FACTORIZATION OF CONSTANTS INVOLVED IN CONJECTURAL MOMENTS OF ZETA-FUNCTIONS

Jam Germain
Université de Montréal, Montréal, Canada
jamgermain@gmail.com

Received: 9/13/2008, Accepted: 10/14/2008, Published: 10/27/08

Abstract

We give the factorization of certain constants that appear in (conjectural) formulas for moments of zeta-functions, making it obvious that these constants are integers (which was already proved by Conrey and Farmer). We extend this analysis to other constants emerging from the randommatrix theory calculations of Keating and Snaith.

1. Introduction.

Following work of Conrey and Ghosh, and of Keating and Snaith [6], it is believed that

$$
\begin{equation*}
\frac{1}{T} \int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 k} \sim g_{k, U} \cdot \prod_{p}\left(\left(1-\frac{1}{p}\right)^{k^{2}} \sum_{j \geq 0} \frac{d_{k}\left(p^{j}\right)^{2}}{p^{j}}\right) \cdot \frac{(\log T)^{k^{2}}}{k^{2}!} \tag{1}
\end{equation*}
$$

where $\zeta(s)^{k}=\sum_{n \geq 1} \frac{d_{k}(n)}{n^{s}}$, and

$$
\begin{equation*}
g_{k, U}:=\left(k^{2}\right)!\frac{1!2!\ldots(k-1)!}{k!(k+1)!\ldots(2 k-1)!} . \tag{2}
\end{equation*}
$$

This has been proved for $k=1$ (Hardy and Littlewood, 1918) and $k=2$ (Ingham, 1926), and is otherwise an open conjecture. The lower bound $>_{k}(\log T)^{k^{2}}$ was given by Ramachandra [7] in 1980, and with the implicit constant as in (1), divided by $g_{k, U}$, assuming the Riemann Hypothesis by Conrey and Ghosh [3] in 1984, and the upper bound $<_{k, \epsilon}(\log T)^{k^{2}+\epsilon}$ assuming the Riemann Hypothesis was given recently by Soundararajan [10]. A persuasive heuristic argument in favour of (1) is given in [2].

Similarly one can conjecture the average value of the " $2 k$ th moments" of other L-functions, perhaps averaging over different L-functions in a certain class (for example the quadratic Dirichlet L-functions, or those connected with natural classes of modular forms) rather than over t. Various cases have been considered, following the philosophy of Katz and Sarnak [5], especially as formulated in [2], and each involves a formula like (1), though with slightly different constants involved. In fact the power of $\log T$ involved, and the Euler product have long been understood since they come from number theoretic considerations. The highly influential work of Keating and Snaith [6] suggests a value for the constants g_{k} in each case, coming from a random matrix theory calculation, namely the average of the s th power of the absolute value of the characteristic polynomial of an $N \times N$ matrix as we vary over a suitable set of matrices (with an appropriate measure). ${ }^{1}$ Lower bounds for these moments, out by at most a constant, were given by Rudnick and Soundararajan $[8,9]$, and good upper bounds, out by at most $(\log T)^{o(1)}$, by Soundararajan [10, section 4].

The first few $g_{k, U}$ are $1,2,42,24024, \ldots$ and seem to always be integers, though this is not clear from the definition (2). Conrey and Farmer [1] confirmed the experimental evidence that these are always integers, and even noticed some self-similar structure in the powers to which primes divide these integers. ${ }^{2}$ We give another proof of the fact that these are always integers by obtaining a new description of the power to which each prime divides g_{k}, which also easily explains (and confirms) Conrey and Farmer's observations about self-similarity.

For a given integer k and prime power q we define k_{q} to be that integer satisfying $k_{q} \equiv k$ $(\bmod q)$ with $-q / 2 \leq k_{q}<q / 2$. We let $[t]$ be the largest integer $\leq t$, and $\{t\}=t-[t] \in[0,1)$ be the fractional part of t.

Theorem $\mathbf{1}_{U}$. We have

$$
g_{k, U}:=\left(k^{2}\right)!\frac{1!2!\ldots(k-1)!}{k!(k+1)!\ldots(2 k-1)!}=\prod_{\substack{p \text { prime } \\ a \geq 1, q=p^{a}}} p^{\left[\frac{k_{q}^{2}}{q}\right]},
$$

so that $g_{k, U}$ is an integer for all $k \geq 1$.

Conrey and Farmer also showed that the numbers

$$
g_{k, S p}:=2^{\frac{1}{2} k(k+1)}\left(\frac{k(k+1)}{2}\right)!\frac{1!2!\ldots k!}{2!4!\ldots 2 k!} .
$$

are all integers, and we give our own proof:

[^0]Theorem $\mathbf{1}_{S p}$. We have

$$
g_{k, S p} / 2^{\frac{1}{2} k(k+1)}=\prod_{\substack{p \text { prime } \\ a \geq 1, q=p^{a}}} p^{\left[\frac{k_{q}\left(k_{q}+1\right)}{2 q}\right]} \cdot \prod_{a \geq 1, q=2^{a}} 2^{\left[\frac{k_{q}\left(k_{q}+1\right)}{2 q}-\frac{1}{2}\left(\left[\frac{2 k}{q}\right]-\left[\frac{k}{q}\right]\right)\right]},
$$

so that $g_{k, S p} / 2^{\frac{1}{2} k(k-1)}$ is an integer for all $k \geq 1$.

The main idea in the proof goes back to Legendre and Kummer, and is widely used when understanding prime factors of binomial coefficients (see, e.g., [4]): Write out each factorial j ! as the product of the integers up to j and then determine how many of these integers are divisible by each prime power q. One pieces that information together to get the result. ${ }^{3}$

Jon Keating suggested looking at [6] for other constants that might prove to be integers, when multiplied through by a suitable quantity. There are several natural ways to guess at "suitable". Here we give one which generalizes the last part of Theorem 1_{U} :

Theorem $2_{\text {even }}$. The number

$$
G_{m, k}:=\left(m k^{2}\right)!\cdot \frac{(m k)!}{k!m} \cdot \frac{m!2 m!3 m!\ldots(k-1) m!}{k m!(k+1) m!\ldots(2 k-1) m!}
$$

is an integer for any integers $m, k \geq 1$.

Note that $g_{k, U}=G_{1, k}$ so this generalizes Theorem 1_{U}. It almost gives Theorem $1_{S p}$: Since $(2!4!\ldots 2 l!)^{2}=(2!4!\ldots 2 l!)(1!23!4 \ldots(2 l-1)!2 l)=(1!2!3!\ldots 2 l!) 2^{l} l!$,

$$
\begin{aligned}
G_{2, k} & =\left(2 k^{2}\right)!\cdot \frac{(2 k)!}{k!^{2}} \cdot \frac{(2!4!6!\ldots 2(k-1)!)^{2}}{2!4!\ldots 2(2 k-1)!}=\left(2 k^{2}\right)!\cdot \frac{2^{k}}{k!} \cdot \frac{1!2!3!\ldots(2 k-1)!}{2!4!\ldots 2(2 k-1)!} \\
& =\binom{2 k^{2}}{k} \cdot \frac{g_{2 k-1, S p}}{2^{2 k^{2}-2 k}}
\end{aligned}
$$

so these are closely related.

We will give a further (but more complicated) generalization, Theorem $2_{\text {odd }}$, in Section 4.

Theorem 2 does not give a factorization comparable to those given in Theorem 1. Actually it is possible to do so with additional complications since, in general, the exponent on q will equal $l^{2} / q m$ where l is the least residue, in absolute value, of $m k(\bmod q)$ plus a term which depends only on $q(\bmod m)$ and $[2 m k / q](\bmod 2 m)$, but which does not obviously yield a simple description (see Corollary 5.3 below).

[^1]Notation: Here and henceforth $(t)_{d}$ is the least non-negative residue of $t(\bmod d)$, and note that $\left\{\frac{t}{d}\right\}=\frac{(t)_{d}}{d}$. As usual $v_{p}(m)$ denotes the power of p that divides m. Let $\omega_{q}\left(a_{1} \cdot a_{2} \cdots a_{r}\right)$ denote the number of a_{j} that are divisible by $q \cdot{ }^{4}$ Also $\omega_{q}(a \cdot b!)=\omega_{q}(a \cdot 1 \cdot 2 \cdots b)$, and note that $\omega_{q}(b!)=[b / q]$. The key observation (as described above) is that

$$
v_{p}\left(a_{1} \cdot a_{2} \cdots a_{r}\right)=\sum_{\substack{e \geq 1 \\ q=p^{e}}} \omega_{q}\left(a_{1} \cdot a_{2} \cdots a_{r}\right) .
$$

2. Proof of Theorem 1.

Proof of the factorization of $g_{k, U}$. For $n=a q+b$ with $0 \leq b \leq q-1$, the number of integers amongst $1!2!\ldots(a q+b)$! that are divisible by q, that is $\omega_{q}(1!2!\ldots n!)$, is

$$
\sum_{i=0}^{n}\left[\frac{i}{q}\right]=\sum_{i=0}^{n} \frac{i}{q}-\left\{\frac{i}{q}\right\}=\frac{n(n+1)}{2 q}-\sum_{j=0}^{a-1} \sum_{\ell=0}^{q-1} \frac{\ell}{q}-\sum_{\ell=0}^{b} \frac{\ell}{q}=\frac{n(n+1)}{2 q}-a \cdot \frac{q-1}{2}-\frac{b(b+1)}{2 q} .
$$

Writing $k-1=a q+b$, so that $2 k-1=A q+B$ with $A=2 a, B=2 b+1$ if $b \leq \frac{q}{2}-1$, and $A=2 a+1, B=2 b+1-q$ if $b>\frac{q}{2}-1$, we deduce that $\omega_{q}\left(g_{k, U}\right)$ equals

$$
\begin{gathered}
\frac{k^{2}}{q}-\left\{\frac{k^{2}}{q}\right\}+2\left(\frac{k(k-1)}{2 q}-a \cdot \frac{q-1}{2}-\frac{b(b+1)}{2 q}\right)-\left(\frac{2 k(2 k-1)}{2 q}-A \cdot \frac{q-1}{2}-\frac{B(B+1)}{2 q}\right) \\
=(A-2 a) \cdot \frac{q-1}{2}+\frac{B(B+1)}{2 q}-\frac{b(b+1)}{q}-\left\{\frac{(b+1)^{2}}{q}\right\} .
\end{gathered}
$$

Now if $b+1 \leq \frac{q}{2}$ then this is

$$
\frac{(b+1)^{2}}{q}-\left\{\frac{(b+1)^{2}}{q}\right\}=\left[\frac{(b+1)^{2}}{q}\right],
$$

and if $b+1>\frac{q}{2}$ then this is

$$
q-2(b+1)+\frac{(b+1)^{2}}{q}-\left\{\frac{(b+1)^{2}}{q}\right\}=\frac{(q-(b+1))^{2}}{q}-\left\{\frac{(b+1)^{2}}{q}\right\}=\left[\frac{(b+1-q)^{2}}{q}\right] .
$$

Proof of the factorization of $g_{k, S p}$. Now $\omega_{q}\left(g_{k, S p} / 2^{\frac{1}{2} k(k+1)}\right)$ equals

$$
\left[\frac{k(k+1)}{2 q}\right]+\sum_{j=1}^{k}\left[\frac{j}{q}\right]-\left[\frac{2 j}{q}\right]=-\left\{\frac{k(k+1)}{2 q}\right\}+\sum_{j=1}^{k}\left\{\frac{2 j}{q}\right\}-\left\{\frac{j}{q}\right\}
$$

[^2]If q is odd, then as j runs from one multiple of q to the next, the last two summands run through the same terms and so cancel. Hence if $k=a q+b$ the above becomes

$$
-\left\{\frac{b(b+1)}{2 q}\right\}+\sum_{j=1}^{b} \frac{2 j}{q}-\frac{j}{q}-\sum_{q / 2 \leq j \leq b} 1=\frac{b(b+1)}{2 q}-\left\{\frac{b(b+1)}{2 q}\right\}-\max \left\{0, b-\left[\frac{q-1}{2}\right]\right\} .
$$

So if $b \leq \frac{q-1}{2}$ this equals $\left[\frac{b(b+1)}{2 q}\right]$. The result follows for $b>\frac{q-1}{2}$ since

$$
\frac{b(b+1)}{2 q}-\left(b-\frac{q-1}{2}\right)=\frac{(b-q)(b+1-q)}{2 q} .
$$

If q is even then

$$
\sum_{j=1}^{q}\left\{\frac{2 j}{q}\right\}-\left\{\frac{j}{q}\right\}=\sum_{j=1}^{q} \frac{j}{q}-\left(\frac{q}{2}+1\right)=-\frac{1}{2} .
$$

There is a new subtlety: $\frac{k(k+1)}{2 q}=\frac{b(b+1)}{2 q}-\frac{a}{2}(\bmod 1)$. Hence if $b<\frac{q}{2}$ then we have, in total,

$$
\frac{b(b+1)}{2 q}-\frac{a}{2}-\left\{\frac{b(b+1)}{2 q}-\frac{a}{2}\right\}=\left[\frac{k_{q}\left(k_{q}+1\right)}{2 q}-\frac{a}{2}\right] .
$$

On the other hand $\frac{k(k+1)}{2 q}=\frac{(b-q)(b-q+1)}{2 q}-\frac{a+1}{2}(\bmod 1)$ so that if $b \geq \frac{q}{2}$ then we have, in total,

$$
\begin{aligned}
& \frac{b(b+1)}{2 q}-\left\{\frac{k(k+1)}{2 q}\right\}-\left(b-\left(\frac{q}{2}-1\right)\right)-\frac{a}{2} \\
& =\frac{(b-q)(b-q+1)}{2 q}-\frac{a+1}{2}-\left\{\frac{(b-q)(b-q+1)}{2 q}-\frac{a+1}{2}\right\} \\
& =\left[\frac{k_{q}\left(k_{q}+1\right)}{2 q}-\frac{a+1}{2}\right] .
\end{aligned}
$$

Proof that $g_{k, U}$ and $g_{k, S p}$ are both integers. The exponent corresponding to each prime power is a non-negative integer, except perhaps for the power of 2 in $g_{k, S p}$. In that case we write $k=\sum_{i} \delta_{i} 2^{i}$ in binary and suppose that $q=2^{e}$ with $k=a q+b$, so that $a=\sum_{i \geq e} \delta_{i} 2^{i-e}$ and $b=\sum_{0 \leq i \leq e-1} \delta_{i} 2^{i}$, and thus $b \geq q / 2$ iff $\delta_{e-1}=1$. Then

$$
\begin{aligned}
{\left[\frac{k_{q}\left(k_{q}+1\right)}{2 q}-\frac{1}{2}\left(\left[\frac{2 k}{q}\right]-\left[\frac{k}{q}\right]\right)\right] } & =\left[\frac{k_{q}\left(k_{q}+1\right)}{2 q}-\frac{1}{2}\left(\sum_{i \geq e} \delta_{i} 2^{i-e}+\delta_{e-1}\right)\right] \\
& =\left[\frac{k_{q}\left(k_{q}+1\right)}{2 q}-\frac{1}{2}\left(\delta_{e-1}+\delta_{e}\right)\right]-\sum_{i \geq e+1} \delta_{i} 2^{i-e-1}
\end{aligned}
$$

Now

$$
\sum_{e \geq 1} \sum_{i \geq e+1} \delta_{i} 2^{i-e-1}=\sum_{i \geq 2} \delta_{i} \sum_{e=1}^{i-1} 2^{i-1-e}=\sum_{i \geq 1} \delta_{i}\left(2^{i-1}-1\right)=\left[\frac{k}{2}\right]-\sum_{i \geq 1} \delta_{i},
$$

so that

$$
\begin{aligned}
v_{2}\left(g_{k, S p}\right) & =\frac{k(k+1)}{2}-\left[\frac{k}{2}\right]+\sum_{e \geq 1}\left[\frac{k_{q}\left(k_{q}+1\right)}{2 q}+\frac{1}{2}\left(\delta_{e}-\delta_{e-1}\right)\right] \\
& \geq \frac{k^{2}}{2}+\frac{\delta_{0}}{2}+\sum_{e \geq 1}\left[\frac{\delta_{e}-\delta_{e-1}}{2}\right] \geq \frac{k^{2}}{2}-\frac{\log 2 k}{\log 4} \geq \frac{k(k-1)}{2} .
\end{aligned}
$$

3. Further remarks on divisibility of $g_{k, U}$.

3.1. Self-similarity. Let $\|t\|:=\min _{n \in \mathbb{Z}}|t-n|$ be the distance from t to the nearest integer. Evidently $\left|k_{q}\right|=q\|k / q\|$ so that $k_{q}^{2} / q=q\|k / q\|^{2}$, and $\left[k_{q}^{2} / q\right]=q\|k / q\|^{2}+O(1)$. Moreover if $q \geq 2 k$ then $\left|k_{q}\right|=|k|$ and so if $q>k^{2}$ then $\left[k_{q}^{2} / q\right]=0$. Also if $q>k^{2}$ then $q\|k / q\|^{2}=k^{2} / q$. From all this we deduce that the power of p dividing $g_{k, U}$, given by $v_{p}\left(g_{k, U}\right)$, satisfies

$$
\left|v_{p}\left(g_{k, U}\right)-\sum_{a \in \mathbb{Z}} p^{a}\left\|k / p^{a}\right\|^{2}\right| \leq \sum_{\substack{a \geq 1 \\ p^{a} \leq k^{2}}} 1+\sum_{\substack{a \geq 1 \\ p^{2}>k^{2}}} k^{2} / p^{a}+\frac{1}{4} \sum_{a \leq 0} p^{a} \leq\left[\frac{2 \log k}{\log p}\right]+\frac{5}{4} \cdot \frac{p}{p-1} .
$$

So define, as in [1],

$$
c_{p}(x)=x^{-1} \sum_{a \in \mathbb{Z}} p^{a}\left\|x / p^{a}\right\|^{2}
$$

which is "self-similar" in that $c_{p}(x)=c_{p}(p x)$ for all real x; and so

$$
\begin{equation*}
v_{p}\left(g_{k, U}\right)=k c_{p}(k)+O\left(\frac{\log p k}{\log p}\right)=k c_{p}\left(x_{p, k}\right)+O\left(\frac{\log p k}{\log p}\right) \tag{3.1}
\end{equation*}
$$

where $x_{p, k}$ is the unique element of $[1, p)$ for which $k / x_{p, k}$ is a power of p. This is a strong version of the ingenious Theorem 6.1 of [1].
3.2. Change in p-divisibility. Along these lines it is also interesting to consider $v_{p}\left(g_{k+p^{b}, U}\right)-$ $v_{p}\left(g_{k, U}\right)$ when $p^{b} \leq k<p^{b+1}$: By (3.1) this equals

$$
\sum_{\substack{a e \geq 1 \\ q=p^{a}}} \frac{\left(k^{\prime}\right)_{q}^{2}-k_{q}^{2}}{q}+O\left(\frac{\log p k}{\log p}\right)
$$

where $k^{\prime}=k+p^{b}$. Now $k_{q}^{\prime}=k_{q}$ for all $q=p^{a}, a \leq b$, and $k_{q}^{\prime}=k^{\prime}$ with $k_{q}=k$ provided $k^{\prime} \leq \frac{q}{2}$ where $q=p^{a}$. If this holds for $a=b+1$ then the sum above equals

$$
\sum_{a \geq b+1} \frac{\left(k^{\prime}\right)^{2}-k^{2}}{q}=\frac{k+k^{\prime}}{p-1} .
$$

Otherwise we must make a correction when $q=p^{b+1}$ with $k^{\prime}>q / 2$, in which case either $k<\frac{q}{2}$ whence $k_{q}^{\prime}=q-k^{\prime}=q-p^{b}-k$ and $k_{q}=k$, or $\frac{q}{2}<k$ whence $\left|k_{q}^{\prime}\right|=\left|q-k^{\prime}\right|=\left|q-p^{b}-k\right|$ and $k_{q}=q-k$. Therefore

$$
v_{p}\left(g_{k+p^{b}, U}\right)-v_{p}\left(g_{k, U}\right)=\frac{k+k^{\prime}}{p-1}+O\left(\frac{\log p k}{\log p}\right)-2 \cdot \begin{cases}0 & \text { if } k^{\prime}<\frac{q}{2} \\ k^{\prime}-\frac{p^{b+1}}{2} & \text { if } k<\frac{q}{2}<k^{\prime} \\ p^{b} & \text { if } \frac{q}{2}<k\end{cases}
$$

3.3. Further divisibility. The numbers $g_{k, U}$ are highly composite and one might suspect that they are divisible by factorials (in terms of k). A little experimenting and one finds that $g_{k, U}$ is not always divisible by k ! but it is close, that is the denominator of $g_{k, U} / k$! is always small. (Indeed $g_{k} / k!$ is an integer for $k \leq 4$ but $g_{5} / 5$! has denominator 2).

For any k there exists r such that $p^{r} \leq k<p^{r+1}$.
Suppose $k \leq p^{r+1} / 2$; then $k_{q}^{2}=k^{2}$ for $q=p^{a}$ with $a \geq r+1$, and so $k_{q}^{2} / p^{r+b}=k / p^{r} \cdot k / p^{b} \geq$ k / p^{b}. Hence, by Theorem 1 , the power of p dividing $g_{k, U}$ is

$$
\sum_{a \geq 1, q=p^{a}}\left[\frac{k_{q}^{2}}{q}\right] \geq \sum_{\substack{b \geq 1 \\ q=p^{r+b}}}\left[\frac{k_{q}^{2}}{p^{r+b}}\right] \geq \sum_{b \geq 1}\left[\frac{k}{p^{b}}\right]=v_{p}(k!) .
$$

Now suppose that $k=p^{r+1}-l$ with $l<p^{r+1} / 2$. Then $k_{q}^{2}=k^{2}$ for $q=p^{a}$ with $a \geq r+2$ (so the same argument as above works for those terms) and $k_{q}^{2}=l^{2}$ for $q=p^{r+1}$. If $l \geq p^{r+1 / 2}$ then $l^{2} / p^{r+1} \geq p^{r} \geq k / p$ so that

$$
\sum_{a \geq 1, q=p^{a}}\left[\frac{k_{q}^{2}}{q}\right] \geq\left[\frac{l^{2}}{p^{r+1}}\right]+\sum_{b \geq 2}\left[\frac{k^{2}}{p^{r+b}}\right] \geq \sum_{b \geq 1}\left[\frac{k}{p^{b}}\right]=v_{p}(k!) .
$$

Hence the only remaining range is $p^{r+1}-p^{r+1 / 2}<k<p^{r+1}$, in which we do have examples where p divides the denominator: Let $k=p^{2}-p+r$ where $1 \leq r<\sqrt{p}$, so that the power of p dividing $g_{k, U}$ is $\left[r^{2} / p\right]+\left[(p-r)^{2} / p^{2}\right]+\left[\left(p^{2}-p+r\right)^{2} / p^{3}\right]=0+0+p-2+\left[\left((2 r+1) p^{2}-\right.\right.$ $\left.\left.2 r p+r^{2}\right) / p^{3}\right]=p-2$ whereas $v_{p}(k!)=\left[\left(p^{2}-p+r\right) / p\right]=p-1$. In fact one can show that if $k=p^{2 r}-p^{2 r-1}+p^{2 r-2}-p^{2 r-3}+\ldots$, where p is sufficiently large (in terms of r) then $v_{p}(k!)=v_{p}\left(g_{k, U}\right)+r$

We might compensate as follows: Given k, let $\ell_{k}:=1+[\sqrt{k}]$. We conjecture that $k!/ \ell_{k}$! divides $g_{k, U}$, when $k \neq 20,22$. If true this is "best possible" in that p divides the denominator of $g_{k, U} /(k!/[\sqrt{k}]!)$ when $k=p^{2}-p+1$.

4. Other constants from random matrix theory.

4.1. The big picture: a suggestion of Jon Keating. The average of the s th power of the absolute value of the characteristic polynomial of an $N \times N$ matrix in the various ensembles (Unitary $r=2$, Orthogonal $r=1$, Symplectic $r=4$) is given by the formula (see (110) of [6])

$$
M_{N}(r, s):=\prod_{j=0}^{N-1} \frac{\Gamma(1+j r / 2) \Gamma(1+s+j r / 2)}{\Gamma(1+s / 2+j r / 2)^{2}}
$$

This product has a lot of cancelation if s is divisible by r, that is $s=r k$ for some integer $k \geq 1$, whence the above becomes

$$
\begin{aligned}
M_{N}(r, r k) & =\prod_{j=0}^{N-1} \frac{\Gamma(1+j r / 2) \Gamma(1+(2 k+j) r / 2)}{\Gamma(1+(k+j) r / 2)^{2}} \\
& =P(r, r k) \prod_{j=0}^{k-1} \frac{\Gamma(1+(N+k+j) r / 2)}{\Gamma(1+(N+j) r / 2)}=P(r, r k)\left(\frac{r N}{2}\right)^{r k^{2} / 2} e^{O\left(k^{3} / N\right)}
\end{aligned}
$$

where

$$
\begin{equation*}
P(r, r k):=\prod_{j=0}^{k-1} \frac{\Gamma(1+j r / 2)}{\Gamma(1+(k+j) r / 2)} \tag{4.1}
\end{equation*}
$$

Hence as $N \rightarrow \infty$,

$$
M_{N}(r, r k) \sim P(r, r k)\left(\frac{r N}{2}\right)^{r k^{2} / 2}
$$

If r is even, say $r=2 m$ we have

$$
\begin{equation*}
P(2 m, 2 m k)=\frac{m!2 m!3 m!\ldots(k-1) m!}{k m!(k+1) m!\ldots(2 k-1) m!} \tag{4.2}
\end{equation*}
$$

and so

$$
M_{N}(2 m, 2 m k) \sim \gamma_{m, k} \frac{N^{m k^{2}}}{\left(m k^{2}\right)!} \quad \text { where } \gamma_{m, k}:=m^{m k^{2}}\left(m k^{2}\right)!\cdot P(2 m, 2 m k)
$$

In Theorem 1_{U} we saw that $\gamma_{1, k}=g_{k, U}$, and we might guess that $\gamma_{m, k}$ is always an integer. However this is not so, as we can see from the example $\gamma_{4, k}$ which has denominator $2 k-1$ for $k=2,3,4,6$. Quite extensive calculations appear to reveal that the denominator of $\gamma_{m, k}$ is always quite small. In section 6 below we will prove Theorem $2_{\text {even }}$, which states that

$$
\left(m k^{2}\right)!\cdot \frac{(m k)!}{k!^{m}} \cdot P(2 m, 2 m k) \text { is an integer for any } m, k \geq 1
$$

(and hence $\frac{(m k)!}{k!m} \cdot \gamma_{m, k}$ is always an integer); and we give reasons there to believe that it is unlikely that a smaller multiplier than $\frac{(m k)!}{k!^{m}}$ will do.

Suppose that r is odd. Note that if d is odd then $\Gamma(1+d / 2)=\sqrt{\pi} d!/\left(2^{d}\left[\frac{d}{2}\right]!\right)$, so that

$$
\prod_{j=0}^{2 l-1} \Gamma(1+j r / 2)=\prod_{i=0}^{l-1} \Gamma(1+i r) \Gamma(1+(2 i+1) r / 2)=\prod_{i=0}^{l-1}(i r)!\frac{\sqrt{\pi}(2 i+1) r!}{2^{(2 i+1) r}\left[\frac{(2 i+1) r}{2}\right]!}
$$

Therefore

$$
\begin{align*}
P(r, 2 r k) & =\frac{\prod_{j=0}^{2 k-1} \Gamma(1+j r / 2)^{2}}{\prod_{j=0}^{4 k-1} \Gamma(1+j r / 2)}=2^{2 r k^{2}} \frac{\prod_{i=0}^{k-1}(i r)!^{2}(2 i+1) r!}{\prod_{i=k}^{2 k-1}(i r)!^{2}(2 i+1) r!} \cdot \frac{\prod_{j=2 k}^{4 k-1}\left[\frac{j r}{2}\right]!}{\prod_{j=0}^{2 k-1}\left[\frac{j r}{2}\right]!} \\
& =2^{2 r k^{2}}\left(\frac{\prod_{i=0}^{k-1} i r!}{\prod_{i=k}^{2 k-1} i r!}\right)^{2} \cdot \frac{\prod_{i=k}^{2 k-1} 2 i r!}{\prod_{i=0}^{k-1} 2 i r!} \cdot \frac{\prod_{j=0}^{2 k-1} j r!}{\prod_{j=2 k}^{4 k-1} j r!} \cdot \frac{\prod_{j=2 k}^{4 k-1}\left[\frac{j r}{2}\right]!}{\prod_{j=0}^{2 k-1}\left[\frac{j r}{2}\right]!} \\
& =2^{2 r k^{2}} \cdot \frac{P(2 r, 2 r k)^{2} P(2 r, 4 r k)}{P(4 r, 4 r k)} \cdot \frac{\prod_{j=2 k}^{4 k-1}\left[\frac{j r}{2}\right]!}{\prod_{j=0}^{2 k-1}\left[\frac{j r}{2}\right]!} \tag{4.3}
\end{align*}
$$

which is thus a rational number. In section 6 we deduce from (4.3):

Theorem $\mathbf{2}_{\text {odd }}$. The number

$$
\left(2 r k^{2}\right)!\cdot \frac{(r k)!}{k!^{r}} \cdot\left(\frac{(2 r k)!}{k!^{2 r}}\right)^{2} \cdot \frac{P(r, 2 r k)}{2^{2 r k^{2}}}
$$

is an integer, for any integers $k \geq 1$ and odd $r \geq 1$.

4.2. Connections between constants.

We have seen that $\gamma_{1, k}=g_{k, U}$. There are two ways to obtain $g_{k, S p}$: For $m=2$ we have, since $(2 j)!=2 j \cdot(2 j-1)$!,

$$
\begin{aligned}
\gamma_{2, k} & =2^{2 k^{2}}\left(2 k^{2}\right)!\cdot \frac{(2!4!\ldots(2 k-2)!)^{2}}{2!4!\ldots(4 k-2)!} \\
& =2^{2 k^{2}}\left(2 k^{2}\right)!\cdot \frac{1!2!3!4!\ldots(2 k-2)!(2 \cdot 4 \cdots 2(k-1))}{2!4!\ldots(4 k-2)!} \\
& =2^{2 k^{2}}\left(2 k^{2}\right)!\cdot \frac{1!2!3!4!\ldots(2 k-2)!\left(2^{k-1} \cdot(k-1)!\right)}{2!4!\ldots(4 k-2)!} \\
& =2^{2 k} \frac{\left(2 k^{2}\right)!k!}{\left(2 k^{2}-k\right)!(2 k)!} \cdot g_{2 k-1, S p}
\end{aligned}
$$

If $r=1$ we use the identity $\Gamma(z) \Gamma(z+1 / 2)=2^{1-2 z} \sqrt{\pi} \Gamma(2 z)$, to obtain

$$
\begin{aligned}
M_{N}(1,2 k) & \sim\left(\frac{N}{2}\right)^{2 k^{2}} \cdot \prod_{i=0}^{k-1} \frac{\Gamma(1+i) \Gamma(3 / 2+i)}{\Gamma(1+k+i) \Gamma(3 / 2+k+i)} \\
& =\left(\frac{N}{2}\right)^{2 k^{2}} \cdot \prod_{i=0}^{k-1} \frac{2^{2 k} \Gamma(2+2 i)}{\Gamma(2+2 i+2 k)} \\
& =N^{2 k^{2}} \cdot \frac{1!3!\ldots(2 k-1)!}{(2 k+1)!(2 k+3)!\ldots(4 k-1)!} \\
& =\frac{N^{2 k^{2}}}{\left(2 k^{2}\right)!} \cdot \frac{\left(2 k^{2}\right)!(2 k)!^{2}}{\left(2 k^{2}-k\right)!k!(4 k)!2^{2\left(k^{2}-k\right)}} \cdot g_{2 k-1, S p}
\end{aligned}
$$

so that

$$
P(1,2 k)=\frac{2^{2 k}}{\binom{4 k}{2 k}} \cdot \frac{g_{2 k-1, S p}}{\left(2 k^{2}-k\right)!k!} \text { and } P(4,4 k)=\frac{2^{2 k-2 k^{2}}}{\binom{2 k}{k}} \cdot \frac{g_{2 k-1, S p}}{\left(2 k^{2}-k\right)!k!} .
$$

Hence Theorems $1_{S p}, 2_{\text {even }}$ and $2_{\text {odd }}$ imply that

$$
2^{k-1} \cdot \frac{g_{2 k-1, S p}}{2^{2 k^{2}-2 k}},\binom{2 k^{2}}{k} \cdot \frac{g_{2 k-1, S p}}{2^{2 k^{2}-2 k}} \text { and }\binom{2 k^{2}}{k} \cdot \frac{\binom{2 k}{k}^{2}}{\binom{4 k}{2 k}} \cdot \frac{g_{2 k-1, S p}}{2^{2 k^{2}-2 k}}
$$

are integers, respectively. This allows us to compare the strength of the various results, and implies that, perhaps, the $\left(m k^{2}\right)$! and $\left(2 r k^{2}\right)$! in Theorem 2 could be replaced by somethings slightly smaller.

A general identity of this kind is:

$$
\begin{align*}
M_{2 n-1}(1, s) & =\frac{\Gamma(1+s)}{\Gamma(1+s / 2)^{2}} \cdot \prod_{j=1}^{2 n-2} \frac{\Gamma(1+j / 2) \Gamma(1+s+j / 2)}{\Gamma(1+s / 2+j / 2)^{2}} \\
& =\frac{4 \Gamma(s)}{s \Gamma(s / 2)^{2}} \cdot \prod_{i=1}^{n-1} \frac{\Gamma\left(\frac{1}{2}+i\right) \Gamma\left(\frac{1}{2}+s+i\right)}{\Gamma\left(\frac{1}{2}+s / 2+i\right)^{2}} \cdot \frac{\Gamma(1+i) \Gamma(1+s+i)}{\Gamma(1+s / 2+i)^{2}} \\
& =\frac{4 \Gamma(s)}{s \Gamma(s / 2)^{2}} / \frac{\Gamma(1+2 s)}{\Gamma(1+s)^{2}} \cdot \prod_{i=0}^{n-1} \frac{\Gamma(1+2 i) \Gamma(1+2 s+2 i)}{\Gamma(1+s+2 i)^{2}} \\
& =\frac{2 \Gamma(s)^{3}}{\Gamma(2 s) \Gamma(s / 2)^{2}} \cdot M_{n}(4,2 s) . \tag{4.4}
\end{align*}
$$

5. A reciprocity law.

5.1. A reciprocity law and useful formulas. Define

$$
A(n, q ; Q):=\#\left\{i, 1 \leq i \leq n:(i Q)_{q} \leq(-n Q)_{q}\right\}-\frac{n(-n Q)_{q}}{q} .
$$

Theorem 5.1. Let q and m be coprime integers. For any given integer k, let $n=(k)_{q}$ and l be the least residue, in absolute value, of $m k(\bmod q),{ }^{5}$ and then $N=\frac{m n-l}{q}$ (which is the nearest integer to mn / q). We have

$$
\omega_{q}\left(\left(m k^{2}\right)!\cdot \frac{m!2 m!3 m!\ldots(k-1) m!}{k m!(k+1) m!\ldots(2 k-1) m!}\right)
$$

equals

$$
A(n, q ; m)-\left\{\begin{array}{ll}
1 & \text { if } n>q / 2 \\
0 & \text { otherwise }
\end{array}+\left\{\begin{array}{ll}
1 & \text { if } l<0 \\
0 & \text { otherwise }
\end{array}-\left\{\frac{m n^{2}}{q}\right\} .\right.\right.
$$

One can directly evaluate $A(n, q ; Q)$ though this will not be useful in our application. Instead we have the following "reciprocity law":

[^3]Proposition 5.2. (Reciprocity law) Let q and Q be coprime integers. For any given integer $n, 0 \leq n \leq q-1$, let l be the least residue, in absolute value, of $Q n(\bmod q)$, and then $N=\frac{Q n-l}{q}$ (which is the nearest integer to $Q n / q$). Let L be the least residue, in absolute value, of $q N$ $(\bmod Q)$. Then

$$
A(n, q ; Q)+A(N, Q ; q)=q Q\left|\frac{n}{q}-\frac{N}{Q}\right|^{2}-\left\{\begin{array}{ll}
1 & \text { if } l, L<0 \tag{5.1}\\
0 & \text { otherwise }
\end{array}+ \begin{cases}1 & \text { if } n>q / 2 \\
0 & \text { otherwise } .\end{cases}\right.
$$

Although we have attempted to state Proposition 5.2 in as symmetric a form as possible, one cannot interchange the capital and lower case letters, since $n=\frac{q N+l}{Q}$, not $\frac{q N-L}{Q}$, and L is the least residue, in absolute value, of $-l(\bmod Q)$ so that L can equal $-l$ but not usually.

By combining Theorem 5.1 and Proposition 5.2, we deduce

Corollary 5.3. With the notation as above we have

$$
\frac{m k^{2}}{q}+\omega_{q}(P(2 m, 2 m k))=\frac{l^{2}}{q m}-A(N, m ; q)+ \begin{cases}1 & \text { if } l<0 \leq L \\ 0 & \text { otherwise } .\end{cases}
$$

One can use Proposition 5.2 to develop an algorithm to evaluate $A(n, q ; Q)$:

Algorithm 5.4. For evaluating $A(n, q ; Q)$ when $q>Q$ with $(q, Q)=1$: Let $q_{1}=q$ and $q_{2}=Q$. Then let $q_{j}=r_{j} q_{j+1}+q_{j+2}$ for each $j \geq 1$, where $r_{j}=\left[q_{j} / q_{j+1}\right]$ and $q_{j+2}=\left(q_{j}\right)_{q_{j+1}}$; that is $\left\{q_{j}: j \geq 1\right\}$ is the sequence of numbers which appears in the Euclidean algorithm starting with $q>Q$.

Let $n_{1}=n$. Now select n_{j+1} so that n_{j+1} / q_{j+1} is the nearest fraction to n_{j} / q_{j}, with denominator q_{j+1}. In the case that n_{j} / q_{j} is exactly halfway between two such fractions, we must have $n_{j}=q_{j} / 2$ and we let $n_{j+1}=\left(q_{j+1}-1\right) / 2$. Then

$$
\begin{equation*}
A(n, q ; Q)=\sum_{j=1}^{J-1}(-1)^{j-1} q_{j} q_{j+1}\left(\frac{n_{j}}{q_{j}}-\frac{n_{j+1}}{q_{j+1}}\right)^{2}+\sum_{\substack{1 \leq j \leq J-1 \\ \frac{n_{j}}{q_{j}} \frac{n}{q_{j+1}} q_{j+1}<\frac{n_{j+2}}{q_{j+2}}}}(-1)^{j}+\epsilon \tag{5.2}
\end{equation*}
$$

where ϵ and J are defined as follows: Let J be the smallest integer for which $n_{J}=0$ or q_{J}. If $n_{J}=0$ let I be the smallest integer $i \geq 1$ for which $n_{i} / q_{i} \leq 1 / 2$, and then let $\epsilon=0$ if I is odd, and $\epsilon=1$ if I is even. If $n_{J}=q_{J}$ then let $\epsilon=(-1)^{J-1}$.

We begin our proofs with a technical lemma:

Lemma 5.5. Let q and Q be coprime integers. If $0 \leq n \leq q-1$ then

$$
A(n, q ; Q)=2 \sum_{i=1}^{n}\left[\frac{i Q}{q}\right]-\sum_{i=1}^{2 n}\left[\frac{i Q}{q}\right]+\frac{n^{2} Q}{q}+ \begin{cases}1 & \text { if } n \geq q / 2 \\ 0 & \text { otherwise }\end{cases}
$$

Proof. For $n=0$ we have $0=0$. Otherwise $1 \leq n \leq q-1$ so that $(i Q)_{q}<(-n Q)_{q}$ iff $(i Q)_{q}+(n Q)_{q}<q$ iff $\left\{\frac{i Q}{q}\right\}+\left\{\frac{n Q}{q}\right\}<1$ iff $\left[\frac{(n+i) Q}{q}\right]-\left[\frac{n Q}{q}\right]-\left[\frac{i Q}{q}\right]=0$ (and this equals 1 otherwise). Also $(i Q)_{q}=(-n Q)_{q}$ iff $i=q-n$ which holds in our range iff $n \geq q / 2$. Hence

$$
\begin{aligned}
A(n, q ; Q) & =\sum_{i=1}^{n}\left(1-\left[\frac{(n+i) Q}{q}\right]+\left[\frac{n Q}{q}\right]+\left[\frac{i Q}{q}\right]-\frac{(-n Q)_{q}}{q}\right) \\
& =\sum_{i=1}^{n}\left(\left[\frac{i Q}{q}\right]-\left[\frac{(n+i) Q}{q}\right]+\frac{n Q}{q}\right)=2 \sum_{i=1}^{n}\left[\frac{i Q}{q}\right]-\sum_{i=1}^{2 n}\left[\frac{i Q}{q}\right]+\frac{n^{2} Q}{q}
\end{aligned}
$$

plus 1 if $n \geq q / 2$, since $\left[\frac{n Q}{q}\right]-\frac{(-n Q)_{q}}{q}=\frac{n Q}{q}-\frac{(n Q)_{q}+(-n Q)_{q}}{q}=\frac{n Q}{q}-1$.
Proof of Theorem 5.1. As $\sum_{j=x+1}^{x+q}\left\{\frac{m j}{q}\right\}=\sum_{i=0}^{q-1}\left\{\frac{i}{q}\right\}=\frac{q-1}{2}$, we have

$$
\begin{aligned}
& \sum_{j=1}^{2 k}\left[\frac{m j}{q}\right]-2 \sum_{j=1}^{k}\left[\frac{m j}{q}\right]-\left[\frac{m k^{2}}{q}\right]=2 \sum_{j=1}^{k}\left\{\frac{m j}{q}\right\}-\sum_{j=1}^{2 k}\left\{\frac{m j}{q}\right\}+\left\{\frac{m k^{2}}{q}\right\} \\
= & 2 \sum_{j=1}^{n}\left\{\frac{m j}{q}\right\}-\sum_{j=1}^{2 n}\left\{\frac{m j}{q}\right\}+\left\{\frac{m n^{2}}{q}\right\}=\sum_{j=1}^{2 n}\left[\frac{m j}{q}\right]-2 \sum_{j=1}^{n}\left[\frac{m j}{q}\right]-\left[\frac{m n^{2}}{q}\right],
\end{aligned}
$$

and similarly $\left[\frac{2 m k}{q}\right]-2\left[\frac{m k}{q}\right]=\left[\frac{2 m n}{q}\right]-2\left[\frac{m n}{q}\right]$, so that the desired quantity

$$
\begin{aligned}
\omega_{q} & =\left[\frac{m k^{2}}{q}\right]+2 \sum_{j=1}^{k-1}\left[\frac{m j}{q}\right]-\sum_{j=1}^{2 k-1}\left[\frac{m j}{q}\right]=\left[\frac{m n^{2}}{q}\right]+2 \sum_{j=1}^{n-1}\left[\frac{m j}{q}\right]-\sum_{j=1}^{2 n-1}\left[\frac{m j}{q}\right] \\
& =A(n, q ; m)-\left\{\begin{array}{ll}
1 & \text { if } n \geq q / 2 \\
0 & \text { otherwise }
\end{array}-\left\{\frac{m n^{2}}{q}\right\}+\left[\frac{2 m n}{q}\right]-2\left[\frac{m n}{q}\right]\right.
\end{aligned}
$$

by Lemma 5.5.

Proof of Proposition 5.2. If $n=0$ then $l=0, N=0$ so we have $0=0$ in (5.1). For $1 \leq n \leq q-1$, let $v=\left[\frac{Q n}{q}\right]$. Then

$$
\begin{aligned}
\sum_{i=1}^{n}\left[\frac{Q i}{q}\right] & =\sum_{j=0}^{v-1} j\left(\left[\frac{q(j+1)-1}{Q}\right]-\left[\frac{q j-1}{Q}\right]\right)+v\left(n-\left[\frac{q v-1}{Q}\right]\right) \\
& =v n-\sum_{j=1}^{v}\left[\frac{q j-1}{Q}\right]=v n-\sum_{j=1}^{v}\left[\frac{q j}{Q}\right]+\left[\frac{v}{Q}\right],
\end{aligned}
$$

since $\left[\frac{q j-1}{Q}\right]=\left[\frac{q j}{Q}\right]$ unless $Q \mid j$. Hence, as $\left[\frac{v}{Q}\right]=\left[\frac{n}{q}\right]$, and as $v=N$ when $l \geq 0$ and $v=N-1$ when $l<0$, we have

$$
\sum_{i=1}^{n}\left[\frac{Q i}{q}\right]+\sum_{j=1}^{N}\left[\frac{q j}{Q}\right]=n N+\left[\frac{n}{q}\right]+ \begin{cases}{\left[\frac{-l}{Q}\right]} & \text { if } l<0 \tag{5.3}\\ 0 & \text { if } l \geq 0\end{cases}
$$

since $\frac{q N}{Q}-n=\frac{-l}{Q}$. Similarly

$$
\sum_{i=1}^{2 n}\left[\frac{Q i}{q}\right]+\sum_{j=1}^{2 N}\left[\frac{q j}{Q}\right]=4 n N+\left[\frac{2 n}{q}\right]+ \begin{cases}{\left[\frac{-2 l}{Q}\right]} & \text { if } l<0 \\ 0 & \text { if } l \geq 0\end{cases}
$$

Therefore the left side of (5.1) equals, using Lemma 5.5,

$$
\frac{n^{2} Q}{q}+\frac{N^{2} q}{Q}-2 n N=\frac{(n Q)^{2}+(N q)^{2}-2 n Q N q}{Q q}=\frac{(n Q-N q)^{2}}{Q q}=Q q\left|\frac{n}{q}-\frac{N}{Q}\right|^{2}
$$

plus 1 if $n>q / 2$, minus 1 if $l<0$ and $L<0$.

Justification of Algorithm 5.4. Let $l_{j}:=q_{j+1} n_{j}-q_{j} n_{j+1}$. Then $l_{j+1} \equiv q_{j+2} n_{j+1} \equiv q_{j} n_{j+1} \equiv$ $-l_{j}\left(\bmod q_{j+1}\right)$ (so that $L_{j}=L$ in Proposition 5.2 equals $\left.l_{j+1}\right)$. Now $A\left(n_{j}, q_{j} ; q_{j-1}\right)=$ $A\left(n_{j}, q_{j} ; q_{j+1}\right)$ so Proposition 5.2 implies that $A\left(n_{j}, q_{j} ; q_{j+1}\right)+A\left(n_{j+1}, q_{j+1} ; q_{j+2}\right)$ equals

$$
\frac{l_{j}^{2}}{q_{j} q_{j+1}}-\left\{\begin{array}{ll}
1 & \text { if } l_{j}, l_{j+1}<0 \tag{5.4}\\
0 & \text { otherwise }
\end{array}+ \begin{cases}1 & \text { if } n_{j}>q_{j} / 2 \\
0 & \text { otherwise }\end{cases}\right.
$$

Using the identity

$$
A(n, q ; Q)=\sum_{j=1}^{J-1}(-1)^{j-1}\left(A\left(n_{j}, q_{j} ; q_{j+1}\right)+A\left(n_{j+1}, q_{j+1} ; q_{j+2}\right)\right)+(-1)^{J-1} A\left(n_{J}, q_{J} ; q_{J+1}\right)
$$

the first two terms in (5.2) follow from summing the first two terms in (5.4) (as $l_{j}<0$ iff $\left.n_{j} / q_{j}<n_{j+1} / q_{j+1}\right)$. For the third term note that since n_{j+1} / q_{j+1} is "close" to n_{j} / q_{j}, one can easily prove that $n_{j} / q_{j} \leq 1 / 2$ for $I \leq j \leq J$, and in particular $n_{J}=0$. Hence if I exists then $\epsilon=\sum_{j=1}^{I-1}(-1)^{j-1}+A\left(0, q_{j} ; q_{j+1}\right)$ which gives the result since $A(0, q ; Q)=0$. If I does not exist then $n_{j}=q_{j}$ and the result follows since $A(q, q ; Q)=1$.
5.2. Generalized reciprocity law. We can significantly generalize Proposition 5.2 using the same proof, suitably modified, with the following definition: Let

$$
A(n, m, q ; Q):=\#\left\{i, 1 \leq i \leq n:(i Q)_{q} \leq(-m Q)_{q}\right\}-\frac{n(-m Q)_{q}}{q} .
$$

For any integers $0 \leq m, n \leq q$ we have

$$
A(n, m, q ; Q)=\sum_{i=1}^{n}\left[\frac{i Q}{q}\right]+\sum_{i=1}^{m}\left[\frac{i Q}{q}\right]-\sum_{i=1}^{n+m}\left[\frac{i Q}{q}\right]+\frac{m n Q}{q},
$$

plus 1 if $n=q$; hence $A(n, m, q ; Q)=A(m, n, q ; Q)$. As above, let N be the nearest integer to $Q n / q$, and M be the nearest integer to $Q m / q$. Then

$$
A(n, m, q ; Q)+A(N, M, Q ; q)=q Q\left(\frac{m}{q}-\frac{M}{Q}\right)\left(\frac{n}{q}-\frac{N}{Q}\right)=\frac{l_{m} l_{n}}{q Q},
$$

plus $\left[\frac{\left|l_{n}\right|}{Q}\right]$ if $l_{n}<0$, plus $\left[\frac{\left|l_{m \mid}\right|}{Q}\right]$ if $l_{m}<0$, minus $\left[\frac{\left|l_{m}+l_{n}\right|}{Q}\right]$ if $l_{m}+l_{n}<0$, plus 1 if $M+N \geq Q$ and $M \neq Q$, or if $M=N=Q$. This may be rephrased as follows:

If $l_{m}=0$ or $l_{n}=0$ then $A(n, m, q ; Q)+A(N, M, Q ; q)=0$, unless $N=Q$ whence it $=1$. Otherwise $A(n, m, q ; Q)+A(N, M, Q ; q)=\frac{l_{m}^{*} l_{n}^{*}}{q Q}+\eta+\left[\frac{M+N}{Q}\right]$ where $0<l_{m}^{*}, l_{n}^{*}<q$ and $|\eta|<1$; specifically

$$
\begin{aligned}
& l_{m}^{*}=l_{m}, l_{n}^{*}=l_{n}, \eta=0 \text { if } l_{m}, l_{n}>0 \\
& l_{m}^{*}=q-l_{m}, l_{n}^{*}=-l_{n}, \eta=-\left\{\frac{q M}{Q}\right\} \text { if } l_{m}+l_{n} \geq 0>l_{n} ; \\
& l_{m}^{*}=l_{m}, l_{n}^{*}=q+l_{n}, \eta=\left\{\frac{q(M+N)}{Q}\right\}-\left\{\frac{q N}{Q}\right\} \text { if } 0>l_{m}+l_{n}>l_{n} ; \text { and } \\
& l_{m}^{*}=-l_{m}, l_{n}^{*}=-l_{n}, \eta=-\left[\frac{(q M)_{Q}+(q N)_{Q}}{Q}\right] \text { if } 0>l_{m}, l_{n} .
\end{aligned}
$$

5.3. Lower bounds on $A(n, q ; Q)$. With the notation as above and $q>Q$, we have $A(n, q ; Q) \geq-Q$, trivially. This is "best possible" up to the constant since, $A\left(\frac{q-1}{2}, q ; q-1\right)=$ $-(q-1)^{2} / 4 q \sim-Q / 4$ for q odd. One can give rather more precise estimates for the small values using the ideas (and notation) of Algorithm 5.4:

Corollary 5.6. With the notation as above and $q>Q$, we have

$$
\frac{1}{4} \sum_{t \geq 1} r_{2 t-1}+J \geq A(n, q ; Q) \geq-\frac{1}{4} \sum_{t \geq 1} r_{2 t}-J .
$$

Select t so that $r_{2 t}=\max _{j \geq 1} r_{2 j}$. If $r_{2 t} \geq 2$ then there exists n such that $-r_{2 t} / 6 \geq A(n, q ; Q) \geq$ $-\left(r_{2 t}+5\right) / 4$. In particular if $Q>2(q)_{Q}$ then there exists n such that $A(n, q ; Q) \leq-Q / 6(q)_{Q}$.

Proof. Each term in the first sum in (5.2) has size $\leq\left(q_{j} / 2\right)^{2} /\left(q_{j} q_{j+1}\right)=q_{j} / 4 q_{j+1} \leq\left(r_{j}+1\right) / 4$, and the other terms sum up to no more than $J / 2+1$. This yields bounds.

Given q and Q, one has the sequence $q_{1}, q_{2}, \ldots, q_{K}=1$ as in Algorithm 5.4. We will construct our value of n by specifying $l_{K-1}, l_{K-2}, \ldots, l_{1}$, since then $n_{j}=\left(q_{j} n_{j+1}+l_{j}\right) / q_{j+1}$ for each j, and $\frac{n}{q}=\sum_{j=1}^{K-1} \frac{l_{j}}{q_{j} q_{j+1}}$. Any such sequence $\left\{l_{j}\right\}_{j \geq 1}$ leads to a valid sequence $\left\{n_{j}\right\}_{j \geq 1}$ provided $l_{j} \equiv-l_{j+1}\left(\bmod q_{j+1}\right)$ and $-q_{j} / 2<l_{j} \leq q_{j} / 2$ for each j.

Select t for which $q_{2 t} / q_{2 t+1}$ is maximal. Let b be the largest integer such that $b q_{2 t+1}-1 \leq$ $q_{2 t} / 2$: note that $b \geq 1$ if and only if $q_{2 t} / q_{2 t+1}>2$. We select $l_{j}=(-1)^{j}\left(b q_{2 t+1}-1\right)$ for all
$j \leq 2 t$, and $l_{j}=(-1)^{j+1}$ for all $K-1 \geq j \geq 2 t+1$, except if $q_{K-1}=2$ and K is odd in which case $l_{K-1}=1$. Note that at least one of l_{j} and l_{j+1} is positive for each j. Also $n_{J}=q_{J}$ (and $J=K-1)$ iff $q_{K-1}=2$; otherwise $I=1$ so that $\epsilon=0$. Hence, by (5.2),

$$
A(n, q ; Q)=\left(b q_{2 t+1}-1\right)^{2} \sum_{j=1}^{2 t} \frac{(-1)^{j-1}}{q_{j} q_{j+1}}+\sum_{j=2 t+1}^{J-1} \frac{(-1)^{j-1}}{q_{j} q_{j+1}}+\epsilon
$$

where $\epsilon=(-1)^{K}$ if $q_{K-1}=2$, and $\epsilon=0$ otherwise. Now since these are alternating sums with increasing terms, each is majorized by the final term. Hence the final two terms together have absolute value ≤ 1, and $\frac{1}{q_{2 t-1} q_{2 t}}-\frac{1}{q_{2 t} q_{2 t+1}} \geq \sum_{j=1}^{2 t} \frac{(-1)^{j-1}}{q_{j} q_{j+1}} \geq-\frac{1}{q_{2 t} q_{2 t+1}}$. Now $q_{2 t-1}=$ $r_{2 t-1} q_{2 t}+q_{2 t+1} \geq q_{2 t}+q_{2 t+1}$, so that $\frac{1}{q_{2 t-1} q_{2 t}}-\frac{1}{q_{2 t} q_{2 t+1}} \leq-\frac{1}{\left(q_{2 t}+q_{2 t+1}\right) q_{2 t+1}}$. Therefore if $q_{2 t} \geq 2 q_{2 t+1}-2$ (so that $b \geq 1$) then

$$
-\frac{q_{2 t}}{6 q_{2 t+1}} \geq-\frac{b^{2}}{(2 b+2)(2 b+3)} \cdot \frac{q_{2 t}}{q_{2 t+1}} \geq A(n, q ; Q) \geq-\frac{q_{2 t}}{4 q_{2 t+1}}-1 .
$$

Note that if $q_{2 t}<2 q_{2 t+1}-2$ then $r_{2 t}=1$.

6. Lower bounds.

Define $A^{*}(n, q ; Q)=0$ if $n=0$, and

$$
A^{*}(n, q ; Q):=\#\left\{i, 1 \leq i \leq n-1:(i Q)_{q} \leq(-n Q)_{q}\right\}-\frac{n(-n Q)_{q}}{q}
$$

if $n \geq 1$. Note that $A^{*}(n, q ; Q)=A(n, q ; Q)$, minus 1 if $l \geq 0$. Moreover $A(n, q ; Q) \leq n$ whereas $A^{*}(n, q ; Q) \leq n-1$.

Proof of Theorem $\mathcal{Z}_{\mathrm{even}}$. By Corollary 5.3, we have, when $(m, q)=1$,

$$
\omega_{q}\left(\left(m k^{2}\right)!P(2 m, 2 m k)\right)=\frac{l^{2}}{q m}-A(N, m ; q)-\left\{\frac{m n^{2}}{q}\right\}+ \begin{cases}1 & \text { if } l<0 \leq L \\ 0 & \text { otherwise }\end{cases}
$$

This can be negative; for example if $(q)_{m} \leq m / 2$ and $m<\sqrt{q}$ then let $n=1+[q / m]$ so that $l=m-(q)_{m}, \quad L=(q)_{m}, N=1$ and the sum is $\frac{\left(m-(q)_{m}\right)^{2}}{q m}-\frac{(q)_{m}}{m}-\left\{\frac{l^{2}-q^{2}}{q m}\right\} \leq$ $\frac{m^{2}}{q m}-\frac{1}{m}-0<0$. Indeed if q is prime with $q \equiv 1(\bmod m)$ and $q>m^{2}$ then this implies that $v_{q}\left(\left(m n^{2}\right)!P(2 m, 2 m n)\right)<0$. To compensate for this we are forced to multiply $\left(m k^{2}\right)!P(2 m, 2 m k)$ through by something like $(m k)!/ k!^{m}$ or some larger multiple of k, to obtain an integer because, in our example, $\left[\frac{(m-1) n}{q}\right]=0$ while $\left[\frac{m n}{q}\right]=1$. Now $\omega_{q}\left(\frac{(m k)!}{k!^{m}}\right)=N$, minus 1 if $l<0$. Hence $\omega_{q}\left(\left(m k^{2}\right)!\cdot \frac{(m k)!}{k!m} \cdot P(2 m, 2 m k)\right)$

$$
=N-1-A^{*}(N, m ; q)+\frac{l^{2}}{q m}-\left\{\frac{m n^{2}}{q}\right\}+\left\{\begin{array}{ll}
1 & \text { if } L<0 \leq l \\
0 & \text { otherwise }
\end{array} \geq \frac{l^{2}}{q m}-\left\{\frac{m n^{2}}{q}\right\}>-1,\right.
$$

and so is ≥ 0 as ω_{q} is an integer.
If $(q, m)=g>1$ let $q=Q g, m=M g$ so that $(Q, M)=1$. Then, since $\sum_{j=0}^{q-1}\{j m / q\}=$ $q(Q-1) / 2$ we have

$$
\begin{aligned}
\omega_{q} & =\left[\frac{m k^{2}}{q}\right]+\left[\frac{m k}{q}\right]-m\left[\frac{k}{q}\right]+\sum_{j=0}^{k-1}\left(\left[\frac{m j}{q}\right]-\left[\frac{m(k+j)}{q}\right]\right) \\
& =\left[\frac{m n^{2}}{q}\right]+\left[\frac{m n}{q}\right]-m\left[\frac{n}{q}\right]+\sum_{j=0}^{n-1}\left(\left[\frac{m j}{q}\right]-\left[\frac{m(n+j)}{q}\right]\right) \\
& =\left[\frac{M n^{2}}{Q}\right]+\left[\frac{M n}{Q}\right]+\sum_{j=0}^{n-1}\left(\left[\frac{M j}{Q}\right]-\left[\frac{M(n+j)}{Q}\right]\right) \\
& =\omega_{Q}\left(\left(M n^{2}\right)!(M n)!\cdot P(2 M, 2 M n)\right) \geq M\left[\frac{n}{Q}\right] \geq 0
\end{aligned}
$$

using the result established above with (n, M, Q) in place of (k, m, q).

Proof of Theorem $\mathcal{2}_{\text {odd }}$. We deal with the general case by replacing r by $R:=r /(r, q)$, and q by $Q:=q /(r, q)$ so that $\omega_{q}\left(\left(2 r k^{2}\right)!P(r, 2 r k) / 2^{2 r k^{2}}\right)=\omega_{Q}\left(\left(2 R n^{2}\right)!P(R, 2 R n) / 2^{2 R n^{2}}\right)$ where $n=(k)_{q}$, and noting that $\omega_{q}\left(\frac{(r k)!}{k!r} \cdot\left(\frac{(2 r k)!}{k!!^{2 r}}\right)^{2}\right)=\omega_{Q}\left(\frac{(R n)!}{n!^{R}} \cdot\left(\frac{(2 R n)!}{n!^{2 R}}\right)^{2}\right)+5 R\left[\frac{n}{Q}\right]$.

Henceforth we work in the case that $(r, q)=1$: By (4.3) we have that

$$
\omega_{q}\left(P(r, 2 r k) / 2^{2 r k^{2}}\right)=\omega_{q}\left(\frac{P(2 r, 2 r k)^{2} P(2 r, 4 r k)}{P(4 r, 4 r k)}\right)-\omega_{2 q}(P(2 r, 4 r k)) .
$$

Therefore, by Corollary 5.3 , we deduce that $\frac{2 r k^{2}}{q}+\omega_{q}\left(P(r, 2 r k) / 2^{2 r k^{2}}\right)$ equals

$$
\begin{equation*}
2 \cdot \frac{l_{1}^{2}}{q r}+\frac{l_{2}^{2}}{q r}-\frac{l_{2}^{2}}{q \cdot 2 r}-\frac{\left(2 l_{1}\right)^{2}}{2 q \cdot r}=\frac{l_{2}^{2}}{2 q r} \tag{6.1}
\end{equation*}
$$

where l_{1}, l_{2} are the least residues, in absolute value, of $k r, 2 k r(\bmod q)$, respectively, plus

$$
\begin{equation*}
A\left(N_{1}, r ; 2 q\right)+A\left(N_{2}, 2 r ; q\right)-A^{*}\left(N_{2}-r[2 n / q], r ; q\right)-2 A^{*}\left(N_{1}, r ; q\right) \tag{6.2}
\end{equation*}
$$

where $N_{1}=\left(r n-l_{1}\right) / q$ and $N_{2}=2 N_{1}$ minus 1 if $l \leq-q / 4$, plus 1 if $l>q / 4$ (and note that $\left.l_{2}=2 l_{1}+q\left(2 N_{1}-N_{2}\right)\right)$, plus an integer between 0 and 5 . To see this last remark note that in (6.2) the terms " $+A$ " have +1 if $l<0 \leq L$, and the terms with " $-A^{*}$ " have +1 if $l, L<0$, since $(N Q)_{m} \leq(-N Q)_{m}$ iff $L \geq 0$.

We want a lower bound on the quantity in (6.2), which is the sum of two components. First the count of elements of certain sets: if $N_{1} \geq 1$ then $-\#\left\{i, 1 \leq i \leq N_{1}-1:(i q)_{r} \leq\left(-N_{1} q\right)_{r}\right\} \geq$ $-\left(N_{1}-1\right) \geq-\left[\frac{r n}{q}\right]$ since $N_{j}=\left[\frac{j r n}{q}\right]$, plus 1 if $l_{j}<0$, so that $N_{j}-1 \leq\left[\frac{j r n}{q}\right]$. If $N_{1}=0$ then we go
back to the original form since $l_{1} \geq 0$, and $-\#\left\{i, 1 \leq i \leq 0:(i q)_{r} \leq 0\right\}=0=-N_{1}=-\left[\frac{r n}{q}\right]$. Similar arguments hold when $N_{2}>r[2 n / q]$, and if $N_{2}=r[2 n / q]$ since $l_{2} \geq 0$, so we get the lower bound $r[2 n / q]-\left[\frac{2 r n}{q}\right]$ for the relevant set. Therefore in total we have

$$
\geq-\left[\frac{2 r n}{q}\right]-2\left[\frac{r n}{q}\right]+r\left[\frac{2 n}{q}\right] .
$$

The second components in the definition of A and A^{*} contribute to (6.2):

$$
-\frac{N_{1}\left(-2 N_{1} q\right)_{r}}{r}-\frac{N_{2}\left(-N_{2} q\right)_{2 r}}{2 r}+\frac{\left(N_{2}-r[2 n / q]\right)\left(-N_{2} q\right)_{r}}{r}+2 \frac{N_{1}\left(-N_{1} q\right)_{r}}{r},
$$

so in total (6.2) is $\geq-\left[\frac{2 r n}{q}\right]-2\left[\frac{r n}{q}\right]$

$$
+\left\{\begin{array}{ll}
N_{1} & \text { if } L_{1}>0 \tag{6.3}\\
0 & \text { otherwise }
\end{array} \quad-\frac{L_{2} N_{2}}{2 r}+ \begin{cases}L_{2} & \text { if } n \geq q / 2 \text { and } L_{2}>0 \\
L_{2}+r & \text { if } n \geq q / 2 \text { and } L_{2} \leq 0 \\
0 & \text { otherwise }\end{cases}\right.
$$

where L_{1}, L_{2} are the least residues, in absolute value of $N_{1} q(\bmod r), N_{2} q(\bmod 2 r)$, respectively. Note that $\left|L_{2}\right| \leq r$. If $n \geq q / 2$ then $N_{2} \geq r$, so if $L_{2} \leq 0$ then (6.3) is $\geq L_{2}\left(1-N_{2} / 2 r\right)+$ $r \geq r+L_{2} / 2 \geq r / 2$, and if $L_{2}>0$ then (6.3) is $\geq L_{2}\left(1-N_{2} / 2 r\right) \geq 0$. If $n<q / 2$ then $N_{2} \leq r$ and (6.3) is $-\frac{L_{2} N_{2}}{2 r}$. If $L_{2} \leq r-1$ then this is $\geq-\frac{(r-1) N_{2}}{2 r} \geq-\frac{N_{2}-1}{2} \geq-\frac{1}{2}\left[\frac{2 r n}{q}\right]$. Finally if $L_{2}=r$ then $l_{2}=r \geq 0$ so (6.3) is $-\frac{N_{2}}{2}=-\frac{1}{2}\left[\frac{2 r n}{q}\right]$

Hence

$$
\begin{equation*}
\left[\frac{2 r k^{2}}{q}\right]+\omega_{q}\left(P(r, 2 r k) / 2^{2 r k^{2}}\right)+\frac{3}{2} \cdot\left[\frac{2 r n}{q}\right]+2\left[\frac{r n}{q}\right] \geq \frac{l_{2}^{2}}{2 q r}-\left\{\frac{2 r k^{2}}{q}\right\} \tag{6.4}
\end{equation*}
$$

which is an integer >-1 and so ≥ 0. Now $\left[\frac{r n}{q}\right] \leq \frac{1}{2} \cdot\left[\frac{2 r n}{q}\right]$ and so

$$
\left(2 r k^{2}\right)!\frac{(2 r k)!^{2}(r k)!}{k!^{5 r}} \frac{P(r, 2 r k)}{2^{2 r k^{2}}}
$$

is an integer.

Acknowledgments: The author would like to thank Professors Andrew Granville and Jon Keating for their advice and suggestions.

References.

1. J. Brian Conrey and David W. Farmer, Mean values of L-functions and symmetry, Internat. Math. Res. Notices 17 (2000), 883-908.
2. J. Brian Conrey, David W. Farmer, Jon P. Keating, Michael O. Rubinstein and Nina C. Snaith, Integral moments of L-functions, Proc. London Math. Soc. 91 (2005), 33-104.
3. J. Brian Conrey and Amit Ghosh, On mean values of the zeta function, Mathematika 31 (1984), 159-161.
4. Andrew Granville, Arithmetic Properties of Binomial Coefficients I: Binomial coefficients modulo prime powers, Canadian Mathematical Society Conference Proceedings 20 (1997), 253-275.
5. Nicholas M. Katz and Peter Sarnak, Zeroes of zeta functions and symmetry, Bull. Amer. Math. Soc. 36 (1999), 126.
6. Jon Keating and Nina Snaith, Random matrix theory and $\zeta(1 / 2+i t)$, Comm. Math. Phys. 214 (2000), 5789.
7. K. Ramachandra, Some remarks on the mean-value of the Riemann zeta-function and other Dirichlet series, II, Hardy-Ramanujan J 3 (1980), 1-25.
8. Zeev Rudnick and K. Soundararajan, Lower bounds for moments of L-functions, Proc. Natl. Acad. Sci. USA 102 (2005), 6837-6838.
9. Zeev Rudnick and K. Soundararajan, Lower bounds for moments of L-functions: symplectic and orthogonal examples, Multiple Dirichlet series, automorphic forms, and analytic number theory, Proc. Sympos. Pure Math. 75, Amer. Math. Soc, Providence, RI, 2006, pp. 293303.
10. K. Soundararajan, Moments of the Riemann zeta-function, Annals of Math (to appear).

[^0]: ${ }^{1}$ For example, the ' U ' in $g_{k, U}$ stands for the set of unitary matrices, taken with Haar measure.
 ${ }^{2}$ They also gave a complete history of the conjectured existence and study of these constants g_{k}.

[^1]: ${ }^{3}$ Note that if j is divisible by p^{ℓ} we count the ℓ powers of p by including them one at a time, since j is divisible by p, then since j is divisible by p^{2}, \ldots, and finally since j is divisible by p^{ℓ}.

[^2]: ${ }^{4}$ Note that this definition depends on the representation, as a product, of the number inside the brackets, and not on the number itself. Hence $\omega_{4}(2 \cdot 8)=1$, whereas $\omega_{4}(4 \cdot 4)=2$.

[^3]: ${ }^{5}$ If $k \equiv q / 2(\bmod q)$ then we let $l=q / 2$.

