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Abstract

We give the factorization of certain constants that appear in (conjectural) formulas for moments
of zeta-functions, making it obvious that these constants are integers (which was already proved
by Conrey and Farmer). We extend this analysis to other constants emerging from the random-
matrix theory calculations of Keating and Snaith.

1. Introduction.

Following work of Conrey and Ghosh, and of Keating and Snaith [6], it is believed that

(1)
1
T

∫ T

0

∣∣∣∣ζ
(

1
2

+ it

)∣∣∣∣
2k

∼ gk,U ·
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∑

n≥1
dk(n)

ns , and

(2) gk,U := (k2)!
1!2! . . . (k − 1)!

k!(k + 1)! . . . (2k − 1)!
.

This has been proved for k = 1 (Hardy and Littlewood, 1918) and k = 2 (Ingham, 1926), and
is otherwise an open conjecture. The lower bound #k (log T )k2

was given by Ramachandra
[7] in 1980, and with the implicit constant as in (1), divided by gk,U , assuming the Riemann
Hypothesis by Conrey and Ghosh [3] in 1984, and the upper bound $k,ε (log T )k2+ε assuming
the Riemann Hypothesis was given recently by Soundararajan [10]. A persuasive heuristic
argument in favour of (1) is given in [2].
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Similarly one can conjecture the average value of the “2kth moments” of other L-functions,
perhaps averaging over different L-functions in a certain class (for example the quadratic Dirich-
let L-functions, or those connected with natural classes of modular forms) rather than over t.
Various cases have been considered, following the philosophy of Katz and Sarnak [5], especially
as formulated in [2], and each involves a formula like (1), though with slightly different con-
stants involved. In fact the power of log T involved, and the Euler product have long been
understood since they come from number theoretic considerations. The highly influential work
of Keating and Snaith [6] suggests a value for the constants gk in each case, coming from a
random matrix theory calculation, namely the average of the sth power of the absolute value of
the characteristic polynomial of an N×N matrix as we vary over a suitable set of matrices (with
an appropriate measure).1 Lower bounds for these moments, out by at most a constant, were
given by Rudnick and Soundararajan [8,9], and good upper bounds, out by at most (log T )o(1),
by Soundararajan [10, section 4].

The first few gk,U are 1, 2, 42, 24024, . . . and seem to always be integers, though this is not
clear from the definition (2). Conrey and Farmer [1] confirmed the experimental evidence that
these are always integers, and even noticed some self-similar structure in the powers to which
primes divide these integers.2 We give another proof of the fact that these are always integers
by obtaining a new description of the power to which each prime divides gk, which also easily
explains (and confirms) Conrey and Farmer’s observations about self-similarity.

For a given integer k and prime power q we define kq to be that integer satisfying kq ≡ k

(mod q) with −q/2 ≤ kq < q/2. We let [t] be the largest integer ≤ t, and {t} = t − [t] ∈ [0, 1)
be the fractional part of t.

Theorem 1U . We have

gk,U := (k2)!
1!2! . . . (k − 1)!

k!(k + 1)! . . . (2k − 1)!
=

∏

p prime
a≥1, q=pa

p

»
k2

q
q

–

,

so that gk,U is an integer for all k ≥ 1.

Conrey and Farmer also showed that the numbers

gk,Sp := 2
1
2 k(k+1)

(
k(k + 1)

2

)
!

1!2! . . . k!
2!4! . . . 2k!

.

are all integers, and we give our own proof:

1For example, the ‘U ’ in gk,U stands for the set of unitary matrices, taken with Haar measure.
2They also gave a complete history of the conjectured existence and study of these constants gk.
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Theorem 1Sp. We have

gk,Sp/2
1
2 k(k+1) =

∏

p prime ≥3
a≥1, q=pa

p

h
kq(kq+1)

2q

i

·
∏

a≥1, q=2a

2
h

kq(kq+1)
2q − 1

2 ([ 2k
q ]−[ k

q ])
i

,

so that gk,Sp/2
1
2 k(k−1) is an integer for all k ≥ 1.

The main idea in the proof goes back to Legendre and Kummer, and is widely used when
understanding prime factors of binomial coefficients (see, e.g., [4]): Write out each factorial
j! as the product of the integers up to j and then determine how many of these integers are
divisible by each prime power q. One pieces that information together to get the result.3

Jon Keating suggested looking at [6] for other constants that might prove to be integers,
when multiplied through by a suitable quantity. There are several natural ways to guess at
“suitable”. Here we give one which generalizes the last part of Theorem 1U :

Theorem 2even. The number

Gm,k := (mk2)! · (mk)!
k!m

· m! 2m! 3m! . . . (k − 1)m!
km! (k + 1)m! . . . (2k − 1)m!

is an integer for any integers m,k ≥ 1.

Note that gk,U = G1,k so this generalizes Theorem 1U . It almost gives Theorem 1Sp: Since
(2! 4! . . . 2l!)2 = (2! 4! . . . 2l!)(1!2 3!4 . . . (2l − 1)!2l) = (1! 2! 3! . . . 2l!)2ll!,

G2,k = (2k2)! · (2k)!
k!2

· (2! 4! 6! . . . 2(k − 1)!)2

2! 4! . . . 2(2k − 1)!
= (2k2)! · 2k

k!
· 1! 2! 3! . . . (2k − 1)!

2! 4! . . . 2(2k − 1)!

=
(

2k2

k

)
· g2k−1,Sp

22k2−2k

so these are closely related.

We will give a further (but more complicated) generalization, Theorem 2odd, in Section 4.

Theorem 2 does not give a factorization comparable to those given in Theorem 1. Actually
it is possible to do so with additional complications since, in general, the exponent on q will
equal l2/qm where l is the least residue, in absolute value, of mk (mod q) plus a term which
depends only on q (mod m) and [2mk/q] (mod 2m), but which does not obviously yield a
simple description (see Corollary 5.3 below).

3Note that if j is divisible by p! we count the ! powers of p by including them one at a time, since j is
divisible by p, then since j is divisible by p2, . . . , and finally since j is divisible by p!.
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Notation: Here and henceforth (t)d is the least non-negative residue of t (mod d), and note
that { t

d} = (t)d

d . As usual vp(m) denotes the power of p that divides m. Let ωq(a1 · a2 · · · ar)
denote the number of aj that are divisible by q.4 Also ωq(a · b!) = ωq(a · 1 · 2 · · · b), and note
that ωq(b!) = [b/q]. The key observation (as described above) is that

vp(a1 · a2 · · · ar) =
∑

e≥1
q=pe

ωq(a1 · a2 · · · ar).

2. Proof of Theorem 1.

Proof of the factorization of gk,U . For n = aq + b with 0 ≤ b ≤ q − 1, the number of integers
amongst 1!2! . . . (aq + b)! that are divisible by q, that is ωq(1!2! . . . n!), is

n∑

i=0

[
i

q

]
=

n∑

i=0

i

q
−
{

i

q

}
=

n(n + 1)
2q

−
a−1∑

j=0

q−1∑

"=0

#

q
−

b∑

"=0

#

q
=

n(n + 1)
2q

− a · q − 1
2

− b(b + 1)
2q

.

Writing k − 1 = aq + b, so that 2k − 1 = Aq + B with A = 2a,B = 2b + 1 if b ≤ q
2 − 1, and

A = 2a + 1, B = 2b + 1 − q if b > q
2 − 1, we deduce that ωq(gk,U ) equals

k2

q
−
{

k2

q

}
+ 2
(

k(k − 1)
2q

− a · q − 1
2

− b(b + 1)
2q

)
−
(

2k(2k − 1)
2q

− A · q − 1
2

− B(B + 1)
2q

)

= (A − 2a) · q − 1
2

+
B(B + 1)

2q
− b(b + 1)

q
−
{

(b + 1)2

q

}
.

Now if b + 1 ≤ q
2 then this is

(b + 1)2

q
−
{

(b + 1)2

q

}
=
[
(b + 1)2

q

]
,

and if b + 1 > q
2 then this is

q − 2(b + 1) +
(b + 1)2

q
−
{

(b + 1)2

q

}
=

(q − (b + 1))2

q
−
{

(b + 1)2

q

}
=
[
(b + 1 − q)2

q

]
.

Proof of the factorization of gk,Sp. Now ωq(gk,Sp/2
1
2k(k+1)) equals

[
k(k + 1)

2q

]
+

k∑

j=1

[
j

q

]
−
[
2j
q

]
= −
{

k(k + 1)
2q

}
+

k∑

j=1

{
2j
q

}
−
{

j

q

}

4Note that this definition depends on the representation, as a product, of the number inside the brackets,
and not on the number itself. Hence ω4(2 · 8) = 1, whereas ω4(4 · 4) = 2.
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If q is odd, then as j runs from one multiple of q to the next, the last two summands run
through the same terms and so cancel. Hence if k = aq + b the above becomes

−
{

b(b + 1)
2q

}
+

b∑

j=1

2j
q

− j

q
−
∑

q/2≤j≤b

1 =
b(b + 1)

2q
−
{

b(b + 1)
2q

}
− max

{
0, b −

[
q − 1

2

]}
.

So if b ≤ q−1
2 this equals

[
b(b+1)

2q

]
. The result follows for b > q−1

2 since

b(b + 1)
2q

−
(

b − q − 1
2

)
=

(b − q)(b + 1 − q)
2q

.

If q is even then
q∑

j=1

{
2j
q

}
−
{

j

q

}
=

q∑

j=1

j

q
−
(q

2
+ 1
)

= −1
2
.

There is a new subtlety: k(k+1)
2q = b(b+1)

2q − a
2 (mod 1). Hence if b < q

2 then we have, in total,

b(b + 1)
2q

− a

2
−
{

b(b + 1)
2q

− a

2

}
=
[
kq(kq + 1)

2q
− a

2

]
.

On the other hand k(k+1)
2q = (b−q)(b−q+1)

2q − a+1
2 (mod 1) so that if b ≥ q

2 then we have, in total,

b(b + 1)
2q

−
{

k(k + 1)
2q

}
−
(
b −
(q

2
− 1
))

− a

2

=
(b − q)(b − q + 1)

2q
− a + 1

2
−
{

(b − q)(b − q + 1)
2q

− a + 1
2

}

=
[
kq(kq + 1)

2q
− a + 1

2

]
.

Proof that gk,U and gk,Sp are both integers. The exponent corresponding to each prime power
is a non-negative integer, except perhaps for the power of 2 in gk,Sp. In that case we write
k =
∑

i δi2i in binary and suppose that q = 2e with k = aq + b, so that a =
∑

i≥e δi2i−e and
b =
∑

0≤i≤e−1 δi2i, and thus b ≥ q/2 iff δe−1 = 1. Then

[
kq(kq + 1)

2q
− 1

2

([
2k
q

]
−
[
k

q

])]
=



kq(kq + 1)
2q

− 1
2




∑

i≥e

δi2i−e + δe−1









=
[
kq(kq + 1)

2q
− 1

2
(δe−1 + δe)

]
−
∑

i≥e+1

δi2i−e−1.

Now
∑

e≥1

∑

i≥e+1

δi2i−e−1 =
∑

i≥2

δi

i−1∑

e=1

2i−1−e =
∑

i≥1

δi(2i−1 − 1) =
[
k

2

]
−
∑

i≥1

δi,
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so that

v2(gk,Sp) =
k(k + 1)

2
−
[
k

2

]
+
∑

e≥1

[
kq(kq + 1)

2q
+

1
2

(δe − δe−1)
]

≥ k2

2
+

δ0

2
+
∑

e≥1

[
δe − δe−1

2

]
≥ k2

2
− log 2k

log 4
≥ k(k − 1)

2
.

3. Further remarks on divisibility of gk,U .

3.1. Self-similarity. Let ‖ t ‖:= minn∈Z |t − n| be the distance from t to the nearest integer.
Evidently |kq | = q ‖ k/q ‖ so that k2

q/q = q ‖ k/q ‖2, and [k2
q/q] = q ‖ k/q ‖2 +O(1). Moreover

if q ≥ 2k then |kq | = |k| and so if q > k2 then [k2
q/q] = 0. Also if q > k2 then q ‖ k/q ‖2= k2/q.

From all this we deduce that the power of p dividing gk,U , given by vp(gk,U ), satisfies
∣∣∣∣∣vp(gk,U ) −

∑

a∈Z
pa ‖ k/pa ‖2

∣∣∣∣∣ ≤
∑

a≥1
pa≤k2

1 +
∑

a≥1
pa>k2

k2/pa +
1
4

∑

a≤0

pa ≤
[
2 log k

log p

]
+

5
4
· p

p − 1
.

So define, as in [1],
cp(x) = x−1

∑

a∈Z
pa ‖ x/pa ‖2,

which is “self-similar” in that cp(x) = cp(px) for all real x; and so

(3.1) vp(gk,U) = kcp(k) + O

(
log pk

log p

)
= kcp(xp,k) + O

(
log pk

log p

)
,

where xp,k is the unique element of [1, p) for which k/xp,k is a power of p. This is a strong
version of the ingenious Theorem 6.1 of [1].

3.2. Change in p-divisibility. Along these lines it is also interesting to consider vp(gk+pb,U)−
vp(gk,U) when pb ≤ k < pb+1: By (3.1) this equals

∑

ae≥1
q=pa

(k′)2q − k2
q

q
+ O

(
log pk

log p

)
,

where k′ = k + pb. Now k′
q = kq for all q = pa, a ≤ b, and k′

q = k′ with kq = k provided k′ ≤ q
2

where q = pa. If this holds for a = b + 1 then the sum above equals

∑

a≥b+1

(k′)2 − k2

q
=

k + k′

p − 1
.
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Otherwise we must make a correction when q = pb+1 with k′ > q/2, in which case either k < q
2

whence k′
q = q − k′ = q − pb − k and kq = k, or q

2 < k whence |k′
q | = |q − k′| = |q − pb − k| and

kq = q − k. Therefore

vp(gk+pb,U ) − vp(gk,U ) =
k + k′

p − 1
+ O

(
log pk

log p

)
− 2 ·






0 if k′ < q
2

k′ − pb+1

2 if k < q
2 < k′

pb if q
2 < k

.

3.3. Further divisibility. The numbers gk,U are highly composite and one might suspect that
they are divisible by factorials (in terms of k). A little experimenting and one finds that gk,U

is not always divisible by k! but it is close, that is the denominator of gk,U/k! is always small.
(Indeed gk/k! is an integer for k ≤ 4 but g5/5! has denominator 2).

For any k there exists r such that pr ≤ k < pr+1.

Suppose k ≤ pr+1/2; then k2
q = k2 for q = pa with a ≥ r + 1, and so k2

q/pr+b = k/pr · k/pb ≥
k/pb. Hence, by Theorem 1, the power of p dividing gk,U is

∑

a≥1, q=pa

[
k2

q

q

]

≥
∑

b≥1
q=pr+b

[
k2

q

pr+b

]

≥
∑

b≥1

[
k

pb

]
= vp(k!).

Now suppose that k = pr+1 − l with l < pr+1/2. Then k2
q = k2 for q = pa with a ≥ r + 2

(so the same argument as above works for those terms) and k2
q = l2 for q = pr+1. If l ≥ pr+1/2

then l2/pr+1 ≥ pr ≥ k/p so that

∑

a≥1, q=pa

[
k2

q

q

]
≥
[

l2

pr+1

]
+
∑

b≥2

[
k2

pr+b

]
≥
∑

b≥1

[
k

pb

]
= vp(k!).

Hence the only remaining range is pr+1 − pr+1/2 < k < pr+1, in which we do have examples
where p divides the denominator: Let k = p2 − p + r where 1 ≤ r <

√
p, so that the power of

p dividing gk,U is [r2/p] + [(p − r)2/p2] + [(p2 − p + r)2/p3] = 0 + 0 + p − 2 + [((2r + 1)p2 −
2rp + r2)/p3] = p − 2 whereas vp(k!) = [(p2 − p + r)/p] = p − 1. In fact one can show that
if k = p2r − p2r−1 + p2r−2 − p2r−3 + . . . , where p is sufficiently large (in terms of r) then
vp(k!) = vp(gk,U) + r

We might compensate as follows: Given k, let #k := 1 + [
√

k]. We conjecture that k!/#k!
divides gk,U , when k ,= 20, 22. If true this is “best possible” in that p divides the denominator
of gk,U/(k!/[

√
k]!) when k = p2 − p + 1.
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4. Other constants from random matrix theory.

4.1. The big picture: a suggestion of Jon Keating. The average of the sth power of the
absolute value of the characteristic polynomial of an N × N matrix in the various ensembles
(Unitary r = 2, Orthogonal r = 1, Symplectic r = 4) is given by the formula (see (110) of [6])

MN (r, s) :=
N−1∏

j=0

Γ(1 + jr/2)Γ(1 + s + jr/2)
Γ(1 + s/2 + jr/2)2

.

This product has a lot of cancelation if s is divisible by r, that is s = rk for some integer k ≥ 1,
whence the above becomes

MN (r, rk) =
N−1∏

j=0

Γ(1 + jr/2)Γ(1 + (2k + j)r/2)
Γ(1 + (k + j)r/2)2

= P (r, rk)
k−1∏

j=0

Γ(1 + (N + k + j)r/2)
Γ(1 + (N + j)r/2)

= P (r, rk)
(

rN

2

)rk2/2

eO(k3/N),

where

(4.1) P (r, rk) :=
k−1∏

j=0

Γ(1 + jr/2)
Γ(1 + (k + j)r/2)

.

Hence as N → ∞,

MN (r, rk) ∼ P (r, rk)
(

rN

2

)rk2/2

.

If r is even, say r = 2m we have

(4.2) P (2m, 2mk) =
m! 2m! 3m! . . . (k − 1)m!

km! (k + 1)m! . . . (2k − 1)m!
,

and so

MN (2m, 2mk) ∼ γm,k
Nmk2

(mk2)!
where γm,k := mmk2

(mk2)! · P (2m, 2mk).

In Theorem 1U we saw that γ1,k = gk,U , and we might guess that γm,k is always an integer.
However this is not so, as we can see from the example γ4,k which has denominator 2k − 1 for
k = 2, 3, 4, 6. Quite extensive calculations appear to reveal that the denominator of γm,k is
always quite small. In section 6 below we will prove Theorem 2even, which states that

(mk2)! · (mk)!
k!m

· P (2m, 2mk) is an integer for any m,k ≥ 1

(and hence (mk)!
k!m · γm,k is always an integer); and we give reasons there to believe that it is

unlikely that a smaller multiplier than (mk)!
k!m will do.



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (2008), #A47 9

Suppose that r is odd. Note that if d is odd then Γ(1 + d/2) =
√

πd!/(2d[d
2 ]!), so that

2l−1∏

j=0

Γ(1 + jr/2) =
l−1∏

i=0

Γ(1 + ir)Γ(1 + (2i + 1)r/2) =
l−1∏

i=0

(ir)!
√

π(2i + 1)r!

2(2i+1)r
[

(2i+1)r
2

]
!
.

Therefore

P (r, 2rk) =
∏2k−1

j=0 Γ(1 + jr/2)2
∏4k−1

j=0 Γ(1 + jr/2)
= 22rk2

∏k−1
i=0 (ir)!2(2i + 1)r!

∏2k−1
i=k (ir)!2(2i + 1)r!

·
∏4k−1

j=2k

[ jr
2

]
!

∏2k−1
j=0

[ jr
2

]
!

= 22rk2

( ∏k−1
i=0 ir!

∏2k−1
i=k ir!

)2

·
∏2k−1

i=k 2ir!
∏k−1

i=0 2ir!
·
∏2k−1

j=0 jr!
∏4k−1

j=2k jr!
·
∏4k−1

j=2k

[ jr
2

]
!

∏2k−1
j=0

[ jr
2

]
!

= 22rk2
· P (2r, 2rk)2P (2r, 4rk)

P (4r, 4rk)
·
∏4k−1

j=2k

[
jr
2

]
!

∏2k−1
j=0

[
jr
2

]
!
.(4.3)

which is thus a rational number. In section 6 we deduce from (4.3):

Theorem 2odd. The number

(2rk2)! · (rk)!
k!r

·
(

(2rk)!
k!2r

)2

· P (r, 2rk)
22rk2

is an integer, for any integers k ≥ 1 and odd r ≥ 1.

4.2. Connections between constants.

We have seen that γ1,k = gk,U . There are two ways to obtain gk,Sp: For m = 2 we have,
since (2j)! = 2j · (2j − 1)!,

γ2,k = 22k2
(2k2)! · (2! 4! . . . (2k − 2)!)2

2! 4! . . . (4k − 2)!

= 22k2
(2k2)! · 1!2!3!4! . . . (2k − 2)!(2 · 4 · · · 2(k − 1))

2! 4! . . . (4k − 2)!

= 22k2
(2k2)! · 1!2!3!4! . . . (2k − 2)!(2k−1 · (k − 1)!)

2! 4! . . . (4k − 2)!

= 22k (2k2)!k!
(2k2 − k)!(2k)!

· g2k−1,Sp

If r = 1 we use the identity Γ(z)Γ(z + 1/2) = 21−2z√π Γ(2z), to obtain

MN (1, 2k) ∼
(

N

2

)2k2

·
k−1∏

i=0

Γ(1 + i)Γ(3/2 + i)
Γ(1 + k + i)Γ(3/2 + k + i)

=
(

N

2

)2k2

·
k−1∏

i=0

22kΓ(2 + 2i)
Γ(2 + 2i + 2k)

= N2k2
· 1!3! . . . (2k − 1)!
(2k + 1)!(2k + 3)! . . . (4k − 1)!

=
N2k2

(2k2)!
· (2k2)!(2k)!2

(2k2 − k)!k!(4k)!22(k2−k)
· g2k−1,Sp,
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so that

P (1, 2k) =
22k

(4k
2k

) ·
g2k−1,Sp

(2k2 − k)!k!
and P (4, 4k) =

22k−2k2

(2k
k

) · g2k−1,Sp

(2k2 − k)!k!
.

Hence Theorems 1Sp, 2even and 2odd imply that

2k−1 · g2k−1,Sp

22k2−2k
,

(
2k2

k

)
· g2k−1,Sp

22k2−2k
and
(

2k2

k

)
·
(
2k
k

)2
(4k
2k

) · g2k−1,Sp

22k2−2k

are integers, respectively. This allows us to compare the strength of the various results, and
implies that, perhaps, the (mk2)! and (2rk2)! in Theorem 2 could be replaced by somethings
slightly smaller.

A general identity of this kind is:

M2n−1(1, s) =
Γ(1 + s)

Γ(1 + s/2)2
·
2n−2∏

j=1

Γ(1 + j/2)Γ(1 + s + j/2)
Γ(1 + s/2 + j/2)2

=
4Γ(s)

sΓ(s/2)2
·

n−1∏

i=1

Γ(1
2 + i)Γ(1

2 + s + i)
Γ(1

2 + s/2 + i)2
· Γ(1 + i)Γ(1 + s + i)

Γ(1 + s/2 + i)2

=
4Γ(s)

sΓ(s/2)2

/
Γ(1 + 2s)
Γ(1 + s)2

·
n−1∏

i=0

Γ(1 + 2i)Γ(1 + 2s + 2i)
Γ(1 + s + 2i)2

=
2Γ(s)3

Γ(2s)Γ(s/2)2
· Mn(4, 2s).(4.4)

5. A reciprocity law.

5.1. A reciprocity law and useful formulas. Define

A(n, q;Q) := #{i, 1 ≤ i ≤ n : (iQ)q ≤ (−nQ)q}−
n(−nQ)q

q
.

Theorem 5.1. Let q and m be coprime integers. For any given integer k, let n = (k)q and l be
the least residue, in absolute value, of mk (mod q),5 and then N = mn−l

q (which is the nearest
integer to mn/q). We have

ωq

(
(mk2)! · m! 2m! 3m! . . . (k − 1)m!

km! (k + 1)m! . . . (2k − 1)m!

)

equals

A(n, q;m) −
{

1 if n > q/2
0 otherwise

+
{

1 if l < 0
0 otherwise

−
{

mn2

q

}
.

One can directly evaluate A(n, q;Q) though this will not be useful in our application. Instead
we have the following “reciprocity law”:

5If k ≡ q/2 (mod q) then we let l = q/2.
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Proposition 5.2. (Reciprocity law) Let q and Q be coprime integers. For any given integer
n, 0 ≤ n ≤ q−1, let l be the least residue, in absolute value, of Qn (mod q), and then N = Qn−l

q

(which is the nearest integer to Qn/q). Let L be the least residue, in absolute value, of qN

(mod Q). Then

(5.1) A(n, q;Q) + A(N,Q; q) = qQ

∣∣∣∣
n

q
− N

Q

∣∣∣∣
2

−
{

1 if l, L < 0
0 otherwise

+
{

1 if n > q/2
0 otherwise.

Although we have attempted to state Proposition 5.2 in as symmetric a form as possible,
one cannot interchange the capital and lower case letters, since n = qN+l

Q , not qN−L
Q , and L is

the least residue, in absolute value, of −l (mod Q) so that L can equal −l but not usually.

By combining Theorem 5.1 and Proposition 5.2, we deduce

Corollary 5.3. With the notation as above we have

mk2

q
+ ωq(P (2m, 2mk)) =

l2

qm
− A(N,m; q) +

{
1 if l < 0 ≤ L

0 otherwise.

One can use Proposition 5.2 to develop an algorithm to evaluate A(n, q;Q):

Algorithm 5.4. For evaluating A(n, q;Q) when q > Q with (q,Q) = 1: Let q1 = q and q2 = Q.
Then let qj = rjqj+1 + qj+2 for each j ≥ 1, where rj = [qj/qj+1] and qj+2 = (qj)qj+1 ; that is
{qj : j ≥ 1} is the sequence of numbers which appears in the Euclidean algorithm starting with
q > Q.

Let n1 = n. Now select nj+1 so that nj+1/qj+1 is the nearest fraction to nj/qj , with denom-
inator qj+1. In the case that nj/qj is exactly halfway between two such fractions, we must have
nj = qj/2 and we let nj+1 = (qj+1 − 1)/2. Then

(5.2) A(n, q;Q) =
J−1∑

j=1

(−1)j−1qjqj+1

(
nj

qj
− nj+1

qj+1

)2

+
∑

1≤j≤J−1
nj
qj

<
nj+1
qj+1

<
nj+2
qj+2

(−1)j + ε

where ε and J are defined as follows: Let J be the smallest integer for which nJ = 0 or qJ . If
nJ = 0 let I be the smallest integer i ≥ 1 for which ni/qi ≤ 1/2, and then let ε = 0 if I is odd,
and ε = 1 if I is even. If nJ = qJ then let ε = (−1)J−1.

We begin our proofs with a technical lemma:
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Lemma 5.5. Let q and Q be coprime integers. If 0 ≤ n ≤ q − 1 then

A(n, q;Q) = 2
n∑

i=1

[
iQ

q

]
−

2n∑

i=1

[
iQ

q

]
+

n2Q

q
+
{

1 if n ≥ q/2
0 otherwise.

Proof. For n = 0 we have 0 = 0. Otherwise 1 ≤ n ≤ q − 1 so that (iQ)q < (−nQ)q iff
(iQ)q + (nQ)q < q iff

{
iQ
q

}
+
{

nQ
q

}
< 1 iff

[
(n+i)Q

q

]
−
[

nQ
q

]
−
[

iQ
q

]
= 0 (and this equals 1

otherwise). Also (iQ)q = (−nQ)q iff i = q − n which holds in our range iff n ≥ q/2. Hence

A(n, q;Q) =
n∑

i=1

(
1 −
[
(n + i)Q

q

]
+
[
nQ

q

]
+
[
iQ

q

]
− (−nQ)q

q

)

=
n∑

i=1

([
iQ

q

]
−
[
(n + i)Q

q

]
+

nQ

q

)
= 2

n∑

i=1

[
iQ

q

]
−

2n∑

i=1

[
iQ

q

]
+

n2Q

q

plus 1 if n ≥ q/2, since
[

nQ
q

]
− (−nQ)q

q = nQ
q − (nQ)q+(−nQ)q

q = nQ
q − 1.

Proof of Theorem 5.1. As
∑x+q

j=x+1

{
mj
q

}
=
∑q−1

i=0

{
i
q

}
= q−1

2 , we have

2k∑

j=1

[
mj

q

]
− 2

k∑

j=1

[
mj

q

]
−
[
mk2

q

]
= 2

k∑

j=1

{
mj

q

}
−

2k∑

j=1

{
mj

q

}
+
{

mk2

q

}

= 2
n∑

j=1

{
mj

q

}
−

2n∑

j=1

{
mj

q

}
+
{

mn2

q

}
=

2n∑

j=1

[
mj

q

]
− 2

n∑

j=1

[
mj

q

]
−
[
mn2

q

]
,

and similarly
[

2mk
q

]
− 2
[

mk
q

]
=
[

2mn
q

]
− 2
[

mn
q

]
, so that the desired quantity

ωq =
[
mk2

q

]
+ 2

k−1∑

j=1

[
mj

q

]
−

2k−1∑

j=1

[
mj

q

]
=
[
mn2

q

]
+ 2

n−1∑

j=1

[
mj

q

]
−

2n−1∑

j=1

[
mj

q

]

= A(n, q;m) −
{

1 if n ≥ q/2
0 otherwise

−
{

mn2

q

}
+
[
2mn

q

]
− 2
[
mn

q

]

by Lemma 5.5.

Proof of Proposition 5.2. If n = 0 then l = 0, N = 0 so we have 0 = 0 in (5.1). For 1 ≤ n ≤ q−1,
let v =

[
Qn
q

]
. Then

n∑

i=1

[
Qi

q

]
=

v−1∑

j=0

j

([
q(j + 1) − 1

Q

]
−
[
qj − 1

Q

])
+ v

(
n −
[
qv − 1

Q

])

= vn −
v∑

j=1

[
qj − 1

Q

]
= vn −

v∑

j=1

[
qj

Q

]
+
[

v

Q

]
,
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since
[

qj−1
Q

]
=
[

qj
Q

]
unless Q|j. Hence, as

[
v
Q

]
=
[

n
q

]
, and as v = N when l ≥ 0 and v = N −1

when l < 0, we have

(5.3)
n∑

i=1

[
Qi

q

]
+

N∑

j=1

[
qj

Q

]
= nN +

[
n

q

]
+

{ [
−l
Q

]
if l < 0;

0 if l ≥ 0,

since qN
Q − n = −l

Q . Similarly

2n∑

i=1

[
Qi

q

]
+

2N∑

j=1

[
qj

Q

]
= 4nN +

[
2n
q

]
+

{ [
−2l
Q

]
if l < 0;

0 if l ≥ 0.

Therefore the left side of (5.1) equals, using Lemma 5.5,

n2Q

q
+

N2q

Q
− 2nN =

(nQ)2 + (Nq)2 − 2nQNq

Qq
=

(nQ − Nq)2

Qq
= Qq

∣∣∣∣
n

q
− N

Q

∣∣∣∣
2

,

plus 1 if n > q/2, minus 1 if l < 0 and L < 0.

Justification of Algorithm 5.4. Let lj := qj+1nj − qjnj+1. Then lj+1 ≡ qj+2nj+1 ≡ qjnj+1 ≡
−lj (mod qj+1) (so that Lj = L in Proposition 5.2 equals lj+1). Now A(nj , qj ; qj−1) =
A(nj , qj ; qj+1) so Proposition 5.2 implies that A(nj , qj ; qj+1) + A(nj+1, qj+1; qj+2) equals

(5.4)
l2j

qjqj+1
−
{

1 if lj , lj+1 < 0
0 otherwise

+
{

1 if nj > qj/2
0 otherwise.

Using the identity

A(n, q;Q) =
J−1∑

j=1

(−1)j−1(A(nj , qj ; qj+1) + A(nj+1, qj+1; qj+2)) + (−1)J−1A(nJ , qJ ; qJ+1)

the first two terms in (5.2) follow from summing the first two terms in (5.4) (as lj < 0 iff
nj/qj < nj+1/qj+1). For the third term note that since nj+1/qj+1 is “close” to nj/qj , one can
easily prove that nj/qj ≤ 1/2 for I ≤ j ≤ J , and in particular nJ = 0. Hence if I exists then
ε =
∑I−1

j=1(−1)j−1 +A(0, qj ; qj+1) which gives the result since A(0, q;Q) = 0. If I does not exist
then nj = qj and the result follows since A(q, q;Q) = 1.

5.2. Generalized reciprocity law. We can significantly generalize Proposition 5.2 using the
same proof, suitably modified, with the following definition: Let

A(n,m, q;Q) := #{i, 1 ≤ i ≤ n : (iQ)q ≤ (−mQ)q}−
n(−mQ)q

q
.

For any integers 0 ≤ m,n ≤ q we have

A(n,m, q;Q) =
n∑

i=1

[
iQ

q

]
+

m∑

i=1

[
iQ

q

]
−

n+m∑

i=1

[
iQ

q

]
+

mnQ

q
,
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plus 1 if n = q; hence A(n,m, q;Q) = A(m,n, q;Q). As above, let N be the nearest integer to
Qn/q, and M be the nearest integer to Qm/q. Then

A(n,m, q;Q) + A(N,M,Q; q) = qQ

(
m

q
− M

Q

)(
n

q
− N

Q

)
=

lmln
qQ

,

plus
[
|ln|
Q

]
if ln < 0, plus

[
|lm|
Q

]
if lm < 0, minus

[
|lm+ln|

Q

]
if lm + ln < 0, plus 1 if M + N ≥ Q

and M ,= Q, or if M = N = Q. This may be rephrased as follows:

If lm = 0 or ln = 0 then A(n,m, q;Q) + A(N,M,Q; q) = 0, unless N = Q whence it = 1.
Otherwise A(n,m, q;Q) + A(N,M,Q; q) = l∗ml∗n

qQ + η + [M+N
Q ] where 0 < l∗m, l∗n < q and |η| < 1;

specifically

l∗m = lm, l∗n = ln, η = 0 if lm, ln > 0;

l∗m = q − lm, l∗n = −ln, η = −
{

qM
Q

}
if lm + ln ≥ 0 > ln;

l∗m = lm, l∗n = q + ln, η =
{

q(M+N)
Q

}
−
{

qN
Q

}
if 0 > lm + ln > ln; and

l∗m = −lm, l∗n = −ln, η = −[ (qM)Q+(qN)Q

Q ] if 0 > lm, ln.

5.3. Lower bounds on A(n, q;Q). With the notation as above and q > Q, we have
A(n, q;Q) ≥ −Q, trivially. This is “best possible” up to the constant since, A( q−1

2 , q; q − 1) =
−(q−1)2/4q ∼ −Q/4 for q odd. One can give rather more precise estimates for the small values
using the ideas (and notation) of Algorithm 5.4:

Corollary 5.6. With the notation as above and q > Q, we have

1
4

∑

t≥1

r2t−1 + J ≥ A(n, q;Q) ≥ −1
4

∑

t≥1

r2t − J.

Select t so that r2t = maxj≥1 r2j. If r2t ≥ 2 then there exists n such that −r2t/6 ≥ A(n, q;Q) ≥
−(r2t + 5)/4. In particular if Q > 2(q)Q then there exists n such that A(n, q;Q) ≤ −Q/6(q)Q.

Proof. Each term in the first sum in (5.2) has size ≤ (qj/2)2/(qjqj+1) = qj/4qj+1 ≤ (rj + 1)/4,
and the other terms sum up to no more than J/2 + 1. This yields bounds.

Given q and Q, one has the sequence q1, q2, . . . , qK = 1 as in Algorithm 5.4. We will construct
our value of n by specifying lK−1, lK−2, . . . , l1, since then nj = (qjnj+1 + lj)/qj+1 for each j,
and n

q =
∑K−1

j=1
lj

qjqj+1
. Any such sequence {lj}j≥1 leads to a valid sequence {nj}j≥1 provided

lj ≡ −lj+1 (mod qj+1) and −qj/2 < lj ≤ qj/2 for each j.

Select t for which q2t/q2t+1 is maximal. Let b be the largest integer such that bq2t+1 − 1 ≤
q2t/2: note that b ≥ 1 if and only if q2t/q2t+1 > 2. We select lj = (−1)j(bq2t+1 − 1) for all
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j ≤ 2t, and lj = (−1)j+1 for all K − 1 ≥ j ≥ 2t + 1, except if qK−1 = 2 and K is odd in which
case lK−1 = 1. Note that at least one of lj and lj+1 is positive for each j. Also nJ = qJ (and
J = K − 1) iff qK−1 = 2; otherwise I = 1 so that ε = 0. Hence, by (5.2),

A(n, q;Q) = (bq2t+1 − 1)2
2t∑

j=1

(−1)j−1

qjqj+1
+

J−1∑

j=2t+1

(−1)j−1

qjqj+1
+ ε

where ε = (−1)K if qK−1 = 2, and ε = 0 otherwise. Now since these are alternating sums
with increasing terms, each is majorized by the final term. Hence the final two terms together
have absolute value ≤ 1, and 1

q2t−1q2t
− 1

q2tq2t+1
≥
∑2t

j=1
(−1)j−1

qjqj+1
≥ − 1

q2tq2t+1
. Now q2t−1 =

r2t−1q2t + q2t+1 ≥ q2t + q2t+1, so that 1
q2t−1q2t

− 1
q2tq2t+1

≤ − 1
(q2t+q2t+1)q2t+1

. Therefore if
q2t ≥ 2q2t+1 − 2 (so that b ≥ 1) then

− q2t

6q2t+1
≥ − b2

(2b + 2)(2b + 3)
· q2t

q2t+1
≥ A(n, q;Q) ≥ − q2t

4q2t+1
− 1.

Note that if q2t < 2q2t+1 − 2 then r2t = 1.

6. Lower bounds.

Define A∗(n, q;Q) = 0 if n = 0, and

A∗(n, q;Q) := #{i, 1 ≤ i ≤ n − 1 : (iQ)q ≤ (−nQ)q}−
n(−nQ)q

q

if n ≥ 1. Note that A∗(n, q;Q) = A(n, q;Q), minus 1 if l ≥ 0. Moreover A(n, q;Q) ≤ n whereas
A∗(n, q;Q) ≤ n − 1.

Proof of Theorem 2even. By Corollary 5.3, we have, when (m, q) = 1,

ωq

(
(mk2)!P (2m, 2mk)

)
=

l2

qm
− A(N,m; q) −

{
mn2

q

}
+
{

1 if l < 0 ≤ L

0 otherwise.

This can be negative; for example if (q)m ≤ m/2 and m <
√

q then let n = 1 + [q/m]
so that l = m − (q)m, L = (q)m, N = 1 and the sum is (m−(q)m)2

qm − (q)m

m − { l2−q2

qm } ≤
m2

qm − 1
m − 0 < 0. Indeed if q is prime with q ≡ 1 (mod m) and q > m2 then this im-

plies that vq

(
(mn2)!P (2m, 2mn)

)
< 0. To compensate for this we are forced to multiply

(mk2)!P (2m, 2mk) through by something like (mk)!/k!m or some larger multiple of k, to ob-
tain an integer because, in our example, [ (m−1)n

q ] = 0 while [mn
q ] = 1. Now ωq

(
(mk)!
k!m

)
= N ,

minus 1 if l < 0. Hence ωq

(
(mk2)! · (mk)!

k!m · P (2m, 2mk)
)

= N − 1 − A∗(N,m; q) +
l2

qm
−
{

mn2

q

}
+
{

1 if L < 0 ≤ l

0 otherwise.
≥ l2

qm
−
{

mn2

q

}
> −1,
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and so is ≥ 0 as ωq is an integer.

If (q,m) = g > 1 let q = Qg, m = Mg so that (Q,M) = 1. Then, since
∑q−1

j=0{jm/q} =
q(Q − 1)/2 we have

ωq =
[
mk2

q

]
+
[
mk

q

]
− m

[
k

q

]
+

k−1∑

j=0

([
mj

q

]
−
[
m(k + j)

q

])

=
[
mn2

q

]
+
[
mn

q

]
− m

[
n

q

]
+

n−1∑

j=0

([
mj

q

]
−
[
m(n + j)

q

])

=
[
Mn2

Q

]
+
[
Mn

Q

]
+

n−1∑

j=0

([
Mj

Q

]
−
[
M(n + j)

Q

])

= ωQ

(
(Mn2)!(Mn)! · P (2M, 2Mn)

)
≥ M

[
n

Q

]
≥ 0

using the result established above with (n,M,Q) in place of (k,m, q).

Proof of Theorem 2odd. We deal with the general case by replacing r by R := r/(r, q), and
q by Q := q/(r, q) so that ωq((2rk2)!P (r, 2rk)/22rk2

) = ωQ((2Rn2)!P (R, 2Rn)/22Rn2
) where

n = (k)q , and noting that ωq

(
(rk)!
k!r ·

(
(2rk)!
k!2r

)2)
= ωQ

(
(Rn)!
n!R ·

(
(2Rn)!
n!2R

)2)
+ 5R[ n

Q ].

Henceforth we work in the case that (r, q) = 1: By (4.3) we have that

ωq(P (r, 2rk)/22rk2
) = ωq

(
P (2r, 2rk)2P (2r, 4rk)

P (4r, 4rk)

)
− ω2q(P (2r, 4rk)).

Therefore, by Corollary 5.3, we deduce that 2rk2

q + ωq(P (r, 2rk)/22rk2
) equals

(6.1) 2 · l21
qr

+
l22
qr

− l22
q · 2r − (2l1)2

2q · r =
l22

2qr

where l1, l2 are the least residues, in absolute value, of kr, 2kr (mod q), respectively, plus

(6.2) A(N1, r; 2q) + A(N2, 2r; q) − A∗(N2 − r[2n/q], r; q) − 2A∗(N1, r; q)

where N1 = (rn − l1)/q and N2 = 2N1 minus 1 if l ≤ −q/4, plus 1 if l > q/4 (and note that
l2 = 2l1 + q(2N1 − N2)), plus an integer between 0 and 5. To see this last remark note that in
(6.2) the terms “+A” have +1 if l < 0 ≤ L, and the terms with “−A∗” have +1 if l, L < 0,
since (NQ)m ≤ (−NQ)m iff L ≥ 0.

We want a lower bound on the quantity in (6.2), which is the sum of two components. First
the count of elements of certain sets: if N1 ≥ 1 then −#{i, 1 ≤ i ≤ N1−1 : (iq)r ≤ (−N1q)r} ≥
−(N1−1) ≥ −[ rn

q ] since Nj = [ jrn
q ], plus 1 if lj < 0, so that Nj−1 ≤ [ jrn

q ]. If N1 = 0 then we go
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back to the original form since l1 ≥ 0, and −#{i, 1 ≤ i ≤ 0 : (iq)r ≤ 0} = 0 = −N1 = −[ rn
q ].

Similar arguments hold when N2 > r[2n/q], and if N2 = r[2n/q] since l2 ≥ 0, so we get the
lower bound r[2n/q] − [2rn

q ] for the relevant set. Therefore in total we have

≥ −
[
2rn
q

]
− 2
[
rn

q

]
+ r

[
2n
q

]
.

The second components in the definition of A and A∗ contribute to (6.2):

−N1(−2N1q)r

r
− N2(−N2q)2r

2r
+

(N2 − r[2n/q])(−N2q)r

r
+ 2

N1(−N1q)r

r
,

so in total (6.2) is ≥ −
[

2rn
q

]
− 2
[

rn
q

]

(6.3) +
{

N1 if L1 > 0
0 otherwise

− L2N2

2r
+






L2 if n ≥ q/2 and L2 > 0
L2 + r if n ≥ q/2 and L2 ≤ 0
0 otherwise

where L1, L2 are the least residues, in absolute value of N1q (mod r), N2q (mod 2r), respec-
tively. Note that |L2| ≤ r. If n ≥ q/2 then N2 ≥ r, so if L2 ≤ 0 then (6.3) is ≥ L2(1−N2/2r)+
r ≥ r + L2/2 ≥ r/2, and if L2 > 0 then (6.3) is ≥ L2(1 − N2/2r) ≥ 0. If n < q/2 then N2 ≤ r

and (6.3) is −L2N2
2r . If L2 ≤ r − 1 then this is ≥ − (r−1)N2

2r ≥ −N2−1
2 ≥ − 1

2

[
2rn
q

]
. Finally if

L2 = r then l2 = r ≥ 0 so (6.3) is −N2
2 = − 1

2

[
2rn
q

]

Hence

(6.4)
[
2rk2

q

]
+ ωq(P (r, 2rk)/22rk2

) +
3
2
·
[
2rn
q

]
+ 2
[
rn

q

]
≥ l22

2qr
−
{

2rk2

q

}

which is an integer > −1 and so ≥ 0. Now
[

rn
q

]
≤ 1

2 ·
[

2rn
q

]
and so

(2rk2)!
(2rk)!2(rk)!

k!5r

P (r, 2rk)
22rk2

is an integer.
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