} g)$ $\bmod 2 n$ to any other vertex $t=[L] \in \Xi_{2 n}$, where $g \in \mathrm{GL}_{2 n}(K)$ such that $L=g L_{0}$. This induces a labelling on the vertices in Δ_{n}. For the rest of this section, let C_{0} be the chamber in Δ_{n} whose vertices are the homothety classes of the lattices

$$
\begin{equation*}
L_{0}=(0, \ldots, 0 ; 0, \ldots, 0)_{\mathcal{B}_{0}}, L_{1}=(0,1, \ldots, 1 ; 1, \ldots, 1)_{\mathcal{B}_{0}}, \ldots, L_{n}=(0, \ldots, 0 ; 1, \ldots, 1)_{\mathcal{B}_{0}} . \tag{3}
\end{equation*}
$$

Note that $\left[L_{i}\right]$ has type $2 n-i$ for all $1 \leq i \leq n$. Recall that since Δ_{n} is the affine building naturally associated to $\operatorname{Sp}_{n}(K), \operatorname{Sp}_{n}(K)$ acts on the vertices in Δ_{n} in a type-preserving manner and also acts transitively on the chambers in Δ_{n}.

Proposition 3.3. If $t \in \Delta_{n}$ is a vertex, then t has type i for some $i \equiv n, \ldots, 2 n \bmod 2 n$.
Proof. By the preceding comments, it suffices to show that for all $0 \leq j \leq n,\left[L_{j}\right]$ (as in (3)) has type i for some $i \equiv n, \ldots, 2 n \bmod 2 n$, which we already observed.

We now use types to characterize the vertices in Δ_{n} with a primitive representative, as well as those that are special.

Proposition 3.4. A vertex in Δ_{n} has a primitive representative if and only if it has type 0 .
Proof. Let $t \in \Delta_{n}$ be a type 0 vertex and $C \in \Delta_{n}$ a chamber containing t. Choose $g \in \operatorname{Sp}_{n}(K)$ such that $g C_{0}=C$. Then $g L_{0} \in t$. Since L_{0} is primitive, Lemma 3.3 implies that $g L_{0}$ is primitive. Conversely, let $t \in \Delta_{n}$ be a vertex with a primitive representative L, and let $C \in \Delta_{n}$ be a chamber containing t. Let $g \in \operatorname{Sp}_{n}(K)$ such that $g C=C_{0}$. Then $g L=\pi^{m} L_{j}$ for some $0 \leq j \leq n$ and some $m \in \mathbb{Z}$. If $L_{j}=\left(a_{1}, \ldots, a_{n} ; b_{1}, \ldots, b_{n}\right)_{\mathcal{B}_{0}}$ as in (3), then $g L=\left(a_{1}+m, \ldots, a_{n}+m ; b_{1}+m, \ldots, b_{n}+m\right)_{\mathcal{B}_{0}}$. But $g L$ primitive (by Lemma 3.3) implies that $a_{i}+b_{i}=-2 m$ for all i. By (3), $m=0$ and $g t=\left[L_{0}\right]$; hence, t has type 0 .

Proposition 3.5. A vertex in Δ_{n} is special if and only if it has type 0 or n.
Proof. Let $t \in \Delta_{n}$ be a type 0 (resp., type n) vertex, and let $C \in \Delta_{n}$ be a chamber containing t. If $g \in \operatorname{Sp}_{n}(K)$ such that $g C_{0}=C$, then $t=g\left[L_{0}\right]$ (resp., $t=g\left[L_{n}\right]$), and t is special by [7, Corollary 3.4]. Conversely, let $t \in \Delta_{n}$ be a special vertex. Let $C \in \Delta_{n}$ be a chamber containing t, Σ an apartment of Δ_{n} containing C, and \mathcal{B} a symplectic basis for V specifying Σ as in Lemma 3.1. By [7, Corollary 3.4], $t=\left[a_{1}, \ldots, a_{n} ; \mu-a_{1}, \ldots, \mu-a_{n}\right]_{\mathcal{B}}$ for some $\mu \in \mathbb{Z}$. If $g \in \operatorname{Sp}_{n}(K)$ such that $g C=C_{0}$, then $g t=\left[L_{i}\right]$ for some $0 \leq i \leq n$; hence, $g t$ special, $[7$, Corollary 3.4], and (3) imply $i=0$ or $i=n$, and t has type 0 or n.

We now consider the action of $\operatorname{GSp}_{n}(K)$ on the vertices in $\Xi_{2 n}$.
Proposition 3.6. If $[L]$ is a type i vertex in $\Xi_{2 n}$, then for any $g \in \mathrm{GL}_{2 n}(K)$, the vertex $g[L] \in \Xi_{2 n}$ has type $i+\operatorname{ord}(\operatorname{det} g) \bmod 2 n$.

Proof. Since $[L]$ has type i, we can write $L=g_{i} L_{0}$, where $g_{i} \in \mathrm{GL}_{2 n}(K)$ with $\operatorname{ord}\left(\operatorname{det} g_{i}\right) \equiv i$ $\bmod 2 n$. Then $g[L]$ has type $\operatorname{ord}\left(\operatorname{det}\left(g g_{i}\right)\right) \bmod 2 n \equiv i+\operatorname{ord}(\operatorname{det} g) \bmod 2 n$.

Corollary 3.1. If $g \in \operatorname{GSp}_{n}(K)$ with $\operatorname{ord}(\nu(g)) \equiv 1 \bmod 2$, then g maps a non-special vertex in Δ_{n} to a vertex in $\Xi_{2 n}$ that is not in Δ_{n}.

Proof. First note that $g \in \operatorname{GSp}_{n}(K)$ with $\operatorname{ord}(\nu(g)) \equiv 1 \bmod 2 \operatorname{implies} \operatorname{ord}(\operatorname{det} g) \equiv n$ $\bmod 2 n$. If t is a non-special vertex in Δ_{n}, then t has type i for some $n+1 \leq i \leq 2 n-1$ by Propositions 3.3 and 3.5. Thus, the last proposition implies $g t$ has type $i+n \bmod 2 n \in$ $\{1, \ldots, n-1\}$. Proposition 3.3 finishes the proof.

3.2 The Building Δ_{n} in the Building $\Xi_{2 n}$

Let $C \in \Delta_{n}$ be a chamber corresponding to the chain $\pi L_{0} \subsetneq L_{1} \subsetneq \cdots \subsetneq L_{n} \subsetneq L_{0}$. Let Σ be an apartment of Δ_{n} containing C, \mathcal{B} a symplectic basis for V specifying Σ as in Lemma 3.1, and $\widetilde{\Sigma}$ the apartment of $\Xi_{2 n}$ specified by \mathcal{B}. Let $D \in \widetilde{\Sigma}$ be any chamber containing C. Then D corresponds to the chain $\pi L_{0} \subsetneq L_{1} \subsetneq \cdots \subsetneq L_{n} \subsetneq L_{n+1} \subsetneq \cdots \subsetneq L_{2 n-1} \subsetneq L_{0}$ for some lattices $L_{n+1}, \ldots, L_{2 n-1}$ in V. For $0 \leq j \leq 2 n-1$, write

$$
L_{j}=\left(a_{1}^{(j)}, \ldots, a_{n}^{(j)} ; b_{1}^{(j)}, \ldots, b_{n}^{(j)}\right)_{\mathcal{B}}
$$

Lemma 3.4. The two special vertices in C are $\left[L_{0}\right]$ and $\left[L_{n}\right]$.
Proof. The fact that $\left[L_{0}\right]$ is special follows from [7, Corollary 3.4] and [7, p. 3411]. To see that $\left[L_{n}\right]$ is special, note that if L_{j} represents a special vertex in C for $1 \leq j \leq n$, then $a_{i}^{(j)}+b_{i}^{(j)}=\mu$ for all i (by [7, Corollary 3.4]), where $\mu \in\{1,2\}$ (since $\left\langle L_{j}, L_{j}\right\rangle \subseteq \pi \mathcal{O}$). But $\mu=2$ implies $L_{j}=\pi L_{0}$, which is impossible. Thus, $a_{i}^{(j)}+b_{i}^{(j)}=1$ for all i and $L_{j} / \pi L_{0} \cong k^{n}$; hence, $j=n$.

For $\mathcal{B}=\left\{u_{1}, \ldots, u_{n}, w_{1}, \ldots, w_{n}\right\}$ a symplectic basis for V and $g \in \operatorname{GSp}_{n}(K)$, let

$$
\mathcal{B}_{g}:=\left\{\nu(g)^{-1} g u_{1}, \ldots, \nu(g)^{-1} g u_{n}, g w_{1}, \ldots, g w_{n}\right\} .
$$

Note that \mathcal{B}_{g} is a symplectic basis for V; hence, $L=\left(a_{1}, \ldots, a_{n} ; b_{1}, \ldots, b_{n}\right)_{\mathcal{B}}$ and $\operatorname{ord}(\nu(g))=$ m imply $g L=\left(a_{1}+m, \ldots, a_{n}+m ; b_{1}, \ldots, b_{n}\right)_{\mathcal{B}_{g}}$.

Proposition 3.7. The group $\operatorname{GSp}_{n}(K)$ acts transitively on the special vertices in Δ_{n}.
Proof. Note that if $\operatorname{GSp}_{n}(K)$ acts on the special vertices in Δ_{n}, then [7, Proposition 3.3] implies that the action is transitive. We thus show that $\operatorname{GSp}_{n}(K)$ acts on the special vertices in Δ_{n}. Let $t \in \Delta_{n}$ be a special vertex and $L \in t$ a representative such that there is a primitive lattice L_{0} with $\langle L, L\rangle \subseteq \pi \mathcal{O}$ and $\pi L_{0} \subseteq L \subseteq L_{0}$. Let Σ be an apartment of Δ_{n} containing t and $\left[L_{0}\right]$, and let \mathcal{B} be a symplectic basis for V specifying Σ as in Lemma 3.1. Then [7, p. 3411], the last lemma, and [7, Corollary 3.4] imply

$$
L_{0}=\left(c_{1}, \ldots, c_{n} ;-c_{1}, \ldots,-c_{n}\right)_{\mathcal{B}} \quad \text { and } \quad L=\left(a_{1}, \ldots, a_{n} ; \mu-a_{1}, \ldots, \mu-a_{n}\right)_{\mathcal{B}}
$$

where $\mu \in\{1,2\}$. Let $g \in \operatorname{GSp}_{n}(K)$ with $\operatorname{ord}(\nu(g))=m$. Since $g t=\left[a_{1}+m, \ldots, a_{n}+\right.$ $\left.m ; \mu-a_{1}, \ldots, \mu-a_{n}\right]_{\mathcal{B}_{g}},\left[7\right.$, Corollary 3.4] implies that it suffices to show $g t$ is a vertex in Δ_{n}. First suppose $m \equiv 0 \bmod 2$, say $m=2 r$. Then $\pi^{-r} g L_{0}$ is primitive, $\left\langle\pi^{-r} g L, \pi^{-r} g L\right\rangle \subseteq \pi \mathcal{O}$, and $\pi^{-r} g\left(\pi L_{0}\right) \subseteq \pi^{-r} g L \subseteq \pi^{-r} g L_{0}$; i.e., $g t$ is a vertex in Δ_{n}. Now suppose $m=2 r+1$. If $\mu=1$, then $\pi^{-r-1} g L$ is primitive and $g t$ is a vertex in Δ_{n}. Otherwise, $\mu=2$, and $\left\langle\pi^{-r-1} g L, \pi^{-r-1} g L\right\rangle \subseteq \pi \mathcal{O}$. Let $\pi M_{0}=\left(a_{1}+r, \ldots, a_{n}+r ; \mu-a_{1}-r, \ldots, \mu-a_{n}-r\right)_{\mathcal{B}_{g}}$. Then M_{0} is primitive and $\pi M_{0} \subseteq \pi^{-r-1} g L \subseteq M_{0}$; i.e., $g t$ is a vertex in Δ_{n}. Thus, $\operatorname{GSp}_{n}(K)$ acts on the special vertices in Δ_{n}.

Note that by Propositions 3.4 and $3.5,\left[L_{n}\right]$ has type n. Then by Proposition 3.3, the type of $\left[L_{j}\right]$ is in $\{n+1, \ldots, 2 n-1\}$ for all $1 \leq j \leq n-1$ and the type of $\left[L_{i}\right]$ is in $\{1, \ldots, n-1\}$ for all $n+1 \leq i \leq 2 n-1$.

Lemma 3.5. Let $g \in \operatorname{GSp}_{n}(K)$ with $\operatorname{ord}(\nu(g)) \equiv 1 \bmod 2$. If $L_{0}, L_{n}, \ldots, L_{2 n-1}$ are lattices in V as above, then the vertices $g\left[L_{n}\right], \ldots, g\left[L_{2 n-1}\right], g\left[L_{0}\right]$ in $\Xi_{2 n}$ are the vertices in a chamber in Δ_{n}.

Proof. Write $\operatorname{ord}(\nu(g))=2 r+1$. Then Lemma 3.4 and [7, p. 3411] imply that $L_{n}^{\prime}=$ $\pi^{-(r+1)} g L_{n}$ is primitive (see the proof of Proposition 3.7). Furthermore, if $L_{j}^{\prime}=\pi^{-r} g L_{j}$ for $j=0, n+1, \ldots, 2 n-1$, then $\pi L_{n}^{\prime} \subsetneq L_{n+1}^{\prime} \subsetneq \cdots \subsetneq L_{2 n-1}^{\prime} \subsetneq L_{0}^{\prime} \subsetneq L_{n}^{\prime}$ and $\left\langle L_{j}^{\prime}, L_{j}^{\prime}\right\rangle \subseteq \pi \mathcal{O}$ for $j=0, n+1, \ldots, 2 n-1$; i.e., $\left[L_{n}^{\prime}\right], \ldots,\left[L_{2 n-1}^{\prime}\right],\left[L_{0}^{\prime}\right]$ are the vertices in a chamber in Δ_{n}.

Lemma 3.6. Let Σ be an apartment of Δ_{n} and $\widetilde{\Sigma}$ the apartment of $\Xi_{2 n}$ such that \mathcal{B} a symplectic basis for V specifying Σ implies \mathcal{B} specifies $\widetilde{\Sigma}$. If C, C^{\prime} is a gallery in Σ, then there is a gallery D, D^{\prime} in $\widetilde{\Sigma}$ such that D (resp., D^{\prime}) contains C (resp., C^{\prime}) and $C \neq C^{\prime}$ implies $D \neq D^{\prime}$.

Remark. More generally, if C_{0}, \ldots, C_{m} is a gallery in Δ_{n}, then there is a gallery D_{0}, \ldots, D_{ℓ} in $\Xi_{2 n}$ and integers $0 \leq i_{0}<\cdots<i_{m} \leq \ell$ such that D_{j} contains C_{0} for all $0 \leq j \leq i_{0}$ and D_{j} contains C_{r} for all $i_{r-1}<j \leq i_{r}$ and all $1 \leq r \leq m$.

Proof of Lemma 3.6. If $C=C^{\prime}$, set $D=D^{\prime}$, where $D \in \widetilde{\Sigma}$ is a chamber containing C. Now suppose $C \neq C^{\prime}$, with C corresponding to the chain

$$
\begin{equation*}
\pi L_{0} \subsetneq L_{1} \subsetneq \cdots \subsetneq L_{n} \subsetneq L_{0} . \tag{4}
\end{equation*}
$$

Let \mathcal{B} be a symplectic basis for V specifying Σ as in Lemma 3.1, and let $0 \leq j \leq n$ such that $C \cap C^{\prime}$ corresponds to (4) with L_{j} deleted if $1 \leq j \leq n$ or with both πL_{0} and L_{0} deleted if $j=0$. Note that if t^{\prime} is the vertex in C^{\prime} not in C, then t^{\prime} has a representative L^{\prime} such that C^{\prime} corresponds to (4) with L_{j} replaced by L^{\prime}.

If $1 \leq j \leq n-1$, then the result in [7, p. 3411], Lemma 3.4, and (4) imply $L_{0}=$ $\left(a_{1}, \ldots, a_{n} ;-a_{1}, \ldots,-a_{n}\right)_{\mathcal{B}}$ and $L_{n}=\left(b_{1}, \ldots, b_{n} ; 1-b_{1}, \ldots, 1-b_{n}\right)_{\mathcal{B}}$, where $a_{i}+1 \geq b_{i} \geq a_{i}$ for all i. For $1 \leq i \leq n$, let $a_{n+i}=-a_{i}$ and $b_{n+i}=1-b_{i}$. Let $\left\{i_{1}, \ldots, i_{n}\right\}$ be the n values of i such that $b_{i}=a_{i}+1$, and for $1 \leq r \leq n-1$, set $L_{n+r}=\left(c_{1}, \ldots, c_{n} ; c_{n+1}, \ldots, c_{2 n}\right)_{\mathcal{B}}$, where $c_{\ell}=b_{\ell}-1=a_{\ell}$ if $\ell \in\left\{i_{1}, \ldots, i_{r}\right\}$ and $c_{\ell}=b_{\ell}$ otherwise. Then $L_{n} \subsetneq L_{n+1} \subsetneq \cdots \subsetneq L_{2 n-1} \subsetneq L_{0}$, and letting $D \in \widetilde{\Sigma}$ (resp., $D^{\prime} \in \widetilde{\Sigma}$) be the simplex with vertices the vertices in C (resp., the vertices in $\left.C^{\prime}\right)$, together with $\left[L_{n+1}\right], \ldots,\left[L_{2 n-1}\right]$ finishes the proof in this case

If $j=n$, write $L_{0}=\left(a_{1}, \ldots, a_{n} ;-a_{1}, \ldots,-a_{n}\right)_{\mathcal{B}}, L_{n}=\left(b_{1}, \ldots, b_{n} ; 1-b_{1}, \ldots, 1-b_{n}\right)_{\mathcal{B}}$, and $L^{\prime}=\left(b_{1}^{\prime}, \ldots, b_{n}^{\prime} ; 1-b_{1}^{\prime}, \ldots, 1-b_{n}^{\prime}\right)_{\mathcal{B}}$. Note that $a_{i}+1 \geq b_{i}, b_{i}^{\prime} \geq a_{i}$ for all i and $b_{i} \neq b_{i}^{\prime}$ for at least one value of i. Let $L_{n+1}=\left(c_{1}, \ldots, c_{n} ; c_{n+1}, \ldots, c_{2 n}\right)_{\mathcal{B}}$, where $c_{i}=\min \left\{b_{i}, b_{i}^{\prime}\right\}$ and $c_{n+i}=\min \left\{1-b_{i}, 1-b_{i}^{\prime}\right\}$ for $1 \leq i \leq n$. Then $L_{n+1}=L_{n}+L^{\prime}$, so $L_{n}, L^{\prime} \subsetneq L_{n+1}$ and $\left[L_{n+1}: L_{n}\right]=q=\left[L_{n+1}: L^{\prime}\right]$. An obvious modification of the second half of the last paragraph finishes the proof in this case.

Finally, if $j=0$, write $L_{0}=\left(a_{1}, \ldots, a_{n} ;-a_{1}, \ldots,-a_{n}\right)_{\mathcal{B}}, L^{\prime}=\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime} ;-a_{1}^{\prime}, \ldots,-a_{n}^{\prime}\right)_{\mathcal{B}}$, and $L_{n}=\left(b_{1}, \ldots, b_{n} ; 1-b_{1}, \ldots, 1-b_{n}\right)_{\mathcal{B}}$. Note that $a_{i}+1, a_{i}^{\prime}+1 \geq b_{i} \geq a_{i}, a_{i}^{\prime}$ for all i and $a_{i} \neq a_{i}^{\prime}$ for at least one value of i. Let $L_{2 n-1}=\left(c_{1}, \ldots, c_{n} ; c_{n+1}, \ldots, c_{2 n}\right)_{\mathcal{B}}$, where $c_{i}=\max \left\{a_{i}, a_{i}^{\prime}\right\}$ and $c_{n+i}=\max \left\{-a_{i},-a_{i}^{\prime}\right\}$ for $1 \leq i \leq n$. Then $L_{2 n-1}=L_{0} \cap L^{\prime}$, so $L_{2 n-1} \subsetneq L_{0}, L^{\prime}$ and $\left[L_{0}: L_{2 n-1}\right]=q=\left[L^{\prime}: L_{2 n-1}\right]$. An obvious modification of the second half of the first paragraph finishes the proof in this case.

It will turn out to be convenient to first prove results about the type 0 vertices in Δ_{n} and to then use the transitive action of $\operatorname{GSp}_{n}(K)$ on the special vertices in Δ_{n} (see Proposition 3.7) to deduce the same results about the type n vertices in Δ_{n}. For $g \in \mathrm{GL}_{2 n}(K)$ and a chamber $C \in \Xi_{2 n}$, abuse notation and write $g C$ for the image of the vertices in C under the action of g.

Proposition 3.8. The group $\mathrm{GL}_{2 n}(K)$ (resp., $\operatorname{GSp}_{n}(K)$) maps a gallery in $\Xi_{2 n}$ of length m to a gallery in $\Xi_{2 n}$ of length m. In particular, if $C \neq C^{\prime}$ are adjacent chambers in $\Xi_{2 n}$ and $g \in \mathrm{GL}_{2 n}(K)$ (resp., $g \in \mathrm{GSp}_{n}(K)$), then $g C \neq g C^{\prime}$ are adjacent chambers in $\Xi_{2 n}$.

Proof. Let C_{0}, \ldots, C_{m} be a gallery in $\Xi_{2 n}$, and let $g \in \mathrm{GL}_{2 n}(K)$. If $m=0$ and C_{0} corresponds to the chain $\pi L_{0} \subsetneq L_{1} \subsetneq \cdots \subsetneq L_{2 n-1} \subsetneq L_{0}$, then $g\left(\pi L_{0}\right) \subsetneq g L_{1} \subsetneq \cdots \subsetneq g L_{2 n-1} \subsetneq g L_{0}$; i.e., $g C_{0}$ is a chamber in $\Xi_{2 n}$. If $m=1$ and $C_{0}=C_{1}$, then $g C_{0}, g C_{1}$ is a gallery in $\Xi_{2 n}$, so suppose $C_{0} \neq C_{1}$. Let $t_{0}, \ldots, t_{2 n-1}$ (resp., $x_{0}, \ldots, x_{2 n-1}$) be the vertices in C_{0} (resp., in C_{1}), and let $0 \leq j \leq 2 n-1$ such that $t_{j} \neq x_{j}$. For $0 \leq i \leq 2 n-1$, let $L_{i} \in t_{i}$ (resp., let $M_{i} \in x_{i}$) such that $\pi L_{0} \subsetneq L_{1} \subsetneq \cdots \subsetneq L_{2 n-1} \subsetneq L_{0}$ (resp., $\pi M_{0} \subsetneq M_{1} \subsetneq \cdots \subsetneq M_{2 n-1} \subsetneq M_{0}$) corresponds to C_{0} (resp., to C_{1}). Then $g\left(\pi L_{0}\right) \subsetneq g L_{1} \subsetneq \cdots \subsetneq g L_{2 n-1} \subsetneq g L_{0}$ (resp., $\left.g\left(\pi M_{0}\right) \subsetneq g M_{1} \subsetneq \cdots \subsetneq g M_{2 n-1} \subsetneq g M_{0}\right)$. Since $t_{i}=x_{i}$ implies $g t_{i}=g x_{i}, g C_{0}, g C_{1}$ is a gallery in $\Xi_{2 n}$. The fact that $g C_{0} \neq g C_{1}$ follows from the fact that $g x_{j} \neq g t_{j}$. The proof for $m \geq 2$ follows from the fact that $g C_{i}, g C_{i+1}$ is a gallery in $\Xi_{2 n}$ for all $0 \leq i \leq m-1$.

3.3 Counting Close Vertices in Δ_{n}

Let $\Gamma=\operatorname{Sp}_{n}(\mathcal{O})$, and note that the analogues of the results in section 4.1 of $[7]$ hold if $\operatorname{GSp}_{n}(K)$ acts on the lattices in V on the left (rather than on the right). The following is an analogue of Theorem 3.3 of [6] for the special vertices in Δ_{n}.

Theorem 3.1. If $t \in \Delta_{n}$ is a special vertex, then the number of vertices in Δ_{n} close to t is the number of left cosets of Γ in

$$
\Gamma \operatorname{diag}(1, \underbrace{\pi, \ldots, \pi}_{n-1}, \pi^{2}, \pi, \ldots, \pi) \Gamma
$$

Proof. First note that by Proposition 3.5, a special vertex in Δ_{n} has type either 0 or n. Let $t \in \Delta_{n}$ be a special vertex and $t^{\prime} \in \Delta_{n}$ a vertex close to t. Then there are adjacent chambers $C, C^{\prime} \in \Delta_{n}$ such that $t \in C, t^{\prime} \in C^{\prime}$, but $t, t^{\prime} \notin C \cap C^{\prime}$. Let Σ be an apartment of Δ_{n} containing C and C^{\prime}. If t has type 0 , then by Lemma 3.2, we may assume that relative to some symplectic basis \mathcal{B} for V specifying $\Sigma, t=[0, \ldots, 0 ; 0, \ldots, 0]_{\mathcal{B}} \in C_{0}$, where $C_{0} \in \Sigma$ is the chamber with vertices $[0, \ldots, 0 ; 0, \ldots, 0]_{\mathcal{B}},[0,1, \ldots, 1 ; 1, \ldots, 1]_{\mathcal{B}}, \ldots,[0, \ldots, 0 ; 1, \ldots, 1]_{\mathcal{B}}$. A straightforward modification of the fourth and fifth paragraphs of the proof of $[6$, Theorem 3.3] using the reflections defined in [7, p. 3411] finishes the proof in this case.

Now suppose t has type n, and let \mathcal{B} be a symplectic basis for V specifying Σ as in Lemma 3.1. Let $\widetilde{\Sigma}$ be the apartment of $\Xi_{2 n}$ specified by \mathcal{B}, and let $D, D^{\prime} \in \widetilde{\Sigma}$ be adjacent chambers with C in D, C^{\prime} in D^{\prime}, and $D \neq D^{\prime}$ as in Lemma 3.6. Let $g \in \operatorname{GSp}_{n}(K)$ with $\operatorname{ord}(\nu(g)) \equiv 1 \bmod 2$. Then by Proposition 3.6, gt has type 0. By Lemma 3.5, $g D$ (resp., $g D^{\prime}$) contains a chamber $C_{1} \in \Delta_{n}$ (resp., a chamber $C_{1}^{\prime} \in \Delta_{n}$) with $g t \in C_{1}$ (resp., with $g t^{\prime} \in C_{1}^{\prime}$). Furthermore, $g D \neq g D^{\prime}$ are adjacent chambers in $\Xi_{2 n}$ and $g t, g t^{\prime} \notin g D \cap g D^{\prime}$ by Proposition 3.8; i.e., $g t$ and $g t^{\prime}$ are close vertices in Δ_{n}. Finally, if S_{t} and $S_{g t}$ are the sets

Figure 3: Two close special vertices, both of type 0 , in Δ_{2}.
of vertices in Δ_{n} close to t and $g t$, respectively, then $\operatorname{Card}\left(S_{t}\right)=\operatorname{Card}\left(S_{g t}\right)$, and the last paragraph finishes the proof.

Remark. The analogues of the results in [7, Section 4.1] also hold if $\operatorname{Sp}_{n}(\mathcal{O})$ and $\operatorname{GSp}_{n}^{S}(K)$ are replaced by $\operatorname{GSp}_{n}(\mathcal{O})=\mathrm{GL}_{2 n}(\mathcal{O}) \cap \mathrm{GSp}_{n}(K)$ and $\mathrm{GSp}_{n}(K)$, respectively, and with $\operatorname{GSp}_{n}(K)$ acting on the left rather than on the right. In addition, the analogue of the above theorem holds with $\Gamma=\operatorname{GSp}_{n}(\mathcal{O})$; hence, so does Corollary 3.2.

We now count the number of vertices in Δ_{n} close to a given special vertex $t \in \Delta_{n}$. By Proposition 3.5 and Theorem 3.1, it suffices to assume t has type 0. By Proposition 3.4, t has a primitive representative L, so a chamber $C \in \Delta_{n}$ containing t corresponds to a chain of the form

$$
\begin{equation*}
\pi L \stackrel{q}{\subsetneq} L_{1} \stackrel{q}{\subsetneq} \cdots \stackrel{q}{\subsetneq} L_{n} \stackrel{q^{n}}{\subsetneq} L . \tag{5}
\end{equation*}
$$

The codimension-one face in C not containing t thus corresponds to the chain

$$
L_{1} \xlongequal[\subsetneq]{q} \ldots \stackrel{q}{\subsetneq} L_{n},
$$

and a vertex in Δ_{n} is close to t if it has a primitive representative $M \neq L$ such that

$$
\begin{equation*}
\pi M \stackrel{q}{\subsetneq} L_{1} \stackrel{q}{\subsetneq} \ldots \stackrel{q}{\subsetneq} L_{n} \stackrel{q^{n}}{\subsetneq} M . \tag{6}
\end{equation*}
$$

Given the lattice L_{1}, the possible L and M satisfy $L \neq M \subsetneq \pi^{-1} L_{1}$ with $\left[\pi^{-1} L_{1}: L\right]=$ $q=\left[\pi^{-1} L_{1}: M\right]$ and both L and M primitive. On the other hand, if $t, t^{\prime} \in \Delta_{n}$ are close type 0 vertices, then there must be primitive representatives $L \in t$ and $M \in t^{\prime}$ and lattices L_{1}, \ldots, L_{n} as in (5) such that $L \neq M \subsetneq \pi^{-1} L_{1}$. The same argument as in Section 2 shows that $\pi^{-1} L_{1}=L+M$, but we can vary L_{2}, \ldots, L_{n} as long as $\left\langle L_{i}, L_{i}\right\rangle \subseteq \pi \mathcal{O}$ for all $2 \leq i \leq n$ and the chains $\pi L \subsetneq L_{1} \subsetneq L_{2} \subsetneq \cdots \subsetneq L_{n} \subsetneq L$ and $\pi M \subsetneq L_{1} \subsetneq L_{2} \subsetneq \cdots \subsetneq L_{n} \subsetneq M$ correspond to chambers in Δ_{n}. In other words (as in the case of Ξ_{n}), if $t, t^{\prime} \in \Delta_{n}$ are close type 0 vertices, there may be more than one pair of adjacent chambers $C, C^{\prime} \in \Delta_{n}$ such that $t \in C, t^{\prime} \in C^{\prime}$, and $t, t^{\prime} \notin C \cap C^{\prime}$ (see Figure 3). We return to this later.

Before we count the number of vertices in Δ_{n} close to t, we make a few observations similar to those preceding Proposition 2.1. Fix a primitive representative $L \in t$. Then
$L / \pi L \cong k^{2 n}$ is endowed with a non-degenerate, alternating k-bilinear form. Moreover, the Correspondence Theorem, the fact that any \mathcal{O}-submodule of L containing πL is a lattice in V, and the fact that every 1-dimensional k-subspace of $L / \pi L$ is totally isotropic imply that the number of L_{1} is the number of 1-dimensional k-subspaces of $L / \pi L$. Given L_{1}, let $C \in \Delta_{n}$ be a chamber containing $\left[L_{1}\right]$ and t, and let A be the codimension-one face in C not containing t. Then the number of primitive lattices $M \neq L$ in V such that $M \subsetneq \pi^{-1} L_{1}$ and $\left[\pi^{-1} L_{1}: M\right]=q$ is one less than the number of chambers in Δ_{n} containing A.

Proposition 3.9. If $t \in \Delta_{n}$ is a special vertex, then the number $\omega\left(\Delta_{n}\right)$ of vertices in Δ_{n} close to t is

$$
\frac{q^{2 n}-1}{q-1} \cdot q
$$

(independent of t).
Proof. This follows from the preceding comments, the fact that the number of 1-dimensional subspaces of \mathbb{F}_{q}^{m} is exactly $\left(q^{m}-1\right) /(q-1)$, and Proposition 3.2.

Corollary 3.2. The number of left cosets of $\Gamma=\operatorname{Sp}_{n}(\mathcal{O})$ in

$$
\Gamma \operatorname{diag}(1, \underbrace{\pi, \ldots, \pi}_{n-1}, \pi^{2}, \pi, \ldots, \pi) \Gamma
$$

is $\left(\left(q^{2 n}-1\right) \cdot q\right) /(q-1)$.
Proof. This follows from Theorem 3.1 and the last proposition.
Proposition 3.1 and the last proposition prove the following analogue of Theorem 2.1.
Theorem 3.2. Let $r\left(\Delta_{n}\right)$ be the number of chambers in Δ_{n} containing a given special vertex (as in Proposition 3.1) and $\omega\left(\Delta_{n}\right)$ the number of vertices in Δ_{n} close to a given special vertex in Δ_{n} (as in Proposition 3.9). Then for all $n \geq 2, q \cdot r\left(\Delta_{n}\right)=r\left(\Delta_{n-1}\right) \omega\left(\Delta_{n}\right)$, where $r\left(\Delta_{1}\right)=q+1$.

When the given vertex in Δ_{n} has type 0 , we can also give a combinatorial proof of Theorem 3.2. As in Section 2, if $t \in \Delta_{n}$ is a fixed type 0 vertex, then we can try to count the number of vertices in Δ_{n} close to t by counting the number of galleries (in Δ_{n}) of length 1 starting at a chamber containing t and ending at a chamber not containing t. An argument analogous to that in Section 2 shows that if $t^{\prime} \in \Delta_{n}$ is a vertex close to t, then $\omega\left(\Delta_{n}\right)=\left(r\left(\Delta_{n}\right) \cdot q\right) / m\left(\Delta_{n}, t, t^{\prime}\right)$, where $m\left(\Delta_{n}, t, t^{\prime}\right)$ is the number of galleries of length 1 in Δ_{n} whose initial chamber contains t and whose ending chamber contains t^{\prime}.

To determine $m\left(\Delta_{n}, t, t^{\prime}\right)$, fix the following notation for the rest of this section. For close special vertices $t, t^{\prime} \in \Delta_{n}$ with t of type 0 , let $L \in t, M \in t^{\prime}$ be primitive representatives (by Proposition 3.4) such that there are lattices L_{1}, \ldots, L_{n} as in (5) and (6) with $\left\langle L_{i}, L_{i}\right\rangle \subseteq \pi \mathcal{O}$ for all $1 \leq i \leq n$. Recall that $L_{1}=\pi(L+M)$, but we can vary L_{2}, \ldots, L_{n} as long as $\left\langle L_{i}, L_{i}\right\rangle \subseteq \pi \mathcal{O}$ for all $2 \leq i \leq n$ and the chains

$$
\pi L \subsetneq L_{1} \subsetneq L_{2} \subsetneq \cdots \subsetneq L_{n} \subsetneq L \quad \text { and } \quad \pi M \subsetneq L_{1} \subsetneq L_{2} \subsetneq \cdots \subsetneq L_{n} \subsetneq M
$$

correspond to chambers in Δ_{n}. As in Section 2, each gallery in Δ_{n} counted by $m\left(\Delta_{n}, t, t^{\prime}\right)$ is uniquely determined by L_{2}, \ldots, L_{n}. Define two vertices in Δ_{n} to be adjacent if they are distinct and incident.

Lemma 3.7. Let $t, t^{\prime} \in \Delta_{n}$ be adjacent vertices such that t has a primitive representative L. Then t^{\prime} has a unique representative L^{\prime} such that $\left\langle L^{\prime}, L^{\prime}\right\rangle \subseteq \pi \mathcal{O}$ and $\pi L \subsetneq L^{\prime} \subsetneq L$.

Proof. Since t and t^{\prime} are adjacent vertices in $\Xi_{2 n}$, by Proposition 2.2 , t^{\prime} has a unique representative L^{\prime} such that $\pi L \subsetneq L^{\prime} \subsetneq L$. It thus suffices to show that $\left\langle L^{\prime}, L^{\prime}\right\rangle \subseteq \pi \mathcal{O}$. But t and t^{\prime} incident vertices in Δ_{n} with $t \neq t^{\prime}$ implies they have representatives $M \in t$ and $M^{\prime} \in t^{\prime}$ such that there is a primitive lattice L_{0} with $\langle M, M\rangle \subseteq \pi \mathcal{O},\left\langle M^{\prime}, M^{\prime}\right\rangle \subseteq \pi \mathcal{O}$, and either $\pi L_{0} \subseteq M \subsetneq M^{\prime} \subseteq L_{0}$ or $\pi L_{0} \subseteq M^{\prime} \subsetneq M \subseteq L_{0}$. Suppose $\pi L_{0} \subseteq M \subsetneq M^{\prime} \subseteq L_{0}$ (resp., $\pi L_{0} \subseteq M^{\prime} \subsetneq M \subseteq L_{0}$). Then M and πL (resp., M and L) homothetic implies $\pi L=\pi^{r} M$ (resp., $L=\pi^{r} M$) for some $r \in \mathbb{Z}$; hence, $\pi L \subsetneq \pi^{r} M^{\prime} \subsetneq L$. Let $L^{\prime}=\pi^{r} M^{\prime}$. Since L is primitive, $\left\langle\pi^{r-1} M, \pi^{r-1} M\right\rangle \subseteq \mathcal{O}$ (resp., $\left\langle\pi^{r} M, \pi^{r} M\right\rangle \subseteq \mathcal{O}$). On the other hand, $\left\langle\pi^{r-1} M, \pi^{r-1} M\right\rangle \subseteq \pi^{2(r-1)+1} \mathcal{O}$ (resp., $\left\langle\pi^{r} M, \pi^{r} M\right\rangle \subseteq \pi^{2 r+1} \mathcal{O}$), so $r \in \mathbb{Z}^{+}$(resp., $r \in \mathbb{Z}^{\geq 0}$) and $\left\langle L^{\prime}, L^{\prime}\right\rangle \subseteq \pi \mathcal{O}$.

Consider the set of vertices in Δ_{n} that are adjacent to t, t^{\prime}, and $[L+M]$, and define two such vertices to be incident if they are incident as vertices in Δ_{n}. Let $\Delta_{n}^{c}\left(t, t^{\prime}\right)$ be the set consisting of

- the empty set,
- all vertices in Δ_{n} adjacent to t, t^{\prime}, and $[L+M]$, and
- all finite sets A of vertices in Δ_{n} adjacent to t, t^{\prime}, and $[L+M]$ such that any two vertices in A are adjacent.

Then $\Delta_{n}^{c}\left(t, t^{\prime}\right)$ is a simplicial complex. In particular, $\Delta_{n}^{c}\left(t, t^{\prime}\right)$ is a subcomplex of Δ_{n}.
Lemma 3.8. If $\emptyset \neq A \in \Delta_{n}^{c}\left(t, t^{\prime}\right)$ is an i-simplex, then A corresponds to a chain of lattices $M_{1} \subsetneq \cdots \subsetneq M_{i+1}$, where $\left\langle M_{j}, M_{j}\right\rangle \subseteq \pi \mathcal{O}$ for all $1 \leq j \leq i+1$ and $\pi(L+M) \subsetneq M_{1} \subsetneq \cdots \subsetneq$ $M_{i+1} \subsetneq L \cap M$. In particular, A has at most $n-1$ vertices.

Proof. As in the proof of Lemma 2.1, we proceed by induction on i. If $i=0$, then L primitive, A adjacent to t, and Lemma 3.7 imply A has a unique representative M_{1} such that $\left\langle M_{1}, M_{1}\right\rangle \subseteq \pi \mathcal{O}$ and $\pi L \subsetneq M_{1} \subsetneq L$. Since A and $[L+M]$ are adjacent vertices in $\Xi_{2 n}$, either $M_{1} \subsetneq \pi(L+M)$ or $M_{1} \supsetneq \pi(L+M)$ by [3, p. 322]. But $M_{1} \subsetneq \pi(L+M)$ means $\pi L \subsetneq M_{1} \subsetneq \pi(L+M)$, which is impossible since $[\pi(L+M): \pi L]=q$; hence, $M_{1} \supsetneq \pi(L+M)$. Then A and t^{\prime} adjacent vertices in $\Xi_{2 n}$ and [3, p. 322] imply that either $M_{1} \subsetneq M$ or $M_{1} \supsetneq M$. Since $M_{1} \supsetneq M$ means $M \subsetneq M_{1} \subsetneq L$, which contradicts the fact that $[M: \pi(L+M)]=[L: \pi(L+M)], M_{1} \subsetneq M$ and $M_{1} \subseteq L \cap M$. Moreover, $\left\langle M_{1}, M_{1}\right\rangle \subseteq \pi \mathcal{O}$ implies $M_{1} / \pi L$ is a totally isotropic k-subspace of $L / \pi L$ and $\left[M_{1}: \pi L\right] \leq q^{n}$. The fact that $[L \cap M: \pi L]=q^{2 n-1}$ finishes the proof in this case.

Recall that $\langle\cdot, \cdot\rangle$ induces a non-degenerate, alternating k-bilinear form on $L / \pi L$. Then with respect to this induced bilinear form, $(L \cap M) / \pi L$ is the orthogonal complement of $\pi(L+M) / \pi L$ in $L / \pi L$. In addition, $\langle\cdot, \cdot\rangle$ induces a non-degenerate, alternating k-bilinear form on $(L \cap M) / \pi(L+M) \cong k^{2(n-1)}$, and there is a bijection between nested sequences $S_{1} \subsetneq \cdots \subsetneq S_{i+1}$ of totally isotropic k-subspaces of $(L \cap M) / \pi(L+M)$ and chains of \mathcal{O} submodules $M_{1} \subsetneq \cdots \subsetneq M_{i+1}$ of $L \cap M$ containing $\pi(L+M)$ with $\left\langle M_{j}, M_{j}\right\rangle \subseteq \pi \mathcal{O}$ for all $1 \leq j \leq i+1$. An obvious modification of the second paragraph of the proof of Lemma 2.1 finishes the proof.

Recall that $\Delta_{n}^{s}(k)$ denotes the spherical $C_{n}(k)$ building described in [5, pp. $\left.5-6\right]$.
Proposition 3.10. For any close special vertices $t, t^{\prime} \in \Delta_{n}$ with t of type $0, \Delta_{n}^{c}\left(t, t^{\prime}\right)$ is isomorphic (as a poset) to $\Delta_{n-1}^{s}(k)$ (independent of t and t^{\prime} with t of type 0).

Proof. Let $L \in t, M \in t^{\prime}$ be primitive representatives as in the paragraph preceding Lemma 3.7, and let $\Delta_{n-1}^{s}(k)$ be the spherical $C_{n-1}(k)$ building with simplices the empty set, together with the nested sequences of non-trivial, totally isotropic k-subspaces of $(L \cap M) / \pi(L+M)$. Then the last lemma implies that there is a bijection between the i-simplices in $\Delta_{n}^{c}\left(t, t^{\prime}\right)$ and the i-simplices in $\Delta_{n-1}^{s}(k)$ for all i. Since this bijection preserves the partial order (face) relation, it is a poset isomorphism.

Proposition 3.11. If $t, t^{\prime} \in \Delta_{n}$ are close special vertices with t of type 0 , then $m\left(\Delta_{n}, t, t^{\prime}\right)=$ $r\left(\Delta_{n-1}\right)$ (independent of t and $\left.t^{\prime}\right)$. In particular, $\omega\left(\Delta_{n}\right)=\left(r\left(\Delta_{n}\right) \cdot q\right) / r\left(\Delta_{n-1}\right)$.

Proof. The proof is an obvious modification of the proof of Theorem 2.2.

References

[1] K. Brown, Buildings, Springer-Verlag (1989).
[2] D. Cartwright, Harmonic functions on buildings of type \widetilde{A}_{n}, in M. Picardello and W. Woess (editors), Random Walks and Discrete Potential Theory, pp. 104-138.
[3] P. Garrett, Buildings and Classical Groups, Chapman \& Hall (1997).
[4] J. Parkinson, Buildings and Hecke algebras, Journal of Algebra, 297 (2006), no. 1, 1 - 49.
[5] M. Ronan, Lectures on Buildings, volume 7 of Perspectives in Mathematics, Academic Press, Inc. (1989).
[6] A. Schwartz and T. Shemanske, Maximal orders in central simple algebras and Bruhat-Tits buildings, Journal of Number Theory, 56 (1996), no. 1, 115-138.
[7] T. Shemanske, The arithmetic and combinatorics of buildings for Sp_{n}, Transactions of the American Mathematical Society, 359 (2007), no. 7, 3409-3423.
[8] J. Tits, Reductive groups over local fields, in A. Borel and W. Casselman (editors), Automorphic Forms, Representations and L-functions. Part I, pp. 29-69.

