FACTORIZATION OF CONSTANTS INVOLVED IN CONJECTURAL MOMENTS OF ZETA-FUNCTIONS

Jam Germain

Université de Montréal, Montréal, Canada jamgermain@gmail.com

Received: 9/13/2008, Accepted: 10/14/2008, Published: 10/27/08

Abstract

We give the factorization of certain constants that appear in (conjectural) formulas for moments of zeta-functions, making it obvious that these constants are integers (which was already proved by Conrey and Farmer). We extend this analysis to other constants emerging from the random-matrix theory calculations of Keating and Snaith.

1. Introduction.

Following work of Conrey and Ghosh, and of Keating and Snaith [6], it is believed that

(1)
$$\frac{1}{T} \int_0^T \left| \zeta \left(\frac{1}{2} + it \right) \right|^{2k} \sim g_{k,U} \cdot \prod_p \left(\left(1 - \frac{1}{p} \right)^{k^2} \sum_{j \ge 0} \frac{d_k(p^j)^2}{p^j} \right) \cdot \frac{(\log T)^{k^2}}{k^2!}$$

where $\zeta(s)^k = \sum_{n \geq 1} \frac{d_k(n)}{n^s}$, and

(2)
$$g_{k,U} := (k^2)! \frac{1!2! \dots (k-1)!}{k!(k+1)! \dots (2k-1)!}.$$

This has been proved for k = 1 (Hardy and Littlewood, 1918) and k = 2 (Ingham, 1926), and is otherwise an open conjecture. The lower bound $\gg_k (\log T)^{k^2}$ was given by Ramachandra [7] in 1980, and with the implicit constant as in (1), divided by $g_{k,U}$, assuming the Riemann Hypothesis by Conrey and Ghosh [3] in 1984, and the upper bound $\ll_{k,\epsilon} (\log T)^{k^2+\epsilon}$ assuming the Riemann Hypothesis was given recently by Soundararajan [10]. A persuasive heuristic argument in favour of (1) is given in [2].

Similarly one can conjecture the average value of the "2kth moments" of other L-functions, perhaps averaging over different L-functions in a certain class (for example the quadratic Dirichlet L-functions, or those connected with natural classes of modular forms) rather than over t. Various cases have been considered, following the philosophy of Katz and Sarnak [5], especially as formulated in [2], and each involves a formula like (1), though with slightly different constants involved. In fact the power of $\log T$ involved, and the Euler product have long been understood since they come from number theoretic considerations. The highly influential work of Keating and Snaith [6] suggests a value for the constants g_k in each case, coming from a random matrix theory calculation, namely the average of the sth power of the absolute value of the characteristic polynomial of an $N \times N$ matrix as we vary over a suitable set of matrices (with an appropriate measure). Lower bounds for these moments, out by at most a constant, were given by Rudnick and Soundararajan [8,9], and good upper bounds, out by at most $(\log T)^{o(1)}$, by Soundararajan [10, section 4].

The first few $g_{k,U}$ are $1, 2, 42, 24024, \ldots$ and seem to always be integers, though this is not clear from the definition (2). Conrey and Farmer [1] confirmed the experimental evidence that these are always integers, and even noticed some self-similar structure in the powers to which primes divide these integers.² We give another proof of the fact that these are always integers by obtaining a new description of the power to which each prime divides g_k , which also easily explains (and confirms) Conrey and Farmer's observations about self-similarity.

For a given integer k and prime power q we define k_q to be that integer satisfying $k_q \equiv k \pmod{q}$ with $-q/2 \leq k_q < q/2$. We let [t] be the largest integer $\leq t$, and $\{t\} = t - [t] \in [0,1)$ be the fractional part of t.

Theorem 1_U . We have

$$g_{k,U} := (k^2)! \frac{1!2!\dots(k-1)!}{k!(k+1)!\dots(2k-1)!} = \prod_{\substack{p \text{ prime} \\ a>1, \ q=p^a}} p^{\left[\frac{k_q^2}{q}\right]},$$

so that $g_{k,U}$ is an integer for all $k \geq 1$.

Conrey and Farmer also showed that the numbers

$$g_{k,Sp} := 2^{\frac{1}{2}k(k+1)} \left(\frac{k(k+1)}{2}\right)! \frac{1!2! \dots k!}{2!4! \dots 2k!}.$$

are all integers, and we give our own proof:

¹For example, the 'U' in $g_{k,U}$ stands for the set of unitary matrices, taken with Haar measure.

²They also gave a complete history of the conjectured existence and study of these constants g_k .

Theorem 1_{Sp} . We have

$$g_{k,Sp}/2^{\frac{1}{2}k(k+1)} = \prod_{\substack{p \text{ prime } \geq 3\\ a > 1, \ q = p^a}} p^{\left[\frac{k_q(k_q+1)}{2q}\right]} \cdot \prod_{a \geq 1, \ q = 2^a} 2^{\left[\frac{k_q(k_q+1)}{2q} - \frac{1}{2}\left(\left[\frac{2k}{q}\right] - \left[\frac{k}{q}\right]\right)\right]},$$

so that $g_{k,Sp}/2^{\frac{1}{2}k(k-1)}$ is an integer for all $k \geq 1$.

The main idea in the proof goes back to Legendre and Kummer, and is widely used when understanding prime factors of binomial coefficients (see, e.g., [4]): Write out each factorial j! as the product of the integers up to j and then determine how many of these integers are divisible by each prime power q. One pieces that information together to get the result.³

Jon Keating suggested looking at [6] for other constants that might prove to be integers, when multiplied through by a suitable quantity. There are several natural ways to guess at "suitable". Here we give one which generalizes the last part of Theorem 1_U :

Theorem 2_{even}. The number

$$G_{m,k} := (mk^2)! \cdot \frac{(mk)!}{k!^m} \cdot \frac{m! \ 2m! \ 3m! \dots (k-1)m!}{km! \ (k+1)m! \dots (2k-1)m!}$$

is an integer for any integers $m, k \geq 1$.

Note that $g_{k,U} = G_{1,k}$ so this generalizes Theorem 1_U . It almost gives Theorem 1_{Sp} : Since $(2! \ 4! \dots 2l!)^2 = (2! \ 4! \dots 2l!)(1!2 \ 3!4 \dots (2l-1)!2l) = (1! \ 2! \ 3! \dots 2l!)2^l l!$,

$$G_{2,k} = (2k^2)! \cdot \frac{(2k)!}{k!^2} \cdot \frac{(2! \ 4! \ 6! \dots 2(k-1)!)^2}{2! \ 4! \dots 2(2k-1)!} = (2k^2)! \cdot \frac{2^k}{k!} \cdot \frac{1! \ 2! \ 3! \dots (2k-1)!}{2! \ 4! \dots 2(2k-1)!}$$
$$= {2k^2 \choose k} \cdot \frac{g_{2k-1,Sp}}{2^{2k^2-2k}}$$

so these are closely related.

We will give a further (but more complicated) generalization, Theorem 2_{odd} , in Section 4.

Theorem 2 does not give a factorization comparable to those given in Theorem 1. Actually it is possible to do so with additional complications since, in general, the exponent on q will equal l^2/qm where l is the least residue, in absolute value, of $mk \pmod{q}$ plus a term which depends only on $q \pmod{m}$ and $\lfloor 2mk/q \rfloor \pmod{2m}$, but which does not obviously yield a simple description (see Corollary 5.3 below).

³Note that if j is divisible by p^{ℓ} we count the ℓ powers of p by including them one at a time, since j is divisible by p, then since j is divisible by p^2 , ..., and finally since j is divisible by p^{ℓ} .

Notation: Here and henceforth $(t)_d$ is the least non-negative residue of $t \pmod{d}$, and note that $\{\frac{t}{d}\} = \frac{(t)_d}{d}$. As usual $v_p(m)$ denotes the power of p that divides m. Let $\omega_q(a_1 \cdot a_2 \cdots a_r)$ denote the number of a_j that are divisible by q.⁴ Also $\omega_q(a \cdot b!) = \omega_q(a \cdot 1 \cdot 2 \cdots b)$, and note that $\omega_q(b!) = [b/q]$. The key observation (as described above) is that

$$v_p(a_1 \cdot a_2 \cdots a_r) = \sum_{\substack{e \ge 1 \\ q = p^e}} \omega_q(a_1 \cdot a_2 \cdots a_r).$$

2. Proof of Theorem 1.

Proof of the factorization of $g_{k,U}$. For n = aq + b with $0 \le b \le q - 1$, the number of integers amongst $1!2! \dots (aq + b)!$ that are divisible by q, that is $\omega_q(1!2! \dots n!)$, is

$$\sum_{i=0}^{n} \left[\frac{i}{q} \right] = \sum_{i=0}^{n} \frac{i}{q} - \left\{ \frac{i}{q} \right\} = \frac{n(n+1)}{2q} - \sum_{j=0}^{a-1} \sum_{\ell=0}^{q-1} \frac{\ell}{q} - \sum_{\ell=0}^{b} \frac{\ell}{q} = \frac{n(n+1)}{2q} - a \cdot \frac{q-1}{2} - \frac{b(b+1)}{2q}.$$

Writing k-1=aq+b, so that 2k-1=Aq+B with A=2a, B=2b+1 if $b\leq \frac{q}{2}-1$, and A=2a+1, B=2b+1-q if $b>\frac{q}{2}-1$, we deduce that $\omega_q(g_{k,U})$ equals

$$\frac{k^2}{q} - \left\{\frac{k^2}{q}\right\} + 2\left(\frac{k(k-1)}{2q} - a \cdot \frac{q-1}{2} - \frac{b(b+1)}{2q}\right) - \left(\frac{2k(2k-1)}{2q} - A \cdot \frac{q-1}{2} - \frac{B(B+1)}{2q}\right)$$

$$= (A-2a) \cdot \frac{q-1}{2} + \frac{B(B+1)}{2a} - \frac{b(b+1)}{a} - \left\{\frac{(b+1)^2}{a}\right\}.$$

Now if $b+1 \leq \frac{q}{2}$ then this is

$$\frac{(b+1)^2}{q} - \left\{ \frac{(b+1)^2}{q} \right\} = \left\lceil \frac{(b+1)^2}{q} \right\rceil,$$

and if $b+1>\frac{q}{2}$ then this is

$$q - 2(b+1) + \frac{(b+1)^2}{q} - \left\{ \frac{(b+1)^2}{q} \right\} = \frac{(q - (b+1))^2}{q} - \left\{ \frac{(b+1)^2}{q} \right\} = \left[\frac{(b+1-q)^2}{q} \right].$$

Proof of the factorization of $g_{k,Sp}$. Now $\omega_q(g_{k,Sp}/2^{\frac{1}{2}k(k+1)})$ equals

$$\left[\frac{k(k+1)}{2q}\right] + \sum_{j=1}^{k} \left[\frac{j}{q}\right] - \left[\frac{2j}{q}\right] = -\left\{\frac{k(k+1)}{2q}\right\} + \sum_{j=1}^{k} \left\{\frac{2j}{q}\right\} - \left\{\frac{j}{q}\right\}$$

⁴Note that this definition depends on the representation, as a product, of the number inside the brackets, and not on the number itself. Hence $\omega_4(2 \cdot 8) = 1$, whereas $\omega_4(4 \cdot 4) = 2$.

If q is odd, then as j runs from one multiple of q to the next, the last two summands run through the same terms and so cancel. Hence if k = aq + b the above becomes

$$-\left\{\frac{b(b+1)}{2q}\right\} + \sum_{j=1}^{b} \frac{2j}{q} - \frac{j}{q} - \sum_{q/2 \le j \le b} 1 = \frac{b(b+1)}{2q} - \left\{\frac{b(b+1)}{2q}\right\} - \max\left\{0, b - \left[\frac{q-1}{2}\right]\right\}.$$

So if $b \leq \frac{q-1}{2}$ this equals $\left[\frac{b(b+1)}{2q}\right]$. The result follows for $b > \frac{q-1}{2}$ since

$$\frac{b(b+1)}{2q} - \left(b - \frac{q-1}{2}\right) = \frac{(b-q)(b+1-q)}{2q}.$$

If q is even then

$$\sum_{j=1}^{q} \left\{ \frac{2j}{q} \right\} - \left\{ \frac{j}{q} \right\} = \sum_{j=1}^{q} \frac{j}{q} - \left(\frac{q}{2} + 1 \right) = -\frac{1}{2}.$$

There is a new subtlety: $\frac{k(k+1)}{2q} = \frac{b(b+1)}{2q} - \frac{a}{2} \pmod{1}$. Hence if $b < \frac{q}{2}$ then we have, in total,

$$\frac{b(b+1)}{2q} - \frac{a}{2} - \left\{ \frac{b(b+1)}{2q} - \frac{a}{2} \right\} = \left[\frac{k_q(k_q+1)}{2q} - \frac{a}{2} \right].$$

On the other hand $\frac{k(k+1)}{2q} = \frac{(b-q)(b-q+1)}{2q} - \frac{a+1}{2} \pmod{1}$ so that if $b \ge \frac{q}{2}$ then we have, in total,

$$\begin{split} & \frac{b(b+1)}{2q} - \left\{ \frac{k(k+1)}{2q} \right\} - \left(b - \left(\frac{q}{2} - 1\right)\right) - \frac{a}{2} \\ & = \frac{(b-q)(b-q+1)}{2q} - \frac{a+1}{2} - \left\{ \frac{(b-q)(b-q+1)}{2q} - \frac{a+1}{2} \right\} \\ & = \left[\frac{k_q(k_q+1)}{2q} - \frac{a+1}{2} \right]. \end{split}$$

Proof that $g_{k,U}$ and $g_{k,Sp}$ are both integers. The exponent corresponding to each prime power is a non-negative integer, except perhaps for the power of 2 in $g_{k,Sp}$. In that case we write $k = \sum_i \delta_i 2^i$ in binary and suppose that $q = 2^e$ with k = aq + b, so that $a = \sum_{i \geq e} \delta_i 2^{i-e}$ and $b = \sum_{0 \leq i \leq e-1} \delta_i 2^i$, and thus $b \geq q/2$ iff $\delta_{e-1} = 1$. Then

$$\left[\frac{k_q(k_q+1)}{2q} - \frac{1}{2} \left(\left[\frac{2k}{q} \right] - \left[\frac{k}{q} \right] \right) \right] = \left[\frac{k_q(k_q+1)}{2q} - \frac{1}{2} \left(\sum_{i \ge e} \delta_i 2^{i-e} + \delta_{e-1} \right) \right] \\
= \left[\frac{k_q(k_q+1)}{2q} - \frac{1}{2} \left(\delta_{e-1} + \delta_e \right) \right] - \sum_{i \ge e+1} \delta_i 2^{i-e-1}.$$

Now

$$\sum_{e \ge 1} \sum_{i \ge e+1} \delta_i 2^{i-e-1} = \sum_{i \ge 2} \delta_i \sum_{e=1}^{i-1} 2^{i-1-e} = \sum_{i \ge 1} \delta_i (2^{i-1} - 1) = \left[\frac{k}{2} \right] - \sum_{i \ge 1} \delta_i,$$

6 INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (2008), #A47

so that

$$v_2(g_{k,Sp}) = \frac{k(k+1)}{2} - \left[\frac{k}{2}\right] + \sum_{e \ge 1} \left[\frac{k_q(k_q+1)}{2q} + \frac{1}{2}\left(\delta_e - \delta_{e-1}\right)\right]$$
$$\ge \frac{k^2}{2} + \frac{\delta_0}{2} + \sum_{e \ge 1} \left[\frac{\delta_e - \delta_{e-1}}{2}\right] \ge \frac{k^2}{2} - \frac{\log 2k}{\log 4} \ge \frac{k(k-1)}{2}.$$

3. Further remarks on divisibility of $g_{k,U}$.

3.1. Self-similarity. Let $||t|| := \min_{n \in \mathbb{Z}} |t-n|$ be the distance from t to the nearest integer. Evidently $|k_q| = q || k/q ||$ so that $k_q^2/q = q || k/q ||^2$, and $[k_q^2/q] = q || k/q ||^2 + O(1)$. Moreover if $q \ge 2k$ then $|k_q| = |k|$ and so if $q > k^2$ then $[k_q^2/q] = 0$. Also if $q > k^2$ then $q || k/q ||^2 = k^2/q$. From all this we deduce that the power of p dividing $g_{k,U}$, given by $v_p(g_{k,U})$, satisfies

$$\left| v_p(g_{k,U}) - \sum_{a \in \mathbb{Z}} p^a \parallel k/p^a \parallel^2 \right| \leq \sum_{\substack{a \geq 1 \\ p^a \leq k^2}} 1 + \sum_{\substack{a \geq 1 \\ p^a > k^2}} k^2/p^a + \frac{1}{4} \sum_{a \leq 0} p^a \leq \left[\frac{2 \log k}{\log p} \right] + \frac{5}{4} \cdot \frac{p}{p-1}.$$

So define, as in [1],

$$c_p(x) = x^{-1} \sum_{a \in \mathbb{Z}} p^a \parallel x/p^a \parallel^2,$$

which is "self-similar" in that $c_p(x) = c_p(px)$ for all real x; and so

(3.1)
$$v_p(g_{k,U}) = kc_p(k) + O\left(\frac{\log pk}{\log p}\right) = kc_p(x_{p,k}) + O\left(\frac{\log pk}{\log p}\right),$$

where $x_{p,k}$ is the unique element of [1,p) for which $k/x_{p,k}$ is a power of p. This is a strong version of the ingenious Theorem 6.1 of [1].

3.2. Change in p-divisibility. Along these lines it is also interesting to consider $v_p(g_{k+p^b,U}) - v_p(g_{k,U})$ when $p^b \le k < p^{b+1}$: By (3.1) this equals

$$\sum_{\substack{ae \ge 1\\q=p^a}} \frac{(k')_q^2 - k_q^2}{q} + O\left(\frac{\log pk}{\log p}\right) ,$$

where $k' = k + p^b$. Now $k'_q = k_q$ for all $q = p^a$, $a \le b$, and $k'_q = k'$ with $k_q = k$ provided $k' \le \frac{q}{2}$ where $q = p^a$. If this holds for a = b + 1 then the sum above equals

$$\sum_{q>b+1} \frac{(k')^2 - k^2}{q} = \frac{k+k'}{p-1}.$$

Otherwise we must make a correction when $q = p^{b+1}$ with k' > q/2, in which case either $k < \frac{q}{2}$ whence $k'_q = q - k' = q - p^b - k$ and $k_q = k$, or $\frac{q}{2} < k$ whence $|k'_q| = |q - k'| = |q - p^b - k|$ and $k_q = q - k$. Therefore

$$v_p(g_{k+p^b,U}) - v_p(g_{k,U}) = \frac{k+k'}{p-1} + O\left(\frac{\log pk}{\log p}\right) - 2 \cdot \begin{cases} 0 & \text{if } k' < \frac{q}{2} \\ k' - \frac{p^{b+1}}{2} & \text{if } k < \frac{q}{2} < k' \\ p^b & \text{if } \frac{q}{2} < k \end{cases}$$

3.3. Further divisibility. The numbers $g_{k,U}$ are highly composite and one might suspect that they are divisible by factorials (in terms of k). A little experimenting and one finds that $g_{k,U}$ is not always divisible by k! but it is close, that is the denominator of $g_{k,U}/k!$ is always small. (Indeed $g_k/k!$ is an integer for $k \le 4$ but $g_5/5!$ has denominator 2).

For any k there exists r such that $p^r \le k < p^{r+1}$.

Suppose $k \leq p^{r+1}/2$; then $k_q^2 = k^2$ for $q = p^a$ with $a \geq r+1$, and so $k_q^2/p^{r+b} = k/p^r \cdot k/p^b \geq k/p^b$. Hence, by Theorem 1, the power of p dividing $g_{k,U}$ is

$$\sum_{a \ge 1, \ q = p^a} \left[\frac{k_q^2}{q} \right] \ge \sum_{\substack{b \ge 1 \\ q = p^{r+b}}} \left[\frac{k_q^2}{p^{r+b}} \right] \ge \sum_{b \ge 1} \left[\frac{k}{p^b} \right] = v_p(k!).$$

Now suppose that $k=p^{r+1}-l$ with $l< p^{r+1}/2$. Then $k_q^2=k^2$ for $q=p^a$ with $a\geq r+2$ (so the same argument as above works for those terms) and $k_q^2=l^2$ for $q=p^{r+1}$. If $l\geq p^{r+1/2}$ then $l^2/p^{r+1}\geq p^r\geq k/p$ so that

$$\sum_{a\geq 1, q=p^a} \left\lfloor \frac{k_q^2}{q} \right\rfloor \geq \left\lfloor \frac{l^2}{p^{r+1}} \right\rfloor + \sum_{b\geq 2} \left\lfloor \frac{k^2}{p^{r+b}} \right\rfloor \geq \sum_{b\geq 1} \left\lfloor \frac{k}{p^b} \right\rfloor = v_p(k!).$$

Hence the only remaining range is $p^{r+1}-p^{r+1/2}< k< p^{r+1}$, in which we do have examples where p divides the denominator: Let $k=p^2-p+r$ where $1\leq r<\sqrt{p}$, so that the power of p dividing $g_{k,U}$ is $[r^2/p]+[(p-r)^2/p^2]+[(p^2-p+r)^2/p^3]=0+0+p-2+[((2r+1)p^2-2rp+r^2)/p^3]=p-2$ whereas $v_p(k!)=[(p^2-p+r)/p]=p-1$. In fact one can show that if $k=p^{2r}-p^{2r-1}+p^{2r-2}-p^{2r-3}+\ldots$, where p is sufficiently large (in terms of r) then $v_p(k!)=v_p(g_{k,U})+r$

We might compensate as follows: Given k, let $\ell_k := 1 + [\sqrt{k}]$. We conjecture that $k!/\ell_k!$ divides $g_{k,U}$, when $k \neq 20, 22$. If true this is "best possible" in that p divides the denominator of $g_{k,U}/(k!/[\sqrt{k}]!)$ when $k = p^2 - p + 1$.

- 4. Other constants from random matrix theory.
- **4.1. The big picture:** a suggestion of Jon Keating. The average of the sth power of the absolute value of the characteristic polynomial of an $N \times N$ matrix in the various ensembles (Unitary r = 2, Orthogonal r = 1, Symplectic r = 4) is given by the formula (see (110) of [6])

$$M_N(r,s) := \prod_{j=0}^{N-1} \frac{\Gamma(1+jr/2)\Gamma(1+s+jr/2)}{\Gamma(1+s/2+jr/2)^2}.$$

This product has a lot of cancelation if s is divisible by r, that is s = rk for some integer $k \ge 1$, whence the above becomes

$$\begin{split} M_N(r,rk) &= \prod_{j=0}^{N-1} \frac{\Gamma(1+jr/2)\Gamma(1+(2k+j)r/2)}{\Gamma(1+(k+j)r/2)^2} \\ &= P(r,rk) \prod_{j=0}^{k-1} \frac{\Gamma(1+(N+k+j)r/2)}{\Gamma(1+(N+j)r/2)} = P(r,rk) \left(\frac{rN}{2}\right)^{rk^2/2} e^{O(k^3/N)}, \end{split}$$

where

(4.1)
$$P(r,rk) := \prod_{j=0}^{k-1} \frac{\Gamma(1+jr/2)}{\Gamma(1+(k+j)r/2)}.$$

Hence as $N \to \infty$,

$$M_N(r,rk) \sim P(r,rk) \left(\frac{rN}{2}\right)^{rk^2/2}.$$

If r is even, say r = 2m we have

(4.2)
$$P(2m, 2mk) = \frac{m! \ 2m! \ 3m! \dots (k-1)m!}{km! \ (k+1)m! \dots (2k-1)m!},$$

and so

$$M_N(2m, 2mk) \sim \gamma_{m,k} \frac{N^{mk^2}}{(mk^2)!}$$
 where $\gamma_{m,k} := m^{mk^2}(mk^2)! \cdot P(2m, 2mk)$.

In Theorem 1_U we saw that $\gamma_{1,k} = g_{k,U}$, and we might guess that $\gamma_{m,k}$ is always an integer. However this is not so, as we can see from the example $\gamma_{4,k}$ which has denominator 2k-1 for k=2,3,4,6. Quite extensive calculations appear to reveal that the denominator of $\gamma_{m,k}$ is always quite small. In section 6 below we will prove Theorem 2_{even} , which states that

$$(mk^2)! \cdot \frac{(mk)!}{k!m} \cdot P(2m, 2mk)$$
 is an integer for any $m, k \ge 1$

(and hence $\frac{(mk)!}{k!^m} \cdot \gamma_{m,k}$ is always an integer); and we give reasons there to believe that it is unlikely that a smaller multiplier than $\frac{(mk)!}{k!^m}$ will do.

Suppose that r is odd. Note that if d is odd then $\Gamma(1+d/2) = \sqrt{\pi} d!/(2^d \left[\frac{d}{2}\right]!)$, so that

$$\prod_{j=0}^{2l-1} \Gamma(1+jr/2) = \prod_{i=0}^{l-1} \Gamma(1+ir)\Gamma(1+(2i+1)r/2) = \prod_{i=0}^{l-1} (ir)! \frac{\sqrt{\pi}(2i+1)r!}{2^{(2i+1)r} \left\lceil \frac{(2i+1)r}{2} \right\rceil!}.$$

Therefore

$$P(r,2rk) = \frac{\prod_{j=0}^{2k-1} \Gamma(1+jr/2)^2}{\prod_{j=0}^{4k-1} \Gamma(1+jr/2)} = 2^{2rk^2} \frac{\prod_{i=0}^{k-1} (ir)!^2 (2i+1)r!}{\prod_{i=k}^{2k-1} (ir)!^2 (2i+1)r!} \cdot \frac{\prod_{j=2k}^{4k-1} \left[\frac{rr}{2}\right]!}{\prod_{j=0}^{2k-1} \left[\frac{rr}{2}\right]!}$$

$$= 2^{2rk^2} \left(\frac{\prod_{i=0}^{k-1} ir!}{\prod_{i=k}^{2k-1} ir!}\right)^2 \cdot \frac{\prod_{i=k}^{2k-1} 2ir!}{\prod_{i=0}^{k-1} 2ir!} \cdot \frac{\prod_{j=0}^{2k-1} jr!}{\prod_{j=2k}^{4k-1} jr!} \cdot \frac{\prod_{j=2k}^{4k-1} \left[\frac{jr}{2}\right]!}{\prod_{j=0}^{2k-1} \left[\frac{rr}{2}\right]!}$$

$$= 2^{2rk^2} \cdot \frac{P(2r, 2rk)^2 P(2r, 4rk)}{P(4r, 4rk)} \cdot \frac{\prod_{j=2k}^{4k-1} \left[\frac{jr}{2}\right]!}{\prod_{i=0}^{2k-1} \left[\frac{jr}{2}\right]!}.$$

$$(4.3)$$

which is thus a rational number. In section 6 we deduce from (4.3):

Theorem $2_{\rm odd}$. The number

$$(2rk^2)! \cdot \frac{(rk)!}{k!^r} \cdot \left(\frac{(2rk)!}{k!^{2r}}\right)^2 \cdot \frac{P(r, 2rk)}{2^{2rk^2}}$$

is an integer, for any integers $k \geq 1$ and odd $r \geq 1$.

4.2. Connections between constants.

We have seen that $\gamma_{1,k} = g_{k,U}$. There are two ways to obtain $g_{k,Sp}$: For m = 2 we have, since $(2j)! = 2j \cdot (2j-1)!$,

$$\gamma_{2,k} = 2^{2k^2} (2k^2)! \cdot \frac{(2! \ 4! \dots (2k-2)!)^2}{2! \ 4! \dots (4k-2)!}$$

$$= 2^{2k^2} (2k^2)! \cdot \frac{1!2!3!4! \dots (2k-2)! (2 \cdot 4 \dots 2(k-1))}{2! \ 4! \dots (4k-2)!}$$

$$= 2^{2k^2} (2k^2)! \cdot \frac{1!2!3!4! \dots (2k-2)! (2^{k-1} \cdot (k-1)!)}{2! \ 4! \dots (4k-2)!}$$

$$= 2^{2k} \frac{(2k^2)!k!}{(2k^2 - k)!(2k)!} \cdot g_{2k-1,Sp}$$

If r=1 we use the identity $\Gamma(z)\Gamma(z+1/2)=2^{1-2z}\sqrt{\pi}\ \Gamma(2z)$, to obtain

$$\begin{split} M_N(1,2k) &\sim \left(\frac{N}{2}\right)^{2k^2} \cdot \prod_{i=0}^{k-1} \frac{\Gamma(1+i)\Gamma(3/2+i)}{\Gamma(1+k+i)\Gamma(3/2+k+i)} \\ &= \left(\frac{N}{2}\right)^{2k^2} \cdot \prod_{i=0}^{k-1} \frac{2^{2k}\Gamma(2+2i)}{\Gamma(2+2i+2k)} \\ &= N^{2k^2} \cdot \frac{1!3! \dots (2k-1)!}{(2k+1)!(2k+3)! \dots (4k-1)!} \\ &= \frac{N^{2k^2}}{(2k^2)!} \cdot \frac{(2k^2)!(2k)!^2}{(2k^2-k)!k!(4k)!2^{2(k^2-k)}} \cdot g_{2k-1,Sp}, \end{split}$$

so that

$$P(1,2k) = \frac{2^{2k}}{\binom{4k}{2k}} \cdot \frac{g_{2k-1,Sp}}{(2k^2 - k)!k!} \text{ and } P(4,4k) = \frac{2^{2k-2k^2}}{\binom{2k}{k}} \cdot \frac{g_{2k-1,Sp}}{(2k^2 - k)!k!}.$$

Hence Theorems 1_{Sp} , 2_{even} and 2_{odd} imply that

$$2^{k-1} \cdot \frac{g_{2k-1,Sp}}{2^{2k^2-2k}}, \ \binom{2k^2}{k} \cdot \frac{g_{2k-1,Sp}}{2^{2k^2-2k}} \text{ and } \binom{2k^2}{k} \cdot \frac{\binom{2k}{k}^2}{\binom{4k}{2k}} \cdot \frac{g_{2k-1,Sp}}{2^{2k^2-2k}}$$

are integers, respectively. This allows us to compare the strength of the various results, and implies that, perhaps, the $(mk^2)!$ and $(2rk^2)!$ in Theorem 2 could be replaced by somethings slightly smaller.

A general identity of this kind is:

$$M_{2n-1}(1,s) = \frac{\Gamma(1+s)}{\Gamma(1+s/2)^2} \cdot \prod_{j=1}^{2n-2} \frac{\Gamma(1+j/2)\Gamma(1+s+j/2)}{\Gamma(1+s/2+j/2)^2}$$

$$= \frac{4\Gamma(s)}{s\Gamma(s/2)^2} \cdot \prod_{i=1}^{n-1} \frac{\Gamma(\frac{1}{2}+i)\Gamma(\frac{1}{2}+s+i)}{\Gamma(\frac{1}{2}+s/2+i)^2} \cdot \frac{\Gamma(1+i)\Gamma(1+s+i)}{\Gamma(1+s/2+i)^2}$$

$$= \frac{4\Gamma(s)}{s\Gamma(s/2)^2} / \frac{\Gamma(1+2s)}{\Gamma(1+s)^2} \cdot \prod_{i=0}^{n-1} \frac{\Gamma(1+2i)\Gamma(1+2s+2i)}{\Gamma(1+s+2i)^2}$$

$$= \frac{2\Gamma(s)^3}{\Gamma(2s)\Gamma(s/2)^2} \cdot M_n(4,2s).$$
(4.4)

5. A reciprocity law.

5.1. A reciprocity law and useful formulas. Define

$$A(n,q;Q) := \#\{i, 1 \le i \le n : (iQ)_q \le (-nQ)_q\} - \frac{n(-nQ)_q}{q}.$$

Theorem 5.1. Let q and m be coprime integers. For any given integer k, let $n = (k)_q$ and l be the least residue, in absolute value, of $mk \pmod{q}$, and then $N = \frac{mn-l}{q}$ (which is the nearest integer to mn/q). We have

$$\omega_q \left((mk^2)! \cdot \frac{m! \ 2m! \ 3m! \dots (k-1)m!}{km! \ (k+1)m! \dots (2k-1)m!} \right)$$

equals

$$A(n,q;m) - \left\{ \begin{array}{ll} 1 & \textit{if } n > q/2 \\ 0 & \textit{otherwise} \end{array} \right. + \left\{ \begin{array}{ll} 1 & \textit{if } l < 0 \\ 0 & \textit{otherwise} \end{array} \right. - \left\{ \frac{mn^2}{q} \right\}.$$

One can directly evaluate A(n, q; Q) though this will not be useful in our application. Instead we have the following "reciprocity law":

⁵If $k \equiv q/2 \pmod{q}$ then we let l = q/2.

Proposition 5.2. (Reciprocity law) Let q and Q be coprime integers. For any given integer $n, 0 \le n \le q-1$, let l be the least residue, in absolute value, of $Qn \pmod{q}$, and then $N = \frac{Qn-l}{q}$ (which is the nearest integer to Qn/q). Let L be the least residue, in absolute value, of $qN \pmod{q}$. Then

$$(5.1) A(n,q;Q) + A(N,Q;q) = qQ \left| \frac{n}{q} - \frac{N}{Q} \right|^2 - \begin{cases} 1 & \text{if } l, L < 0 \\ 0 & \text{otherwise} \end{cases} + \begin{cases} 1 & \text{if } n > q/2 \\ 0 & \text{otherwise}. \end{cases}$$

Although we have attempted to state Proposition 5.2 in as symmetric a form as possible, one cannot interchange the capital and lower case letters, since $n = \frac{qN+l}{Q}$, not $\frac{qN-L}{Q}$, and L is the least residue, in absolute value, of $-l \pmod{Q}$ so that L can equal -l but not usually.

By combining Theorem 5.1 and Proposition 5.2, we deduce

Corollary 5.3. With the notation as above we have

$$\frac{mk^2}{q} + \omega_q(P(2m, 2mk)) = \frac{l^2}{qm} - A(N, m; q) + \begin{cases} 1 & if \ l < 0 \le L \\ 0 & otherwise. \end{cases}$$

One can use Proposition 5.2 to develop an algorithm to evaluate A(n,q;Q):

Algorithm 5.4. For evaluating A(n,q;Q) when q > Q with (q,Q) = 1: Let $q_1 = q$ and $q_2 = Q$. Then let $q_j = r_j q_{j+1} + q_{j+2}$ for each $j \ge 1$, where $r_j = [q_j/q_{j+1}]$ and $q_{j+2} = (q_j)_{q_{j+1}}$; that is $\{q_j : j \ge 1\}$ is the sequence of numbers which appears in the Euclidean algorithm starting with q > Q.

Let $n_1 = n$. Now select n_{j+1} so that n_{j+1}/q_{j+1} is the nearest fraction to n_j/q_j , with denominator q_{j+1} . In the case that n_j/q_j is exactly halfway between two such fractions, we must have $n_j = q_j/2$ and we let $n_{j+1} = (q_{j+1} - 1)/2$. Then

(5.2)
$$A(n,q;Q) = \sum_{j=1}^{J-1} (-1)^{j-1} q_j q_{j+1} \left(\frac{n_j}{q_j} - \frac{n_{j+1}}{q_{j+1}} \right)^2 + \sum_{\substack{1 \le j \le J-1 \\ \frac{n_j}{q_j} < \frac{n_{j+1}}{q_{j+1}} < \frac{n_{j+2}}{q_{j+2}}}} (-1)^j + \epsilon$$

where ϵ and J are defined as follows: Let J be the smallest integer for which $n_J = 0$ or q_J . If $n_J = 0$ let I be the smallest integer $i \geq 1$ for which $n_i/q_i \leq 1/2$, and then let $\epsilon = 0$ if I is odd, and $\epsilon = 1$ if I is even. If $n_J = q_J$ then let $\epsilon = (-1)^{J-1}$.

We begin our proofs with a technical lemma:

Lemma 5.5. Let q and Q be coprime integers. If $0 \le n \le q-1$ then

$$A(n,q;Q) = 2\sum_{i=1}^{n} \left[\frac{iQ}{q}\right] - \sum_{i=1}^{2n} \left[\frac{iQ}{q}\right] + \frac{n^2Q}{q} + \begin{cases} 1 & if \ n \ge q/2\\ 0 & otherwise. \end{cases}$$

Proof. For n=0 we have 0=0. Otherwise $1\leq n\leq q-1$ so that $(iQ)_q<(-nQ)_q$ iff $(iQ)_q+(nQ)_q< q$ iff $\left\{\frac{iQ}{q}\right\}+\left\{\frac{nQ}{q}\right\}<1$ iff $\left[\frac{(n+i)Q}{q}\right]-\left[\frac{nQ}{q}\right]-\left[\frac{iQ}{q}\right]=0$ (and this equals 1 otherwise). Also $(iQ)_q=(-nQ)_q$ iff i=q-n which holds in our range iff $n\geq q/2$. Hence

$$A(n,q;Q) = \sum_{i=1}^{n} \left(1 - \left[\frac{(n+i)Q}{q} \right] + \left[\frac{nQ}{q} \right] + \left[\frac{iQ}{q} \right] - \frac{(-nQ)_q}{q} \right)$$

$$= \sum_{i=1}^{n} \left(\left[\frac{iQ}{q} \right] - \left[\frac{(n+i)Q}{q} \right] + \frac{nQ}{q} \right) = 2 \sum_{i=1}^{n} \left[\frac{iQ}{q} \right] - \sum_{i=1}^{2n} \left[\frac{iQ}{q} \right] + \frac{n^2Q}{q}$$

plus 1 if $n \ge q/2$, since $\left[\frac{nQ}{q}\right] - \frac{(-nQ)_q}{q} = \frac{nQ}{q} - \frac{(nQ)_q + (-nQ)_q}{q} = \frac{nQ}{q} - 1$.

Proof of Theorem 5.1. As $\sum_{j=x+1}^{x+q} \left\{ \frac{mj}{q} \right\} = \sum_{i=0}^{q-1} \left\{ \frac{i}{q} \right\} = \frac{q-1}{2}$, we have

$$\sum_{j=1}^{2k} \left[\frac{mj}{q} \right] - 2\sum_{j=1}^{k} \left[\frac{mj}{q} \right] - \left[\frac{mk^2}{q} \right] = 2\sum_{j=1}^{k} \left\{ \frac{mj}{q} \right\} - \sum_{j=1}^{2k} \left\{ \frac{mj}{q} \right\} + \left\{ \frac{mk^2}{q} \right\}$$

$$= 2\sum_{j=1}^{n} \left\{ \frac{mj}{q} \right\} - \sum_{j=1}^{2n} \left\{ \frac{mj}{q} \right\} + \left\{ \frac{mn^2}{q} \right\} = \sum_{j=1}^{2n} \left[\frac{mj}{q} \right] - 2\sum_{j=1}^{n} \left[\frac{mj}{q} \right] - \left[\frac{mn^2}{q} \right],$$

and similarly $\left[\frac{2mk}{q}\right] - 2\left[\frac{mk}{q}\right] = \left[\frac{2mn}{q}\right] - 2\left[\frac{mn}{q}\right]$, so that the desired quantity

$$\omega_q = \left[\frac{mk^2}{q}\right] + 2\sum_{j=1}^{k-1} \left[\frac{mj}{q}\right] - \sum_{j=1}^{2k-1} \left[\frac{mj}{q}\right] = \left[\frac{mn^2}{q}\right] + 2\sum_{j=1}^{n-1} \left[\frac{mj}{q}\right] - \sum_{j=1}^{2n-1} \left[\frac{mj}{q}\right]$$
$$= A(n,q;m) - \begin{cases} 1 & \text{if } n \ge q/2 \\ 0 & \text{otherwise} \end{cases} - \left\{\frac{mn^2}{q}\right\} + \left[\frac{2mn}{q}\right] - 2\left[\frac{mn}{q}\right]$$

by Lemma 5.5.

Proof of Proposition 5.2. If n=0 then l=0, N=0 so we have 0=0 in (5.1). For $1 \le n \le q-1$, let $v=\left[\frac{Qn}{q}\right]$. Then

$$\sum_{i=1}^{n} \left[\frac{Qi}{q} \right] = \sum_{j=0}^{v-1} j \left(\left[\frac{q(j+1)-1}{Q} \right] - \left[\frac{qj-1}{Q} \right] \right) + v \left(n - \left[\frac{qv-1}{Q} \right] \right)$$
$$= vn - \sum_{j=1}^{v} \left[\frac{qj-1}{Q} \right] = vn - \sum_{j=1}^{v} \left[\frac{qj}{Q} \right] + \left[\frac{v}{Q} \right],$$

since $\left[\frac{qj-1}{Q}\right]=\left[\frac{qj}{Q}\right]$ unless Q|j. Hence, as $\left[\frac{v}{Q}\right]=\left[\frac{n}{q}\right]$, and as v=N when $l\geq 0$ and v=N-1 when l<0, we have

(5.3)
$$\sum_{i=1}^{n} \left[\frac{Qi}{q} \right] + \sum_{j=1}^{N} \left[\frac{qj}{Q} \right] = nN + \left[\frac{n}{q} \right] + \begin{cases} \left[\frac{-l}{Q} \right] & \text{if } l < 0; \\ 0 & \text{if } l \ge 0, \end{cases}$$

since $\frac{qN}{Q} - n = \frac{-l}{Q}$. Similarly

$$\sum_{i=1}^{2n} \left[\frac{Qi}{q} \right] + \sum_{j=1}^{2N} \left[\frac{qj}{Q} \right] = 4nN + \left[\frac{2n}{q} \right] + \left\{ \begin{array}{l} \left[\frac{-2l}{Q} \right] & \text{if } l < 0; \\ 0 & \text{if } l \geq 0. \end{array} \right.$$

Therefore the left side of (5.1) equals, using Lemma 5.5,

$$\frac{n^2Q}{q} + \frac{N^2q}{Q} - 2nN = \frac{(nQ)^2 + (Nq)^2 - 2nQNq}{Qq} = \frac{(nQ - Nq)^2}{Qq} = Qq \left| \frac{n}{q} - \frac{N}{Q} \right|^2,$$

plus 1 if n > q/2, minus 1 if l < 0 and L < 0.

Justification of Algorithm 5.4. Let $l_j := q_{j+1}n_j - q_jn_{j+1}$. Then $l_{j+1} \equiv q_{j+2}n_{j+1} \equiv q_jn_{j+1} \equiv -l_j \pmod{q_{j+1}}$ (so that $L_j = L$ in Proposition 5.2 equals l_{j+1}). Now $A(n_j, q_j; q_{j-1}) = A(n_j, q_j; q_{j+1})$ so Proposition 5.2 implies that $A(n_j, q_j; q_{j+1}) + A(n_{j+1}, q_{j+1}; q_{j+2})$ equals

(5.4)
$$\frac{l_j^2}{q_j q_{j+1}} - \begin{cases} 1 & \text{if } l_j, l_{j+1} < 0 \\ 0 & \text{otherwise} \end{cases} + \begin{cases} 1 & \text{if } n_j > q_j/2 \\ 0 & \text{otherwise.} \end{cases}$$

Using the identity

$$A(n,q;Q) = \sum_{j=1}^{J-1} (-1)^{j-1} (A(n_j,q_j;q_{j+1}) + A(n_{j+1},q_{j+1};q_{j+2})) + (-1)^{J-1} A(n_J,q_J;q_{J+1})$$

the first two terms in (5.2) follow from summing the first two terms in (5.4) (as $l_j < 0$ iff $n_j/q_j < n_{j+1}/q_{j+1}$). For the third term note that since n_{j+1}/q_{j+1} is "close" to n_j/q_j , one can easily prove that $n_j/q_j \le 1/2$ for $I \le j \le J$, and in particular $n_J = 0$. Hence if I exists then $\epsilon = \sum_{j=1}^{I-1} (-1)^{j-1} + A(0, q_j; q_{j+1})$ which gives the result since A(0, q; Q) = 0. If I does not exist then $n_j = q_j$ and the result follows since A(q, q; Q) = 1.

5.2. Generalized reciprocity law. We can significantly generalize Proposition 5.2 using the same proof, suitably modified, with the following definition: Let

$$A(n, m, q; Q) := \#\{i, 1 \le i \le n : (iQ)_q \le (-mQ)_q\} - \frac{n(-mQ)_q}{q}.$$

For any integers $0 \le m, n \le q$ we have

$$A(n, m, q; Q) = \sum_{i=1}^{n} \left[\frac{iQ}{q} \right] + \sum_{i=1}^{m} \left[\frac{iQ}{q} \right] - \sum_{i=1}^{n+m} \left[\frac{iQ}{q} \right] + \frac{mnQ}{q},$$

plus 1 if n = q; hence A(n, m, q; Q) = A(m, n, q; Q). As above, let N be the nearest integer to Qn/q, and M be the nearest integer to Qm/q. Then

$$A(n, m, q; Q) + A(N, M, Q; q) = qQ\left(\frac{m}{q} - \frac{M}{Q}\right)\left(\frac{n}{q} - \frac{N}{Q}\right) = \frac{l_m l_n}{qQ},$$

plus $\left[\frac{|l_n|}{Q}\right]$ if $l_n < 0$, plus $\left[\frac{|l_m|}{Q}\right]$ if $l_m < 0$, minus $\left[\frac{|l_m+l_n|}{Q}\right]$ if $l_m + l_n < 0$, plus 1 if $M + N \ge Q$ and $M \ne Q$, or if M = N = Q. This may be rephrased as follows:

If $l_m = 0$ or $l_n = 0$ then A(n, m, q; Q) + A(N, M, Q; q) = 0, unless N = Q whence it = 1. Otherwise $A(n, m, q; Q) + A(N, M, Q; q) = \frac{l_m^* l_n^*}{qQ} + \eta + \left[\frac{M+N}{Q}\right]$ where $0 < l_m^*, l_n^* < q$ and $|\eta| < 1$; specifically

$$\begin{split} l_m^* &= l_m, \ l_n^* = l_n, \ \eta = 0 \text{ if } l_m, l_n > 0; \\ l_m^* &= q - l_m, \ l_n^* = - l_n, \ \eta = - \left\{ \frac{qM}{Q} \right\} \text{ if } l_m + l_n \geq 0 > l_n; \\ l_m^* &= l_m, \ l_n^* = q + l_n, \ \eta = \left\{ \frac{q(M+N)}{Q} \right\} - \left\{ \frac{qN}{Q} \right\} \text{ if } 0 > l_m + l_n > l_n; \text{ and } \\ l_m^* &= - l_m, \ l_n^* = - l_n, \ \eta = - \left[\frac{(qM)_Q + (qN)_Q}{Q} \right] \text{ if } 0 > l_m, l_n. \end{split}$$

5.3. Lower bounds on A(n,q;Q). With the notation as above and q>Q, we have $A(n,q;Q)\geq -Q$, trivially. This is "best possible" up to the constant since, $A(\frac{q-1}{2},q;q-1)=-(q-1)^2/4q\sim -Q/4$ for q odd. One can give rather more precise estimates for the small values using the ideas (and notation) of Algorithm 5.4:

Corollary 5.6. With the notation as above and q > Q, we have

$$\frac{1}{4} \sum_{t \ge 1} r_{2t-1} + J \ge A(n, q; Q) \ge -\frac{1}{4} \sum_{t \ge 1} r_{2t} - J.$$

Select t so that $r_{2t} = \max_{j \ge 1} r_{2j}$. If $r_{2t} \ge 2$ then there exists n such that $-r_{2t}/6 \ge A(n,q;Q) \ge -(r_{2t}+5)/4$. In particular if $Q > 2(q)_Q$ then there exists n such that $A(n,q;Q) \le -Q/6(q)_Q$.

Proof. Each term in the first sum in (5.2) has size $\leq (q_j/2)^2/(q_jq_{j+1}) = q_j/4q_{j+1} \leq (r_j+1)/4$, and the other terms sum up to no more than J/2+1. This yields bounds.

Given q and Q, one has the sequence $q_1, q_2, \ldots, q_K = 1$ as in Algorithm 5.4. We will construct our value of n by specifying $l_{K-1}, l_{K-2}, \ldots, l_1$, since then $n_j = (q_j n_{j+1} + l_j)/q_{j+1}$ for each j, and $\frac{n}{q} = \sum_{j=1}^{K-1} \frac{l_j}{q_j q_{j+1}}$. Any such sequence $\{l_j\}_{j\geq 1}$ leads to a valid sequence $\{n_j\}_{j\geq 1}$ provided $l_j \equiv -l_{j+1} \pmod{q_{j+1}}$ and $-q_j/2 < l_j \leq q_j/2$ for each j.

Select t for which q_{2t}/q_{2t+1} is maximal. Let b be the largest integer such that $bq_{2t+1} - 1 \le q_{2t}/2$: note that $b \ge 1$ if and only if $q_{2t}/q_{2t+1} > 2$. We select $l_j = (-1)^j (bq_{2t+1} - 1)$ for all

 $j \leq 2t$, and $l_j = (-1)^{j+1}$ for all $K - 1 \geq j \geq 2t + 1$, except if $q_{K-1} = 2$ and K is odd in which case $l_{K-1} = 1$. Note that at least one of l_j and l_{j+1} is positive for each j. Also $n_J = q_J$ (and J = K - 1) iff $q_{K-1} = 2$; otherwise I = 1 so that $\epsilon = 0$. Hence, by (5.2),

$$A(n,q;Q) = (bq_{2t+1} - 1)^2 \sum_{j=1}^{2t} \frac{(-1)^{j-1}}{q_j q_{j+1}} + \sum_{j=2t+1}^{J-1} \frac{(-1)^{j-1}}{q_j q_{j+1}} + \epsilon$$

where $\epsilon = (-1)^K$ if $q_{K-1} = 2$, and $\epsilon = 0$ otherwise. Now since these are alternating sums with increasing terms, each is majorized by the final term. Hence the final two terms together have absolute value ≤ 1 , and $\frac{1}{q_{2t-1}q_{2t}} - \frac{1}{q_{2t}q_{2t+1}} \geq \sum_{j=1}^{2t} \frac{(-1)^{j-1}}{q_jq_{j+1}} \geq -\frac{1}{q_{2t}q_{2t+1}}$. Now $q_{2t-1} = r_{2t-1}q_{2t} + q_{2t+1} \geq q_{2t} + q_{2t+1}$, so that $\frac{1}{q_{2t-1}q_{2t}} - \frac{1}{q_{2t}q_{2t+1}} \leq -\frac{1}{(q_{2t}+q_{2t+1})q_{2t+1}}$. Therefore if $q_{2t} \geq 2q_{2t+1} - 2$ (so that $b \geq 1$) then

$$-\frac{q_{2t}}{6q_{2t+1}} \ge -\frac{b^2}{(2b+2)(2b+3)} \cdot \frac{q_{2t}}{q_{2t+1}} \ge A(n,q;Q) \ge -\frac{q_{2t}}{4q_{2t+1}} - 1.$$

Note that if $q_{2t} < 2q_{2t+1} - 2$ then $r_{2t} = 1$.

6. Lower bounds.

Define $A^*(n,q;Q) = 0$ if n = 0, and

$$A^*(n,q;Q) := \#\{i, \ 1 \le i \le n-1: \ (iQ)_q \le (-nQ)_q\} - \frac{n(-nQ)_q}{q}$$

if $n \ge 1$. Note that $A^*(n, q; Q) = A(n, q; Q)$, minus 1 if $l \ge 0$. Moreover $A(n, q; Q) \le n$ whereas $A^*(n, q; Q) \le n - 1$.

Proof of Theorem 2_{even}. By Corollary 5.3, we have, when (m,q)=1,

$$\omega_q\left((mk^2)!P(2m,2mk)\right) = \frac{l^2}{qm} - A(N,m;q) - \left\{\frac{mn^2}{q}\right\} + \left\{\begin{array}{ll} 1 & \text{if } l < 0 \leq L \\ 0 & \text{otherwise.} \end{array}\right.$$

This can be negative; for example if $(q)_m \leq m/2$ and $m < \sqrt{q}$ then let n = 1 + [q/m] so that $l = m - (q)_m$, $L = (q)_m$, N = 1 and the sum is $\frac{(m - (q)_m)^2}{qm} - \frac{(q)_m}{m} - \{\frac{l^2 - q^2}{qm}\} \leq \frac{m^2}{qm} - \frac{1}{m} - 0 < 0$. Indeed if q is prime with $q \equiv 1 \pmod{m}$ and $q > m^2$ then this implies that $v_q \left((mn^2)!P(2m,2mn)\right) < 0$. To compensate for this we are forced to multiply $(mk^2)!P(2m,2mk)$ through by something like $(mk)!/k!^m$ or some larger multiple of k, to obtain an integer because, in our example, $\left[\frac{(m-1)n}{q}\right] = 0$ while $\left[\frac{mn}{q}\right] = 1$. Now $\omega_q \left(\frac{(mk)!}{k!^m}\right) = N$, minus 1 if l < 0. Hence $\omega_q \left((mk^2)! \cdot \frac{(mk)!}{k!^m} \cdot P(2m,2mk)\right)$

$$= N - 1 - A^*(N, m; q) + \frac{l^2}{qm} - \left\{\frac{mn^2}{q}\right\} + \left\{\begin{array}{l} 1 & \text{if } L < 0 \le l \\ 0 & \text{otherwise.} \end{array} \right\} \ge \frac{l^2}{qm} - \left\{\frac{mn^2}{q}\right\} > -1,$$

16 INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (2008), #A47 and so is ≥ 0 as ω_q is an integer.

If (q, m) = g > 1 let q = Qg, m = Mg so that (Q, M) = 1. Then, since $\sum_{j=0}^{q-1} \{jm/q\} = q(Q-1)/2$ we have

$$\omega_{q} = \left[\frac{mk^{2}}{q}\right] + \left[\frac{mk}{q}\right] - m\left[\frac{k}{q}\right] + \sum_{j=0}^{k-1} \left(\left[\frac{mj}{q}\right] - \left[\frac{m(k+j)}{q}\right]\right)$$

$$= \left[\frac{mn^{2}}{q}\right] + \left[\frac{mn}{q}\right] - m\left[\frac{n}{q}\right] + \sum_{j=0}^{n-1} \left(\left[\frac{mj}{q}\right] - \left[\frac{m(n+j)}{q}\right]\right)$$

$$= \left[\frac{Mn^{2}}{Q}\right] + \left[\frac{Mn}{Q}\right] + \sum_{j=0}^{n-1} \left(\left[\frac{Mj}{Q}\right] - \left[\frac{M(n+j)}{Q}\right]\right)$$

$$= \omega_{Q}\left((Mn^{2})!(Mn)! \cdot P(2M, 2Mn)\right) \ge M\left[\frac{n}{Q}\right] \ge 0$$

using the result established above with (n, M, Q) in place of (k, m, q).

Proof of Theorem 2_{odd}. We deal with the general case by replacing r by R:=r/(r,q), and q by Q:=q/(r,q) so that $\omega_q((2rk^2)!P(r,2rk)/2^{2rk^2})=\omega_Q((2Rn^2)!P(R,2Rn)/2^{2Rn^2})$ where $n=(k)_q$, and noting that $\omega_q\left(\frac{(rk)!}{k!^r}\cdot\left(\frac{(2rk)!}{k!^{2r}}\right)^2\right)=\omega_Q\left(\frac{(Rn)!}{n!^R}\cdot\left(\frac{(2Rn)!}{n!^{2R}}\right)^2\right)+5R[\frac{n}{Q}].$

Henceforth we work in the case that (r,q) = 1: By (4.3) we have that

$$\omega_q(P(r,2rk)/2^{2rk^2}) = \omega_q\left(\frac{P(2r,2rk)^2 P(2r,4rk)}{P(4r,4rk)}\right) - \omega_{2q}(P(2r,4rk)).$$

Therefore, by Corollary 5.3, we deduce that $\frac{2rk^2}{q} + \omega_q(P(r,2rk)/2^{2rk^2})$ equals

(6.1)
$$2 \cdot \frac{l_1^2}{qr} + \frac{l_2^2}{qr} - \frac{l_2^2}{q \cdot 2r} - \frac{(2l_1)^2}{2q \cdot r} = \frac{l_2^2}{2qr}$$

where l_1, l_2 are the least residues, in absolute value, of $kr, 2kr \pmod{q}$, respectively, plus

(6.2)
$$A(N_1, r; 2q) + A(N_2, 2r; q) - A^*(N_2 - r[2n/q], r; q) - 2A^*(N_1, r; q)$$

where $N_1 = (rn - l_1)/q$ and $N_2 = 2N_1$ minus 1 if $l \le -q/4$, plus 1 if l > q/4 (and note that $l_2 = 2l_1 + q(2N_1 - N_2)$), plus an integer between 0 and 5. To see this last remark note that in (6.2) the terms "+A" have +1 if $l < 0 \le L$, and the terms with "-A*" have +1 if l, L < 0, since $(NQ)_m \le (-NQ)_m$ iff $L \ge 0$.

We want a lower bound on the quantity in (6.2), which is the sum of two components. First the count of elements of certain sets: if $N_1 \ge 1$ then $-\#\{i, \ 1 \le i \le N_1 - 1 : \ (iq)_r \le (-N_1q)_r\} \ge -(N_1-1) \ge -\left[\frac{rn}{q}\right]$ since $N_j = \left[\frac{jrn}{q}\right]$, plus 1 if $l_j < 0$, so that $N_j - 1 \le \left[\frac{jrn}{q}\right]$. If $N_1 = 0$ then we go

back to the original form since $l_1 \geq 0$, and $-\#\{i, 1 \leq i \leq 0 : (iq)_r \leq 0\} = 0 = -N_1 = -[\frac{rn}{q}]$. Similar arguments hold when $N_2 > r[2n/q]$, and if $N_2 = r[2n/q]$ since $l_2 \geq 0$, so we get the lower bound $r[2n/q] - [\frac{2rn}{q}]$ for the relevant set. Therefore in total we have

$$\geq -\left\lceil \frac{2rn}{q} \right\rceil - 2\left\lceil \frac{rn}{q} \right\rceil + r\left\lceil \frac{2n}{q} \right\rceil.$$

The second components in the definition of A and A^* contribute to (6.2):

$$-\frac{N_1(-2N_1q)_r}{r} - \frac{N_2(-N_2q)_{2r}}{2r} + \frac{(N_2 - r[2n/q])(-N_2q)_r}{r} + 2\frac{N_1(-N_1q)_r}{r},$$

so in total (6.2) is $\geq -\left[\frac{2rn}{q}\right] - 2\left[\frac{rn}{q}\right]$

(6.3)
$$+ \begin{cases} N_1 & \text{if } L_1 > 0 \\ 0 & \text{otherwise} \end{cases} - \frac{L_2 N_2}{2r} + \begin{cases} L_2 & \text{if } n \ge q/2 \text{ and } L_2 > 0 \\ L_2 + r & \text{if } n \ge q/2 \text{ and } L_2 \le 0 \\ 0 & \text{otherwise} \end{cases}$$

where L_1, L_2 are the least residues, in absolute value of $N_1 q \pmod{r}, N_2 q \pmod{2r}$, respectively. Note that $|L_2| \le r$. If $n \ge q/2$ then $N_2 \ge r$, so if $L_2 \le 0$ then (6.3) is $\ge L_2(1 - N_2/2r) + r \ge r + L_2/2 \ge r/2$, and if $L_2 > 0$ then (6.3) is $\ge L_2(1 - N_2/2r) \ge 0$. If n < q/2 then $N_2 \le r$ and (6.3) is $-\frac{L_2N_2}{2r}$. If $L_2 \le r - 1$ then this is $\ge -\frac{(r-1)N_2}{2r} \ge -\frac{N_2-1}{2} \ge -\frac{1}{2} \left[\frac{2rn}{q}\right]$. Finally if $L_2 = r$ then $l_2 = r \ge 0$ so (6.3) is $-\frac{N_2}{2} = -\frac{1}{2} \left[\frac{2rn}{q}\right]$

Hence

$$(6.4) \qquad \left[\frac{2rk^2}{q}\right] + \omega_q(P(r,2rk)/2^{2rk^2}) + \frac{3}{2} \cdot \left[\frac{2rn}{q}\right] + 2\left[\frac{rn}{q}\right] \ge \frac{l_2^2}{2qr} - \left\{\frac{2rk^2}{q}\right\}$$

which is an integer > -1 and so ≥ 0 . Now $\left[\frac{rn}{q}\right] \le \frac{1}{2} \cdot \left[\frac{2rn}{q}\right]$ and so

$$(2rk^2)! \frac{(2rk)!^2(rk)!}{k!^{5r}} \frac{P(r,2rk)}{2^{2rk^2}}$$

is an integer.

Acknowledgments: The author would like to thank Professors Andrew Granville and Jon Keating for their advice and suggestions.

References.

1. J. Brian Conrey and David W. Farmer, *Mean values of L-functions and symmetry*, Internat. Math. Res. Notices **17** (2000), 883–908.

- 18 INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (2008), #A47
- 2. J. Brian Conrey, David W. Farmer, Jon P. Keating, Michael O. Rubinstein and Nina C. Snaith, *Integral moments of L-functions*, Proc. London Math. Soc. **91** (2005), 33–104.
- 3. J. Brian Conrey and Amit Ghosh, On mean values of the zeta function, Mathematika 31 (1984), 159–161.
- 4. Andrew Granville, Arithmetic Properties of Binomial Coefficients I: Binomial coefficients modulo prime powers, Canadian Mathematical Society Conference Proceedings 20 (1997), 253-275.
- 5. Nicholas M. Katz and Peter Sarnak, Zeroes of zeta functions and symmetry, Bull. Amer. Math. Soc. **36** (1999), 126.
- 6. Jon Keating and Nina Snaith, Random matrix theory and $\zeta(1/2+it)$, Comm. Math. Phys. **214** (2000), 5789.
- 7. K. Ramachandra, Some remarks on the mean-value of the Riemann zeta-function and other Dirichlet series, II, Hardy-Ramanujan J 3 (1980), 1-25.
- 8. Zeev Rudnick and K. Soundararajan, Lower bounds for moments of L-functions, Proc. Natl. Acad. Sci. USA 102 (2005), 6837–6838.
- Zeev Rudnick and K. Soundararajan, Lower bounds for moments of L-functions: symplectic and orthogonal examples, Multiple Dirichlet series, automorphic forms, and analytic number theory, Proc. Sympos. Pure Math. 75, Amer. Math. Soc, Providence, RI, 2006, pp. 293– 303.
- 10. K. Soundararajan, Moments of the Riemann zeta-function, Annals of Math (to appear).