SUM-PRODUCT ESTIMATES APPLIED TO WARING'S PROBLEM MOD P

Todd Cochrane
Department of Mathematics, Kansas State University, Manhattan, KS 66506
cochrane@math.ksu.edu
Christopher Pinner
Department of Mathematics, Kansas State University, Manhattan, KS 66506
pinner@math.ksu.edu

Received: 4/2/08, Revised: 9/3/08, Accepted: 10/10/08, Published: 10/27/08

Abstract

Let $\gamma(k, p)$ denote Waring's number $(\bmod p)$ and $\delta(k, p)$ denote the \pm Waring's number $(\bmod p)$. We use sum-product estimates for $|n A|$ and $|n A-n A|$, following the method of Glibichuk and Konyagin, to estimate $\gamma(k, p)$ and $\delta(k, p)$. In particular, we obtain explicit numerical constants in the Heilbronn upper bounds: $\gamma(k, p) \leq 83 k^{1 / 2}, \delta(k, p) \leq 20 k^{1 / 2}$ for any positive k not divisible by $(p-1) / 2$.

1. Preliminaries

Let p be a prime and k a positive integer. The smallest s such that the congruence

$$
\begin{equation*}
x_{1}^{k}+x_{2}^{k}+\cdots+x_{s}^{k} \equiv a \quad(\bmod p) \tag{1.1}
\end{equation*}
$$

is solvable for all integers a is called Waring's number $(\bmod p)$, denoted $\gamma(k, p)$. Similarly, the smallest s such that

$$
\begin{equation*}
\pm x_{1}^{k} \pm x_{2}^{k}+\cdots \pm x_{s}^{k} \equiv a \quad(\bmod p) \tag{1.2}
\end{equation*}
$$

is solvable for all a is denoted $\delta(k, p)$. If $d=(k, p-1)$ then clearly $\gamma(d, p)=\gamma(k, p)$ and so we assume henceforth that $k \mid p-1$. If A is the multiplicative subgroup of k-th powers in \mathbb{Z}_{p}^{*} then we write

$$
\gamma(A, p)=\gamma(k, p), \quad \delta(A, p)=\delta(k, p)
$$

Cauchy [4] established the uniform bound $\gamma(k, p) \leq k$ with equality if $k=p-1$ or $(p-1) / 2$, and many improvements to this bound have been made since then; see [6] for references. Heilbronn [11] made the following conjectures: Let $t=|A|=(p-1) / k$.

I: For any $\varepsilon>0, \gamma(k, p) \ll_{\epsilon} k^{\varepsilon}$ for $t>c_{\varepsilon}$.
II: For $t>2, \gamma(k, p) \ll k^{1 / 2}$.

The first conjecture was proved by Konyagin [13] and the second by Cipra and the authors [6]. For $t=3,4,6$ it was shown [6] that

$$
\begin{equation*}
\sqrt{2 k}-1 \leq \gamma(k, p) \leq 2 \sqrt{k} \tag{1.3}
\end{equation*}
$$

and thus the exponent $1 / 2$ is sharp. Indeed, the exact value of $\gamma(k, p)$ was determined for these three cases. The purpose of this paper is to show how sum-product estimates can be used to obtain explicit constants in the Heilbronn upper bounds.

Theorem 1.1. For $t>2$ we have the uniform upper bound $\gamma(k, p) \leq 83 k^{1 / 2}$.

The proof of the theorem (Section 9) uses the sum-product method of Glibichuk and Konyagin [9] for $t \geq 34$ (Sections 6,7) and the lattice method of Bovey [3] for $t<34$ (Section 8). An explicit version of the first Heilbronn conjecture is given in Corollary 7.1. For delta we obtain $\delta(k, p) \leq 20 k^{1 / 2}$; Corollary 10.3. We also explore the relationship between $\gamma(k, p)$ and $\delta(k, p)$ (Section 4) proving in particular,

$$
\gamma(k, p) \leq 2\left\lceil\log _{2}\left(\log _{2}(p)\right)\right\rceil \delta(k, p)
$$

Bovey [3] proved the weaker bound $\gamma(k, p) \leq \delta(k, p) \log p$. We leave open the following

Question 1. Does there exist a constant C such that $\gamma(k, p) \leq C \delta(k, p)$?

2. Sum-Product Estimates

For any subsets S, T of \mathbb{Z}_{p} let

$$
\begin{gathered}
S+T=\{s+t: s \in S, t \in T\}, \quad S T=\{s t: s \in S, t \in T\} \\
S-T=\{s-t: s \in S, t \in T\}, \quad n S=S+S+\cdots+S \quad(n-\text { times }) .
\end{gathered}
$$

Note that $(n S) T \subset n(S T)$. We let $n S T$ denote the latter, $n(S T)$. If A is a multiplicative subgroup of \mathbb{Z}_{p}^{*} then for any $\ell, A^{\ell}=A, n A^{\ell}=n A$ and $(n A)(m A) \subset n m A$. The basic strategy for bounding Waring's number is to first obtain good lower bounds for $|n A|$ and then apply the following lemma to sets of the form $n A, m A$ to obtain all of \mathbb{Z}_{p}.

Lemma 2.1. Let A, B be subsets of \mathbb{Z}_{p} and m a positive integer.
a) If $0 \notin A$ and $|B||A|^{1-\frac{2}{m}}>p$ then $m A B=\mathbb{Z}_{p}$.
b) If $|B||A| \geq 2 p$ then $8 A B=\mathbb{Z}_{p}$.

Part (a) was proven by Bourgain [1, Lemma 1] for the case $m=3$. We prove the general case in Section 3. Part (b) is due to Glibichuk and Konyagin [9, Lemma 2.1]. It follows from (b) that if $|n A| \geq \sqrt{2 p}$ (for a multiplicative group A) then $\gamma(A, p) \leq 8 n^{2}$.

We shall make frequent use of the Cauchy-Davenport inequality,

$$
|S+T| \geq \min \{|S|+|T|-1, p\}
$$

for any $S, T \subset \mathbb{Z}_{p}$, and its corollary

$$
|n S| \geq \min \{n(|S|-1)+1, p\}
$$

Another key tool we need is Rusza's triangle inequality (see, e.g., Nathanson [15, Lemma 7.4]).

$$
\begin{equation*}
|S+T| \geq|S|^{1 / 2}|T-T|^{1 / 2} \tag{2.1}
\end{equation*}
$$

for any $S, T \subset \mathbb{Z}_{p}$, and its corollary

$$
\begin{equation*}
|n S| \geq|S|^{\frac{1}{2^{n-1}}}|S-S|^{1-\frac{1}{2^{n-1}}} \geq|S-S|^{1-\frac{1}{2^{n}}} \tag{2.2}
\end{equation*}
$$

for any positive integer n.
In Section 5 we obtain lower bounds for $|A-A|$ and $|A+A|$ using the method of Stepanov. Next we obtain lower bounds for $|n A-n A|$ (Section 6), followed by lower bounds for $|n A|$ (Section 7).

3. Proof of Lemma 2.1(a)

Let $a \in \mathbb{Z}_{p}$ and N denote the number of $2 m$-tuples $\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots y_{m}\right) \in \mathbb{Z}_{p}^{2 m}$ with $x_{1} y_{1}+\cdots+x_{m} y_{m}=a$. We first note that

$$
\begin{aligned}
& \sum_{\lambda \in \mathbb{Z}_{p}}\left|\sum_{x \in A} \sum_{y \in B} e_{p}(\lambda(x y))\right|^{2}=\sum_{x_{1}, x_{2} \in A} \sum_{y_{1}, y_{2} \in B} \sum_{\lambda \in \mathbb{F}_{p}} e_{p}\left(\lambda\left(x_{1} y_{1}-x_{2} y_{2}\right)\right) \\
& =p\left|\left\{\left(x_{1}, x_{2}, y_{1}, y_{2}\right): x_{1}, x_{2} \in A, y_{1}, y_{2} \in B, x_{1} y_{1}=x_{2} y_{2}\right\}\right| \leq p|A|^{2}|B|
\end{aligned}
$$

the last inequality following from the assumption that $0 \notin A$ (and thus $x_{1} y_{1}=x_{2} y_{2}$ implies $y_{1}=x_{1}^{-1} x_{2} y_{2}$.) Now,

$$
\begin{align*}
p N & =|A|^{m}|B|^{m}+\sum_{\lambda \neq 0} \sum_{x_{i} \in A} \sum_{y_{i} \in B} e_{p}\left(\lambda\left(x_{1} y_{1}+\cdots+x_{m} y_{m}-a\right)\right) \tag{3.1}\\
& =|A|^{m}|B|^{m}+\sum_{\lambda \neq 0} e_{p}(-\lambda a)\left(\sum_{x \in A} \sum_{y \in B} e_{p}(\lambda x y)\right)^{m} \tag{3.2}
\end{align*}
$$

By the Cauchy-Schwarz inequality, for $\lambda \neq 0$,

$$
\begin{aligned}
\left|\sum_{x \in A, y \in B} e_{p}(\lambda x y)\right| & \leq \sum_{y \in B}\left|\sum_{x \in A} e_{p}(\lambda x y)\right| \leq|B|^{1 / 2}\left(\sum_{y \in B}\left|\sum_{x \in A} e_{p}(\lambda x y)\right|^{2}\right)^{1 / 2} \\
& \leq|B|^{1 / 2}\left(\sum_{y \in \mathbb{F}_{p}}\left|\sum_{x \in A} e_{p}(\lambda x y)\right|^{2}\right)^{1 / 2}=|B|^{1 / 2}(p|A|)^{1 / 2}
\end{aligned}
$$

and so by the note above,

$$
\begin{aligned}
\left|\sum_{\lambda \neq 0} e_{p}(-\lambda a)\left(\sum_{x \in A} \sum_{y \in B} e_{p}(\lambda x y)\right)^{m}\right| & \leq(|A||B| p)^{\frac{m-2}{2}} \sum_{\lambda \in \mathbb{Z}_{p}}\left|\sum_{x \in A} \sum_{y \in B} e_{p}(\lambda(x y))\right|^{2} \\
& \leq|A|^{\frac{m}{2}+1}|B|^{\frac{m}{2}} p^{\frac{m}{2}}
\end{aligned}
$$

We conclude from (3.2) that N is positive provided that

$$
|A|^{m}|B|^{m}>|A|^{\frac{m}{2}+1}|B|^{\frac{m}{2}} p^{\frac{m}{2}}
$$

yielding the result of the theorem.

4. Relations Between $\gamma(k, p)$ and $\delta(k, p)$

Theorem 4.1. Let A be the set of nonzero k-th powers in \mathbb{Z}_{p} with $k \mid(p-1), k \neq p-1$.
a) $\gamma(k, p) \leq 3\left[\log _{2}\left(\frac{3 \log p}{\log |A|}\right)\right] \delta(k, p)$.
b) $\gamma(k, p) \leq 3\left(\log _{2}(\delta(k, p))+4\right) \delta(k, p)$.
c) $\gamma(k, p) \leq 2\left\lceil\log _{2}\left(\log _{2}(p)\right)\right\rceil \delta(k, p)$.
d) $\gamma(k, p) \leq\left(p_{\text {min }}-1\right) \delta(k, p)$, where $p_{\text {min }}$ is the minimal prime divisor of $|A|$.
e) If $|A|$ is even then $\delta(k, p)=\gamma(k, p)$. If $|A|$ is odd, then $\delta(k, p)=\gamma\left(\frac{k}{2}, p\right)$.

Proof. a) Put $A_{0}=A \cup\{0\}, \delta=\delta(k, p)$. Since $\delta A_{0}-\delta A_{0}=\mathbb{Z}_{p}$ we obtain from (2.2)

$$
\begin{equation*}
\left|j \delta A_{0}\right| \geq\left|\delta A_{0}-\delta A_{0}\right|^{1-1 / 2^{j}}=p^{1-1 / 2^{j}} \tag{4.1}
\end{equation*}
$$

for any positive integer j. Hence if $j>\log _{2}\left(\frac{3 \log p}{\log |A|}\right)$ we have $\left|j \delta A_{0} \| A\right|^{\frac{1}{3}}>p$, and by Lemma 2.1 (a), $3\left(j \delta A_{0}\right) A=\mathbb{Z}_{p}$, that is, $3 j \delta A_{0}=\mathbb{Z}_{p}$.
b) This follows from part (a) and the trivial bound $(2|A|+1)^{\delta} \geq p$, when $|A| \geq 2$.
c) If $j \geq \log _{2}\left(\log _{2}(p)\right)$ then $p^{1 / 2^{j}} \leq 2$ and so by (4.1) $|j \delta A| \geq p / 2$, and thus $2 j \delta A=\mathbb{Z}_{p}$.
d) Let q be the minimal prime divisor of $|A|$. Then A has a subgroup G of order q and $\sum_{x \in G} x=0$ so that -1 is a sum of $q-1$ elements of A.
e) If $|A|$ is even then -1 is a k-th power, and so $\gamma(k, p)=\delta(k, p)$. If $|A|$ is odd then k must be even (for $p \neq 2$) and $A \cup(-A)$ is the set of $k / 2$-th powers.

5. Lower Bounds for $|A+A|$ and $|A-A|$

We give two estimates for $|A+A|$ and $|A-A|$ with A a multiplicative subgroup of \mathbb{Z}_{p}, the first effective when $|A| \geq p^{2 / 3}$ and the second when $|A|<p^{2 / 3}$. Throughout this section $A \pm A$ will denote either one of these two sets.

Theorem 5.1. If A is a multiplicative subgroup of \mathbb{Z}_{p}^{*} then

$$
|A \pm A| \geq p\left(1+\frac{p^{2}}{|A|^{3}}\right)^{-1}
$$

In particular $|A \pm A| \geq \frac{p}{2}$ if $|A| \geq p^{2 / 3}$.

Proof. Let N denote the number of solutions of the congruence $x_{1} \pm x_{2} \equiv y_{1} \pm y_{2}(\bmod p)$ with $x_{1}, x_{2}, y_{1}, y_{2} \in A$, and N_{a} the number of solutions of $x_{1} \pm x_{2} \equiv a(\bmod p), x_{1}, x_{2} \in A$, for $a \in \mathbb{Z}_{p}$. By the Cauchy-Schwarz inequality $|A|^{2}=\sum_{a} N_{a} \leq|A \pm A|^{1 / 2} N^{1 / 2}$. The lower bound for $|A \pm A|$ then follows from the estimate of Hua and Vandiver [12] and Weil [16], $N \leq \frac{|A|^{4}}{p}+|A| p$.
Theorem 5.2. (a) Let A be a multiplicative subgroup of \mathbb{Z}_{p}^{*} and σ be a positive integer. If $4 \sigma(4 \sigma-2) \leq|A| \leq \frac{p}{4 \sigma-2}$, then $|A \pm A| \geq(\sigma+1)|A|$. (b) In particular, if A is a multiplicative subgroup of \mathbb{Z}_{p}^{*} with $|A|<p^{2 / 3}$, we have

$$
|A \pm A| \geq \frac{1}{4}|A|(\sqrt{|A|+1}+1)>\frac{1}{4}|A|^{3 / 2}
$$

The theorem is a refinement of a special case of Bourgain, Glibichuck and Konyagin [2, Lemma 7] which gives $|A-A| \geq \frac{1}{9}|A|^{3 / 2}$ for $|A|<p^{1 / 2}$. The case $\sigma=1$ is comparable to what one obtains from the Cauchy-Davenport Theorem, $|2 A| \geq \min \{p, 2|A|\}$, for any multiplicative subgroup A. If 0 is included there is the stronger result $\left|2 A_{0}\right| \geq \min \{p, 3|A|+$ $1\}$, for any multiplicative subgroup A with $|A| \geq 2$, where $A_{0}=A \cup\{0\}$; see [15, Theorem 2.8].

It is plain that the exponent $3 / 2$ in the lower bound of the theorem cannot be improved if we allow $|A|$ to approach $p^{2 / 3}$ in size, but we are lead to ask the following questions.

Question 2. For $|A|<p^{1 / 2}$ can the exponent $3 / 2$ in the theorem be improved?

Question 3. For $|A| \gg p^{2 / 3}$ do we have $A+A \supset \mathbb{Z}_{p}^{*}$, that is, $\gamma(A, p) \leq 2$? (Note, 0 may not be in $A+A$ even when $|A|=\frac{p-1}{2}$.) It is known that $\gamma(A, p) \leq 2$ for $|A|>p^{3 / 4}$.

Proof of Theorem 5.2. We use the Stepanov method as developed by Heath-Brown and Konyagin [10]. Let A be a multiplicative subgroup of \mathbb{Z}_{p} with $t=|A|$ and σ be a positive integer. Suppose that $4 \sigma(4 \sigma-2) \leq|A| \leq \frac{p}{4 \sigma-2}$. We proceed with a proof by contradiction. Assume that $|A \pm A|<(\sigma+1) t$. Write $A \pm A$ as a union of disjoint cosets of A in \mathbb{Z}_{p}^{*},

$$
A \pm A=A x_{1} \cup A x_{2} \cdots \cup A x_{s} \cup\{0\},
$$

where the $\{0\}$ is omitted if $0 \notin A+A$. In particular,

$$
\begin{equation*}
|A \pm A|=s t+1 \text { or } s t \tag{5.1}
\end{equation*}
$$

and so $s \leq \sigma$.
For any coset $A x_{j}$ let

$$
N_{j}=\left|\left\{x \in A: x \pm 1 \in A x_{j}\right\}\right|=\left|\left\{(x, y) \in A \times A: x \pm y=x_{j}\right\}\right| .
$$

Now for any $x \in A, x \neq \mp 1, x \pm 1 \in A x_{j}$ for some j and so

$$
\begin{equation*}
\sum_{j=1}^{s} N_{j}=t-1 \text { or } t \tag{5.2}
\end{equation*}
$$

The next lemma is extracted from the proof of [14, Lemma 3.2].
Lemma 5.1. Let a, b, d be positive integers such that $s a d+\frac{1}{2} s d(d-1)<a b^{2}, a b \leq t, t b \leq p$. Then

$$
\sum_{j=1}^{s} N_{j} \leq \frac{a-1+2 t(b-1)}{d}
$$

Proof. The lower case a, b, d in the lemma correspond to the upper case A, B, D in [14]. In equation (3.11) of [14] we actually have $s a d+\frac{1}{2} s d(d-1)<a b^{2}$ by summing over k in the preceding line of their proof.

We apply the lemma with $a=4 s, b=4 s-2, d=8 s-5$. Then

$$
s a d+\frac{1}{2} s d(d-1)=64 s^{3}-64 s^{2}+15 s
$$

while

$$
a b^{2}=64 s^{3}-64 s^{2}+16 s
$$

so the first hypothesis holds. Next, $a b=4 s(4 s-2) \leq 4 \sigma(4 \sigma-2) \leq t$. Finally, since $t \leq \frac{p}{4 \sigma-2}$ we have $t b \leq \frac{p}{4 \sigma-2}(4 \sigma-2)=p$. Thus, by the lemma,

$$
\sum_{j=1}^{s} N_{j} \leq \frac{4 s-1+2 t(4 s-3)}{8 s-5}=t-1-\frac{t+6-12 s}{8 s-5}<t-1
$$

the latter inequality following from $12 s-6 \leq 4 s(4 s-2) \leq t$. This contradicts the inequality in (5.2).

For part (b) simply choose $\sigma=\left[\frac{1}{4}(\sqrt{t+1}+1)\right]$ and observe that $t<p^{2 / 3}$ implies $t \leq$ $\frac{p}{4 \sigma-2}$.

6. Lower Bounds for $|n A-n A|$, Part I

We follow the method of Glibichuk and Konyagin [9], which builds upon ideas in [2]. For any subsets X, Y of \mathbb{Z}_{p} let

$$
\frac{X-X}{Y-Y}=\left\{\frac{x_{1}-x_{2}}{y_{1}-y_{2}}: x_{1}, x_{2} \in X, y_{1}, y_{2} \in Y, y_{1} \neq y_{2}\right\} .
$$

The key lemma is
Lemma 6.1. [9, Lemma 3.2] For $X, Y \subset \mathbb{Z}_{p}$ with $|Y|>1$ and $\frac{X-X}{Y-Y} \neq \mathbb{Z}_{p}$ we have

$$
\left|2 X Y-2 X Y+Y^{2}-Y^{2}\right| \geq|X||Y|
$$

Proof. If $\frac{X-X}{Y-Y} \neq \mathbb{Z}_{p}$ then there exist $x_{1}, x_{2} \in X, y_{1}, y_{2} \in Y$ such that $\frac{x_{1}-x_{2}}{y_{1}-y_{2}}+1 \notin \frac{X-X}{Y-Y}$. But then the mapping from $X \times Y$ into $2 X Y-2 X Y+Y^{2}-Y^{2}$ given by

$$
(x, y) \rightarrow\left(y_{1}-y_{2}\right) x+\left(x_{1}-x_{2}+y_{1}-y_{2}\right) y,
$$

is clearly one-to-one and the lemma follows.

We also use the elementary
Lemma 6.2. Let A be a multiplicative subgroup of \mathbb{Z}_{p}^{*} and X, Y be subsets of \mathbb{Z}_{p} such that $A X \subset X, A Y \subset Y$. Then

$$
\left|\frac{X-X}{Y-Y}\right| \leq \frac{|X-X|(|Y-Y|-1)}{|A|}
$$

Proof. If $c=\left(x_{1}-x_{2}\right) /\left(y_{1}-y_{2}\right)$ for some $x_{1}, x_{2} \in X, y_{1} \neq y_{2} \in Y$, then $c=\left(a x_{1}-\right.$ $\left.a x_{2}\right) /\left(a y_{1}-a y_{2}\right)$ for any $a \in A$.

For $k \in \mathbb{N}$, let

$$
a_{k}=\frac{4^{k}-1}{3}, \quad b_{k}=\frac{4^{k}+8}{6}
$$

so that $a_{1}=1, a_{2}=5, a_{3}=21, a_{4}=85, b_{1}=2, b_{2}=4, b_{3}=12, b_{4}=44$, and for $k \geq 1$,

$$
\begin{equation*}
a_{k+1}=4 a_{k}+1, \quad b_{k+1}=8 a_{k-1}+4 \tag{6.1}
\end{equation*}
$$

Put

$$
A_{k}=\left(a_{k} A-a_{k} A\right), \quad B_{k}=\left(b_{k} A-b_{k} A\right)
$$

Theorem 6.1. Let A be a multiplicative subgroup of \mathbb{Z}_{p}^{*}.
a) For $k \geq 1,\left|A_{k}\right| \geq|A-A||A|^{k-1} \quad$ if $k=1$ or $\quad\left|A_{k-1}-A_{k-1}\right||A-A|<p|A|$.
b) For $k \geq 3,\left|B_{k}\right| \geq|A-A|^{2}|A|^{k-3} \quad$ if $\quad\left|A_{k-2}-A_{k-2}\right||2 A-2 A|<p|A|$.

Proof of Theorem 6.1. a) The statement is trivial for $k=1$. For $k>1$, put $X=A_{k-1}$, $Y=A$. The hypothesis $\left|A_{k-1}-A_{k-1}\right||A-A|<p|A|$ implies, by Lemma 6.2 , that $\frac{X-X}{Y-Y} \neq \mathbb{Z}_{p}$. Noting that by relation (6.1)

$$
2 X Y-2 X Y+Y^{2}-Y^{2}=2 A_{k-1}-2 A_{k-1}+A-A=\left(4 a_{k-1}+1\right) A-\left(4 a_{k+1}+1\right) A=A_{k}
$$

we obtain $\left|A_{k}\right| \geq\left|A_{k-1}\right||A|$ by Lemma 6.1. The theorem now follows by induction on k.
b) Put $X=A_{k-2}, Y=A-A$. Under the assumption of the theorem $(X-X) /(Y-Y) \neq$ \mathbb{Z}_{p}. Now, by relation (6.1), $2 X Y-2 X Y+Y^{2}-Y^{2} \subseteq\left(8 a_{k-2}+4\right) A-\left(8 a_{k-2}+4\right) A=B_{k}$, and so by Lemma 6.1 we have $\left|B_{k}\right| \geq\left|A_{k-2}\right||A-A|$. Part (b) follows from the bound in part (a).

Theorem 6.2. Let A be a multiplicative subgroup of \mathbb{Z}_{p}^{*} and λ be a positive real number such that $|A-A| \geq \lambda|A|^{3 / 2}$.
a) For $k \geq 1,\left|A_{k}\right| \geq \min \left\{3^{1 / 3} p^{2 / 3}, \lambda|A|^{k+\frac{1}{2}}\right\}$.
b) For $k \geq 3,\left|B_{k}\right| \geq \min \left\{3^{3 / 7} p^{4 / 7}, \lambda^{2}|A|^{k}\right\}$.

Proof. a) The result is immediate for $k=1$ or $|A|=1$, so we assume $k \geq 2$ and $|A| \geq$ 2. If $\left|A_{k-1}-A_{k-1}\right||A-A|<p|A|$ the inequality follows from Theorem 6.1. Otherwise, $\left|A_{k-1}-A_{k-1}\right| \geq p|A| /|A-A|$. Then

$$
\left|A_{k}\right|=\left|a_{k} A-a_{k} A\right| \geq\left|4 a_{k-1} A-4 a_{k-1} A\right| \geq\left|A_{k-1}-A_{k-1}\right| \geq \frac{p|A|}{|A-A|} \geq \frac{p}{|A-A|^{1 / 2}}
$$

Also by the Cauchy-Davenport relation $\left|A_{k}\right| \geq\left|A_{2}\right|=|5 A-5 A| \geq 3|A-A|$ (for $\left.|A|>1\right)$. Thus $\left|A_{k}\right|^{3} \geq\left(p^{2} /|A-A|\right)(3|A-A|)=3 p^{2}$ and the result follows.
b)We may assume $|A|>1$. If $\left|A_{k-2}-A_{k-2}\right||2 A-2 A|<p|A|$ the result follows from Theorem 6.1. Assume that $\left|A_{k-2}-A_{k-2}\right||2 A-2 A| \geq p|A|$. Then

$$
\begin{aligned}
\left|B_{k}\right| & =\left|b_{k} A-b_{k} A\right| \geq\left|8 a_{k-1} A-8 a_{k-a} A\right| \geq\left|32 a_{k-2} A-32 a_{k-2} A\right| \geq\left|A_{k-2}-A_{k-2}\right| \\
& \geq \frac{p|A|}{|2 A-2 A|} \geq \frac{p}{|2 A-2 A|^{3 / 4}} .
\end{aligned}
$$

Also $\left|B_{k}\right| \geq|12 A-12 A|>3|2 A-2 A|$ and so $\left|B_{k}\right|^{7} \geq\left(p^{4} /|2 A-2 A|^{3}\right) 3^{3}|2 A-2 A|^{3}$.

Thus with $\lambda=\frac{1}{4}$ (as given by Lemma 5.2) we have for any multiplicative subgroup A of \mathbb{Z}_{p}^{*},

$$
\begin{aligned}
|A-A| & \geq \min \left\{\frac{1}{4}|A|^{3 / 2}, p / 2\right\} \\
|3 A-3 A| & \geq \min \left\{|A|^{2}, 2 p^{2 / 3}\right\} \\
|5 A-5 A| & \geq \min \left\{\frac{1}{4}|A|^{5 / 2}, 3^{1 / 3} p^{2 / 3}\right\} \\
|12 A-12 A| & \geq \min \left\{\frac{1}{16}|A|^{3}, 3^{3 / 7} p^{4 / 7}\right\} \\
|21 A-21 A| & \geq \min \left\{\frac{1}{4}|A|^{7 / 2}, 3^{1 / 3} p^{2 / 3}\right\} \\
|44 A-44 A| & \geq \min \left\{\frac{1}{16}|A|^{4}, 3^{3 / 7} p^{4 / 7}\right\} \\
|85 A-85 A| & \geq \min \left\{\frac{1}{4}|A|^{9 / 2}, 3^{1 / 3} p^{2 / 3}\right\}
\end{aligned}
$$

The bound for $|A-A|$ is from Theorems 5.1 and 5.2. The bound for $|3 A-3 A|$ follows from Lemma 6.1 when $|A-A|^{2}<p|A|$ and from the Cauchy-Davenport inequality otherwise. Further lower bounds on $|n A-n A|$ are given in Section 10.

7. Lower Bounds for $|n A|$

For $k \in \mathbb{N}$, put $m_{k}=\frac{1}{3} 4^{k+1}+k-\frac{13}{3}$ and $n_{k}=\frac{2}{3} 4^{k+1}+k-\frac{14}{3}$, so that $m_{1}=2, m_{2}=19$, $m_{3}=84, n_{1}=7, n_{2}=40, n_{3}=169$.

Theorem 7.1. Suppose that A is a multiplicative subgroup of \mathbb{Z}_{p}^{*} and λ is a positive real number such that $|2 A| \geq \lambda|A|^{3 / 2}$ and $|A-A| \geq \lambda|A|^{3 / 2}$. Then for any $k \in \mathbb{N}$,

$$
\begin{aligned}
& \text { a) } \quad\left|m_{k} A\right| \geq \min \left\{\sqrt{2 p}, \alpha_{k}|A|^{k+\frac{1}{2}}\right\} \\
& \text { b) } \quad\left|n_{k} A\right| \geq \min \left\{\sqrt{2 p}, \beta_{k}|A|^{k+1}\right\}
\end{aligned}
$$

where $\alpha_{k}=\lambda^{\frac{5}{3}-\frac{8}{3 \cdot 4^{k}}}, \beta_{k}=\lambda^{\frac{4}{3}-\frac{4}{3 \cdot 4^{k}}}$.

Observing that $3 A=\mathbb{Z}_{p}$ when $|A|>p^{2 / 3}$ (see, e.g., [7]) and that by Theorem 5.2 we can take $\lambda=1 / 4$ for $|A|<p^{2 / 3}$, we obtain in particular that for any multiplicative subgroup A
of \mathbb{Z}_{p}^{*},

$$
\begin{aligned}
|2 A| & \geq \min \left\{.25|A|^{3 / 2}, p / 2\right\} \\
|4 A| & \geq \min \left\{|A|^{3 / 2}, p^{5 / 8}\right\} \\
|7 A| & \geq \min \left\{.25|A|^{2}, \sqrt{2 p}\right\} \\
|19 A| & \geq \min \left\{.125|A|^{5 / 2}, \sqrt{2 p}\right\} \\
|40 A| & \geq \min \left\{.177|A|^{3}, \sqrt{2 p}\right\} \\
|84 A| & \geq \min \left\{.106|A|^{7 / 2}, \sqrt{2 p}\right\} \\
|169 A| & \geq \min \left\{.163|A|^{4}, \sqrt{2 p}\right\} .
\end{aligned}
$$

The estimate for $|4 A|$ comes from $|4 A| \geq|A|^{1 / 2}|3 A-3 A|^{1 / 2} \geq|A|^{3 / 2}$ for $|A-A|^{2}<p|A|$, $|4 A| \geq|A-A|^{15 / 16} \geq(p|A|)^{15 / 32} \geq p^{5 / 8}$, otherwise.

In comparison [9, Lemma 5.3] has $|13 A| \geq \frac{3}{8}|A|^{13 / 7}$ for $|A|^{2} \leq \frac{p-1}{2},|53 A| \geq \frac{3}{8}|A|^{20 / 7}$ for $|A|^{3} \leq \frac{p-1}{2},|213 A| \geq \frac{3}{8}|A|^{27 / 7}$ for $|A|^{4}<\frac{p-1}{2}$, etc.

Proof of Theorem 7.1. The inequalities $\left|m_{k} A\right| \geq \frac{1}{2}|A|^{k+\frac{1}{2}}$ and $\left|n_{k} A\right| \geq \frac{1}{2}|A|^{k+1}$ follow immediately from the Cauchy-Davenport estimates of $\left|m_{k} A\right|$ and $\left|n_{k} A\right|$ for $|A|<5$ and so we assume $|A| \geq 5$.

We prove parts (a) and (b) simultaneously by induction on k. First note that the validity of part (a) for k implies the validity of part (b) for k. If $\left|m_{k} A\right| \geq \sqrt{2 p}$ then trivially $\left|n_{k} A\right| \geq \sqrt{2 p}$. Otherwise $\left|m_{k} A\right| \geq \alpha_{k}|A|^{k+\frac{1}{2}}$. Then since $n_{k}=m_{k}+a_{k+1}$ we have by Rusza's inequality (2.1): $\left|n_{k} A\right| \geq\left|m_{k} A\right|^{1 / 2}\left|a_{k+1} A-a_{k+1} A\right|^{1 / 2} \geq\left|m_{k} A\right|^{1 / 2}\left|A_{k+1}\right|^{1 / 2}$.

If $\left|A_{k}-A_{k}\right||A-A|<p|A|$ then by Theorem 6.1 and the bound in part (a),

$$
\left|n_{k} A\right| \geq \lambda^{\frac{5}{6}-\frac{4}{3 \cdot 4^{k}}}|A|^{\frac{k}{2}+\frac{1}{4}}|A-A|^{1 / 2}|A|^{k / 2} \geq \beta_{k}|A|^{k+1}
$$

If $\left|A_{k}-A_{k}\right||A-A| \geq p|A|$ then, in particular, $\left|2 a_{k} A-2 a_{k} A\right|=\left|A_{k}-A_{k}\right| \geq p^{1 / 2}|A|^{1 / 2}$ and $\left|2 a_{k} A\right|^{2}|A| \geq p$. Thus

$$
\begin{aligned}
\left|n_{k} A\right| & \geq\left|3\left(2 a_{k} A\right)\right| \geq\left|2 a_{k} A\right|^{1 / 4}\left|2 a_{k} A-2 a_{k} A\right|^{3 / 4} \geq\left|2 a_{k} A\right|^{1 / 4} p^{3 / 8}|A|^{3 / 8} \\
& =\left(\left|2 a_{k} A\right|^{2}|A|\right)^{1 / 8}|A|^{1 / 4} p^{3 / 8} \geq|A|^{1 / 4} p^{1 / 2} \geq \sqrt{2 p} .
\end{aligned}
$$

For $k=1$ we have $\left|m_{1} A\right|=|2 A|$ and so the inequality in (a) is trivial. Suppose the theorem is true for $k-1$. Note that for $k \geq 2, m_{k}=n_{k-1}+b_{k+1}$ and so by inequality (2.1)

$$
\begin{equation*}
\left|m_{k} A\right| \geq\left|n_{k-1} A\right|^{1 / 2}\left|b_{k+1} A-b_{k+1} A\right|^{1 / 2}=\left|n_{k-1} A\right|^{1 / 2}\left|B_{k+1}\right|^{1 / 2} \tag{7.1}
\end{equation*}
$$

If $\left|A_{k-1}-A_{k-1}\right||2 A-2 A|<p|A|$ then, by Theorem 6.1(b) and the induction assumption we have

$$
\begin{aligned}
\left|m_{k} A\right| & \geq \lambda^{\frac{2}{3}-\frac{2}{3 \cdot 4^{k-1}}}|A|^{\frac{k}{2}}|A-A||A|^{\frac{k-2}{2}} \\
& \geq \lambda^{\frac{2}{3}-\frac{8}{3 \cdot 4^{k}}+1}|A|^{k+\frac{1}{2}}=\alpha_{k}|A|^{k+\frac{1}{2}} .
\end{aligned}
$$

If $\left|A_{k-1}-A_{k-1}\right||2 A-2 A| \geq p|A|$ then, in particular, $\left|2 a_{k-1} A-2 a_{k-1} A\right| \geq p^{1 / 2}|A|^{1 / 2}$ and $\left|2 a_{k-1} A\right|^{2}|A|^{3} \geq p$. Thus

$$
\begin{aligned}
\left|m_{k} A\right| & \geq\left|4\left(2 a_{k-1} A\right)\right| \geq\left|2 a_{k-1} A\right|^{1 / 8}\left|2 a_{k-1} A-2 a_{k-1} A\right|^{7 / 8} \geq\left|2 a_{k-1} A\right|^{1 / 8} p^{7 / 16}|A|^{7 / 16} \\
& \geq\left(\left|2 a_{k-1} A\right|^{2}|A|^{3}\right)^{1 / 16}|A|^{1 / 4} p^{7 / 16} \geq|A|^{1 / 4} p^{1 / 2} \geq \sqrt{2 p}
\end{aligned}
$$

Theorem 7.2. Put $\gamma_{k}=\left(\frac{2}{\alpha_{k}^{2}}\right)^{1 /(2 k+1)}, \delta_{k}=\left(\frac{2}{\beta_{k}^{2}}\right)^{1 /(2 k+2)}$. Let A be a multiplicative subgroup of \mathbb{Z}_{p}^{*} and $k \in \mathbb{N}$.
a) If $|A| \geq \gamma_{k} p^{1 /(2 k+1)}$, then $8 m_{k}^{2} A=\mathbb{Z}_{p}$.
b) If $|A| \geq \delta_{k} p^{1 /(2 k+2)}$, then $8 n_{k}^{2} A=\mathbb{Z}_{p}$.

Proof. Under the given hypotheses, it follows from Theorem 7.1 that $\left|m_{k} A\right| \geq \sqrt{2 p}$ and $\left|n_{k} A\right| \geq \sqrt{2 p}$, and so by Lemma 2.1 (b) the theorem follows.

Letting $\lambda=1 / 4$ we obtain the following for any multiplicative subgroup A of \mathbb{Z}_{p}^{*} :

$$
\begin{aligned}
8 A=\mathbb{Z}_{p} & \text { for }|A|>p^{1 / 2} \\
32 A=\mathbb{Z}_{p} & \text { for }|A|>3.18 p^{1 / 3} \\
392 A=\mathbb{Z}_{p} & \text { for }|A|>2.38 p^{1 / 4} \\
2888 A=\mathbb{Z}_{p} & \text { for }|A|>2.64 p^{1 / 5} \\
12800 A=\mathbb{Z}_{p} & \text { for }|A|>2 p^{1 / 6} \\
56448 A=\mathbb{Z}_{p} & \text { for }|A|>2.11 p^{1 / 7} \\
228488 A=\mathbb{Z}_{p} & \text { for }|A|>1.72 p^{1 / 8} .
\end{aligned}
$$

The result for $8 A$ is due to Glibichuk [8, Corollary 4]. Note that $m_{k} \leq 1.0005 \frac{4^{k+1}}{3}$ and $n_{k} \leq 1.00013 \frac{2 \cdot 4^{k+1}}{3}$ for any $k \geq 1$. Define $c_{1}=c_{2}=1$ and

$$
c_{\ell}= \begin{cases}\gamma_{\frac{\ell-1}{2}} & \text { if } \ell \geq 3 \text { is odd } \\ \delta_{\frac{\ell-2}{2}} & \text { if } \ell \geq 4 \text { is even }\end{cases}
$$

Then we obtain from Theorem 7.2 that for $\ell \geq 2$,

$$
\begin{equation*}
|A| \geq c_{\ell} p^{1 / \ell} \quad \Longrightarrow \quad 57 \cdot 4^{\ell-2} A=\mathbb{Z}_{p} \tag{7.2}
\end{equation*}
$$

Corollary 7.1. For any prime $p, \ell \geq 2$ and multiplicative subgroup A of \mathbb{Z}_{p}^{*} with $c_{\ell} p^{1 / \ell} \leq|A|<c_{\ell-1} p^{1 /(\ell-1)}$, we have $\gamma(A, p) \leq 14.25 p^{\frac{\ln 4}{\ln \left(|A| / c_{\ell-1}\right)}}$.

Proof. $|A| \geq c_{\ell} p^{1 / \ell}$ and so $\frac{57}{16} \cdot 4^{\ell} A=\mathbb{Z}_{p}$. We also have $(\ell-1) \ln \left(|A| / c_{\ell-1}\right) \leq \ln p$. Thus $\gamma(A, p) \leq \frac{57}{16} \cdot 4^{1+\frac{\ln p}{\ln \left(|A| / c_{\ell-1}\right)}} \leq 14.25 p^{\frac{\ln 4}{\ln \left(|A| / c_{\ell-1}\right)}}$.

8. Bovey's Method for Small $|A|$.

For small $|A|$ we use a method of Bovey to bound $\delta(k, p)$ and $\gamma(k, p)$. Let $t=|A|$ so that $t k=(p-1)$ and put $r=\phi(t)$. Let R be a primitive t-th root of one $(\bmod p)$, that is, a generator of the cyclic group A, and $\Phi_{t}(x)$ be the t-th cyclotomic polynomial over \mathbb{Q} of degree r and ω be a primitive t-th root of unity over \mathbb{Q}. In particular, $\Phi_{t}(R) \equiv 0(\bmod p)$. Let $f: \mathbb{Z}^{r} \rightarrow \mathbb{Z}[\omega]$ be given by

$$
f\left(x_{1}, x_{2}, \ldots, x_{r}\right)=x_{1}+x_{2} \omega+\cdots+x_{r} \omega^{r-1}
$$

Then f is a one-to-one \mathbb{Z}-module homomorphism.
Consider the linear congruence

$$
\begin{equation*}
x_{1}+R x_{2}+R^{2} x_{3}+\cdots+R^{r-1} x_{r} \equiv 0 \quad(\bmod p) \tag{8.1}
\end{equation*}
$$

By the box principle, we know there is a nonzero solution of (8.1) in integers $v_{1}=\left(a_{1}, a_{2}, \ldots, a_{r}\right)$ with $\left|a_{i}\right| \leq\left[p^{1 / r}\right] \leq(p-1)^{1 / r}, 1 \leq i \leq r$. For $2 \leq i \leq r$ set $v_{i}=f^{-1}\left(\omega^{i-1} f\left(v_{1}\right)\right)$. Then v_{1}, \ldots, v_{r} form a set of linearly independent solutions of (8.1) and by [3, Lemma 3]

$$
\delta(k, p) \leq \frac{1}{2} \sum_{i=1}^{t}\left\|v_{i}\right\|_{1}
$$

where $\left\|\left(x_{1}, x_{2}, \ldots, x_{t}\right)\right\|_{1}=\sum_{i=1}^{t}\left|x_{i}\right|$. To determine the latter sum we start with the system

$$
\begin{array}{cccccc}
a_{1} & +a_{2} \omega & +\ldots & + & a_{r} \omega^{r-1} \\
a_{1} \omega & +a_{2} \omega^{2} & +\ldots & + & a_{r} \omega^{r} \\
a_{1} \omega^{2} & +a_{2} \omega^{3} & +\ldots & + & a_{r} \omega^{r+1} \\
a_{1} \omega^{3} & +a_{2} \omega^{4} & + & \ldots & + & a_{r} \omega^{r+2} \\
a_{1} \omega^{4} & +a_{2} \omega^{5} & + & \ldots & +a_{r} \omega^{r+3} \\
\ldots & & & & & \ldots \\
a_{1} \omega^{r-1} & +a_{2} \omega^{r} & + & \ldots & +a_{r} \omega^{2 r-2}
\end{array}
$$

and then reduce the higher powers of ω to powers less than r using Φ_{t} or any other relation that is convenient. Note that for $0 \leq i \leq r-1, \omega^{i}$ occurs $i+1$ times in the array, while for $r \leq i \leq 2 r-2, \omega^{i}$ occurs $2 r-1-i$ times. If ω^{i} can be expressed as a sum/difference of w_{i} powers of ω less than r then we will call w_{i} the weight of ω^{i} in the above system. We see that

$$
\delta(k, p) \leq \frac{1}{2}\left(\sum_{i=1}^{r} i+\sum_{i=r}^{2 r-2} w_{i}(2 r-1-i)\right)(p-1)^{1 / r}
$$

In passing from $\delta(k, p)$ to $\gamma(k, p)$ we use the relation of Theorem $4.1(\mathrm{~d})$,

$$
\begin{equation*}
\gamma(k, p) \leq\left(p_{\min }-1\right) \delta(k, p) \tag{8.2}
\end{equation*}
$$

where $p_{\text {min }}$ is the minimal prime divisor of t. To illustrate the method we consider a few special cases.

Case 1. Suppose t is a prime power q^{α} so that $r=q^{\alpha}-q^{\alpha-1}$. Then $\omega^{r+q^{\alpha-1}}=1$ and $\omega^{r}=-\sum_{i=0}^{q-2} \omega^{q^{\alpha-1}}$. It follows that $w_{i}=q-1$ for $i=r, \ldots, r+q^{\alpha-1}-1$ and that $w_{i}=1$ for $i=r+q^{\alpha-1}, \ldots, 2 r-2$. Thus

$$
\begin{equation*}
\delta(k, p) \leq \frac{1}{2}\left(\sum_{i=1}^{r} i+\sum_{i=r}^{r+q^{\alpha-1}-1}(2 r-1-i)(q-1)+\sum_{i=r+q^{\alpha-1}}^{2 r-2}(2 r-1-i)\right)(p-1)^{1 / r} \tag{8.3}
\end{equation*}
$$

and so

$$
\begin{gathered}
\delta(k, p) \leq \frac{1}{4} q^{\alpha-1}\left(q^{\alpha-1}\left(4 q^{2}-11 q+8\right)-(q-2)\right)(p-1)^{1 / r}<t^{2+\frac{1}{r}} k^{1 / r} \\
\gamma(k, p) \leq \frac{1}{4}(q-1) q^{\alpha-1}\left(q^{\alpha-1}\left(4 q^{2}-11 q+8\right)-(q-2)\right)(p-1)^{1 / r}<t^{3+\frac{1}{r}} k^{1 / r} .
\end{gathered}
$$

In particular, for $t=2^{\alpha}$, we have $\delta(k, p) \leq \frac{t^{2}}{8}(p-1)^{1 / r}$, and for prime $t=q$

$$
\begin{equation*}
\delta(k, p) \leq\left(t^{2}-3 t+2.5\right)(p-1)^{1 /(t-1)}, \quad \gamma(k, p) \leq(t-1)\left(t^{2}-3 t+2.5\right)(p-1)^{1 /(t-1)} \tag{8.4}
\end{equation*}
$$

Case 2. Suppose $t=2 q$ where q is a prime, so that $r=q-1$ and we have $\omega^{q}=-1$, $\omega^{q-1}=-1+\omega-\cdots+\omega^{q-2}$. We obtain

$$
\sum_{i=1}^{r}\left\|v_{i}\right\|_{1} \leq\left(\frac{t^{2}}{2}-3 t+5\right)(p-1)^{2 /(t-2)}
$$

$\delta(k, p) \leq\left(.25 t^{2}-1.5 t+2.5\right)(p-1)^{2 /(t-2)}$ and $\gamma(k, p) \leq\left(.25 t^{2}-1.5 t+2.5\right)(p-1)^{2 /(t-2)}$.
Case 3. $t=21, r=12$. We have $\omega^{12}=\omega^{11}-\omega^{9}+\omega^{8}-\omega^{6}+\omega^{4}-\omega^{3}+\omega-1$, and $\omega^{14}=-\omega^{7}-1$. Thus $\omega^{13}=\omega^{11}-\omega^{10}+\omega^{8}-\omega^{7}-\omega^{6}+\omega^{5}-\omega^{3}+\omega^{2}-1$ giving it a weight of 9 . ω^{14} to ω^{18} each have weight $2, \omega^{19}$ weight $9, \omega^{20}$ weight $8, \omega^{21}$ and ω^{22} each of weight 1. Altogether we get
$\sum_{i=1}^{r}\left\|v_{i}\right\|_{1} \leq(1+\cdots+12+8 \cdot 11+9 \cdot 10+2(9+\cdots+5)+9 \cdot 4+8 \cdot 3+1(2+1)) p^{1 / 12}=389 p^{1 / 12}$,
$\delta(k, p) \leq 194.5 p^{1 / 12}$ and $\gamma(k, p) \leq 389 p^{1 / 12}$.
In a similar manner we obtain the following table of upper bounds for $\delta(k, p)$ and $\gamma(k, p)$. The values for $t=3,4$ and 6 were determined in [6]. The p 's appearing in the table may be
replaced by $(p-1)$.

\underline{t}	$\frac{\delta(k, p)}{2}$	$(p-1) / 2$	$\frac{\gamma(k, p)}{(p-1) / 2}$	\underline{t}	$\frac{\delta(k, p)}{}$
3	$2 \sqrt{k}$	$2 \sqrt{k}-1$	22	$90.5 p^{1 / 10}$	$\underline{\gamma(k, p)}$
$489 p^{1 / 12}$					
4	$2 \sqrt{k}-1$	$2 \sqrt{k}-1$	23	$462.5 p^{1 / 22}$	$10175 p^{1 / 22}$
5	$12.5 p^{1 / 4}$	$50 p^{1 / 4}$	24	$43 p^{1 / 8}$	$43 p^{1 / 8}$
6	$\frac{2}{3} \sqrt{6 k}$	$\frac{2}{3} \sqrt{6 k}$	25	$327.5 p^{1 / 20}$	$1310 p^{1 / 20}$
7	$30.5 p^{1 / 6}$	$183 p^{1 / 6}$	26	$132.5 p^{1 / 12}$	$132.5 p^{1 / 12}$
8	$8 p^{1 / 4}$	$8 p^{1 / 4}$	27	$220.5 p^{1 / 18}$	$441 p^{1 / 18}$
9	$24 p^{1 / 6}$	$48 p^{1 / 6}$	28	$124.5 p^{1 / 12}$	$124.5 p^{1 / 12}$
10	$12.5 p^{1 / 4}$	$12.5 p^{1 / 4}$	29	$756.5 p^{1 / 28}$	$21182 p^{1 / 28}$
11	$90.5 p^{1 / 10}$	$905 p^{1 / 10}$	30	$74 p^{1 / 8}$	$74 p^{1 / 8}$
12	$10.5 p^{1 / 4}$	$10.5 p^{1 / 4}$	31	$870.5 p^{1 / 30}$	$26115 p^{1 / 30}$
13	$132.5 p^{1 / 12}$	$1590 p^{1 / 12}$	32	$128 p^{1 / 16}$	$128 p^{1 / 16}$
14	$30.5 p^{1 / 6}$	$30.5 p^{1 / 6}$	33	$583.5 p^{1 / 20}$	$1167 p^{1 / 20}$
15	$74 p^{1 / 8}$	$148 p^{1 / 8}$	34	$240.5 p^{1 / 16}$	$240.5 p^{1 / 16}$
16	$32 p^{1 / 8}$	$32 p^{1 / 8}$	35	$1233 p^{1 / 24}$	$4932 p^{1 / 24}$
17	$240.5 p^{1 / 16}$	$3848 p^{1 / 16}$	36	$97.5 p^{1 / 12}$	$97.5 p^{1 / 12}$
18	$24 p^{1 / 6}$	$24 p^{1 / 6}$	37	$1260.5 p^{1 / 36}$	$45378 p^{1 / 36}$
19	$306.5 p^{1 / 18}$	$5517 p^{1 / 18}$	38	$306.5 p^{1 / 18}$	$306.5 p^{1 / 18}$
20	$51.5 p^{1 / 8}$	$51.5 p^{1 / 8}$			

9. Proof of Theorem 1.1

Let $t=|A|>2$. As noted in (1.3), for $t=3,4, \gamma(k, p) \leq 2 \sqrt{k}$ and so we may assume $t \geq 5$. The inequality $\gamma(k, p) \leq[k / 2]+1$ of S. Chowla, Mann and Strauss [5], implies the theorem for $k \leq 27551$ and so we assume $k>27551$. The first step is to prove the theorem for $t<34$ using the table from the previous section. Suppose t is a prime. Then by (8.4),

$$
\gamma(k, p) \leq(t-1)\left(t^{2}-3 t+2.5\right) t^{1 /(t-1)} k^{1 /(t-1)} \leq 83 k^{1 / 2}
$$

provided that $k>10^{6}, t<34$. For $k<10^{6}, p<4 \cdot 10^{7}<2^{2^{5}}$ and so by Theorem 4.1 (c), $\gamma(k, p) \leq 10 \delta(k, p)$. Thus we get the improved (for $t>10$) upper bound

$$
\gamma(k, p) \leq 10\left(t^{2}-3 t+2.5\right) t^{1 /(t-1)} k^{1 /(t-1)}
$$

With the aid of a calculator one can check that the latter quantity is less than $83 k^{1 / 2}$ for $t \leq 31$ and $k \geq 27552$.

For nonprime values of $t<34$, we turn to the table in the previous section. We note that if $\gamma(k, p) \leq C(p-1)^{1 / r}$ then $\gamma(k, p) \leq 83 k^{1 / 2}$ provided that $k>(C / 83)^{2 r /(r-2)} t^{2 /(r-2)}$. Using the values of C in the table one checks that the statement is valid for $k>27551$.

Finally, suppose that $t \geq 34$ and that $k>27551$. If $t>c_{6} p^{1 / 6}$ we have by Theorem 7.2, $\gamma(k, p) \leq 12800<83 k^{1 / 2}$. Next, assume $t<c_{6} p^{1 / 6}=2 p^{1 / 6}$. Say $c_{\ell} p^{1 / \ell} \leq t<c_{\ell-1} p^{1 /(\ell-1)}$ for some $\ell \geq 7$. Then by Corollary 7.1, and noting that $2.102>c_{7}>c_{6}>c_{8}>c_{9} \ldots$ we have

$$
\begin{aligned}
\gamma(k, p) & \leq 14.25 p^{\frac{\ln 4}{\ln \left(t / c_{7}\right)}} \leq 14.25 \cdot(t+1 / k)^{\frac{\ln 4}{\ln \left(t c_{7}\right)}} k^{\frac{\ln 4}{\frac{\ln \left(t / c_{7}\right)}{}}} \\
& \leq 14.25(34+1 / 27552)^{\frac{\ln 4}{\ln \left(34 / c_{7}\right)}} k^{\frac{\ln 4}{\ln \left(34 / c_{7}\right)}} \leq 83 k^{.499} .
\end{aligned}
$$

10. Lower Bounds for $|n A-n A|$, Part II

The lower bounds on $\left|A_{k}\right|$ and $\left|B_{k}\right|$ established in Section 6 were sufficient for yielding good upper bounds on $\gamma(k, p)$. One can achieve slightly better upper bounds on $\delta(k, p)$ by using the following variant of Theorem 6.1.

Theorem 10.1. For any multiplicative subgroup A of \mathbb{Z}_{p}^{*},
a) $|3 A-3 A| \geq\left\{\begin{array}{l}\frac{1}{2} \min \left\{|A|^{2}, p+1\right\} \quad \text { for any } A \\ |A|^{2} \quad \text { for }|A| \leq p^{1 / 3} \text {. }\end{array}\right.$
b) For $k \geq 1,\left|A_{k}\right| \geq\left\{\begin{array}{l}\frac{3}{8} \min \left\{|A-A||A|^{k-1}, \frac{p+1}{2}\right\} \\ |A-A||A|^{k-1} \text { for }|A|<p^{\frac{1}{k+2}} \text {. }\end{array}\right.$
c) For $k \geq 3,\left|B_{k}\right| \geq\left\{\begin{array}{l}\min \left\{\frac{3}{16}|A-A|^{2}|A|^{k-3}, \frac{p+1}{2}\right\}, \\ |A-A|^{2}|A|^{k-3} \quad \text { for }|A|<p^{\frac{1}{k+4}} \text {. }\end{array}\right.$

The theorem follows from a couple of lemmas of Glibichuk and Konyagin.
Lemma 10.1. [9, Corollary 3.5] For $X, Y \subset \mathbb{Z}_{p}$ with $|Y|>1$,

$$
\left|2 X Y-2 X Y+Y^{2}-Y^{2}\right|>\frac{|X||Y|(p-1)}{|X||Y|+p-1}
$$

(Although their lemma is stated with a nonstrict inequality, the proof makes it clear that it is strict.)

The following lemma is the same as Glibichuk and Konyagin [9, Lemma 5.1] applied to a slightly different set A_{k}.

Lemma 10.2. Suppose A is a multiplicative subgroup of \mathbb{Z}_{p}^{*} with $|A| \geq 5$. For any k and real number U with $0 \leq U \leq|A-A||A|^{k-1}$ we have

$$
\left|A_{k}\right| \geq U-\frac{5}{4} \frac{U^{2}}{p-1}
$$

Proof. The proof is by induction on k, with $k=1$ being trivial. We use Lemma 10.1 with $X=A_{k-1}, Y=A$. Noting that $2 X Y-2 X Y+Y^{2}-Y^{2}=2 A_{k-1}-2 A_{k-1}+A-A=A_{k}$, as above, we obtain

$$
\begin{equation*}
\left|A_{k}\right| \geq \frac{\left|A_{k-1}\right||A|(p-1)}{\left|A_{k-1}\right||A|+p-1} \tag{10.1}
\end{equation*}
$$

and the proof proceeds identically as in [9].

Proof of Theorem 10.1. a) Put $X=Y=A$ in 10.1 to get $|3 A-3 A| \geq \frac{|A|^{2}(p-1)}{|A|^{2}+p-1}$. If $|A|^{2} \leq p-1$ then $|3 A-3 A| \geq \frac{1}{2}|A|^{2}$, while if $|A|^{2}>p-1$ then $|3 A-3 A|>\frac{1}{2}(p-1)$. If $|A|^{3}<p$ then $\left|\frac{A-A}{A-A}\right| \leq|A|^{3}<p$ and so Lemma 6.1 gives $|3 A-3 A| \geq|A|^{2}$.
b) Put $U=\min \left\{|A-A||A|^{k-1}, \frac{p-1}{2}\right\}$. Then by Lemma $10.2,\left|A_{k}\right| \geq \frac{3}{8} \min \left\{|A-A||A|^{k-1}, \frac{p-1}{2}\right\}$, provided that $|A| \geq 5$. For $|A|=1,2,3,4$ the inequality follows from the Cauchy-Davenport bound $\left|A_{k}\right| \geq \min \left\{p, 2 a_{k}(|A|-1)+1\right\}$ and $|A-A|=1,3,7,9$ for $|A|=1,2,3,4$ respectively.

The second inequality is proven by induction on k, the case $k=1$ being trivial. Suppose the statement is true for $k-1$ and let $|A|^{k+2}<p$. Put $X=A_{k-1}, Y=A$. If $|X-X|<$ $|A-A||A|^{k-1}$, in which case $|X-X||A-A| /|A|<p$, we can apply Theorem 6.1 to get the result. If $|X-X| \geq|A-A||A|^{k-1}$ then since $A_{k} \supset X-X$ the result is immediate.
c) Suppose $k \geq 3$. If $|A|=1$ the bound is trivial, so assume $|A|>1$. Put $X=A_{k-2}$, $Y=A-A$. Then

$$
2 X Y-2 X Y+Y^{2}-Y^{2}=8 \frac{4^{k-2}-1}{3} A-8 \frac{4^{k-2}-1}{3} A+4 A-4 A=B_{k}
$$

and so by Lemma 10.1

$$
\left|B_{k}\right| \geq \min \left\{\frac{\left|A_{k-2}\right||A-A|}{2}, \frac{p+1}{2}\right\}
$$

and the result follows from the bound in part (b).
Suppose now that $|A|^{k+4}<p$. If $\left|A_{k-2}-A_{k-2}\right|<|A-A|^{2}|A|^{k-3}$, in which case $|X-X| \mid Y-$ $Y|/|A|<p$, then the result follows from Theorem 6.1. Otherwise $| B_{k}\left|\geq\left|A_{k-2}-A_{k-2}\right| \geq\right.$ $|A-A|^{2}|A|^{k-3}$.

Corollary 10.1. Let A be a multiplicative subgroup of \mathbb{Z}_{p}^{*} with $|A|>1$ and $\lambda<1$ be a positive real with $|A-A| \geq \lambda|A|^{3 / 2}$.
a) For $k \geq 1$ if $|A| \geq\left(\frac{8}{3 \lambda}\right)^{2 /(2 k+1)} p^{2 /(2 k+1)}$ then $2 a_{k} A-2 a_{k} A=\mathbb{Z}_{p}$.
b) For $k \geq 3$, if $|A|>\left(\frac{8}{3 \lambda^{2}}\right)^{1 / k} p^{1 / k}$ then $2 b_{k} A-2 b_{k} A=\mathbb{Z}_{p}$.

Proof. a) As seen in (10.1), $\left|A_{k}\right|>\min \left\{\frac{\left|A_{k-1}\right||A|}{2}, \frac{p}{2}\right\}$. Under the given hypotheses we have, by Theorem 10.1,

$$
|A|\left|A_{k-1}\right| \geq \min \left\{\frac{3}{8} \lambda|A|^{k+\frac{1}{2}}, \frac{3}{8} \frac{p+1}{2}|A|\right\} \geq p
$$

for $|A|>5$. Thus $\left|A_{k}\right|>\frac{p}{2}$ and $2 A_{k}=\mathbb{Z}_{p}$. If $|A|=2,3$, or 4 then the corollary follows readily from the Cauchy-Davenport inequality, $\left|2 a_{k} A-2 a_{k} A\right| \geq \min \left\{p, 4 a_{k}(|A|-1)+1\right\}$. For $|A|=5$ the conditions require $k \geq 3$. Using the bound for $\delta(A, p)$ from the table in Section $8(t=5)$, we get

$$
\delta(A, p) \leq 12.5 p^{1 / 4} \leq 12.5(3 \lambda / 8)^{1 / 4} 5^{\frac{2 k+1}{8}} \leq 12 \cdot 5^{k / 4} \leq \frac{2}{3}\left(4^{k}-1\right)=2 a_{k}
$$

b) Under the given hypothesis $\frac{3}{16} \lambda^{2}|A|^{k}>\frac{p}{2}$ and so by Theorem 10.1, $\left|B_{k}\right|>\frac{p}{2}$. Thus $2 B_{k}=\mathbb{Z}_{p}$.

Thus we obtain (with $\lambda=.25$)

$$
\begin{array}{rlll}
4 A-4 A & =\mathbb{Z}_{p} & \text { for } & |A|>\sqrt{p} \\
10 A-10 A=\mathbb{Z}_{p} & \text { for } & |A|>2.58 p^{2 / 5} \\
16 A-16 A=\mathbb{Z}_{p} & \text { for } & |A|>3.18 p^{1 / 3} \\
42 A-42 A=\mathbb{Z}_{p} & \text { for } & |A|>1.97 p^{2 / 7} \\
88 A-88 A=\mathbb{Z}_{p} & \text { for } & |A|>2.56 p^{1 / 4} \\
170 A-170 A=\mathbb{Z}_{p} & \text { for } & |A|>1.70 p^{2 / 9} \\
344 A-344 A=\mathbb{Z}_{p} & \text { for } & |A|>2.12 p^{1 / 5} \\
682 A-682 A=\mathbb{Z}_{p} & \text { for } & |A|>1.54 p^{2 / 11} \\
1368 A-1368 A=\mathbb{Z}_{p} & \text { for } & |A|>1.87 p^{1 / 6} .
\end{array}
$$

The result for $4 A-4 A$ is due to Glibichuk [8]. The result for $16 A-16 A$ is obtained from $|A-A| \geq .25|A|^{3 / 2} \geq \sqrt{2 p}$ for $|A|>3.18 p^{1 / 3}$, and thus $8(A-A)(A-A)=\mathbb{Z}_{p}$.

Put

$$
\begin{equation*}
d_{\ell}=(8 /(3 \lambda))^{1 / \ell} \text { for } \ell=3 / 2,5 / 2,7 / 2, \ldots \tag{10.2}
\end{equation*}
$$

Applying Corollary 10.1 (a) with $k=\ell-\frac{1}{2}$ we see that if $|A| \geq d_{\ell} p^{1 / \ell}$ then $\delta(A, p) \leq 4 a_{k}=$ $\frac{4}{3}\left(4^{k}-1\right)=\frac{2}{3} 4^{\ell}-\frac{4}{3}$. We deduce

Corollary 10.2. For any prime p and multiplicative group A with $d_{\ell} p^{1 / \ell} \leq|A| \leq d_{\ell-1} p^{1 /(\ell-1)}$ for some half integer $\ell \geq 5 / 2$, we have

$$
\delta(A, p) \leq \frac{8}{3} p^{\frac{\ln 4}{\ln \left(|A| / d_{\ell-1}\right)}}
$$

Corollary 10.3. For $t>2$ we have the uniform upper bound, $\delta(k, p) \leq 20 k^{1 / 2}$.

Proof. For $k \leq 1595$ the result follows from $\delta(k, p) \leq[k / 2]+1 \leq 20 k^{1 / 2}$. Suppose that $k>1595$. We note that $\delta(k, p) \leq C(p-1)^{1 / r}$ implies $\delta(k, p) \leq 20 k^{1 / 2}$ provided that $k>(C / 20)^{2 r /(r-2)} t^{2 /(r-2)}$. Using the values of C given in the table in Section 6 we see that the latter holds for $t<29, k>1595$. Next, if $t>1.70 p^{2 / 9}$ then $\delta(k, p) \leq 340 \leq 20 k^{1 / 2}$ for
$k>1595$. Otherwise, $d_{\ell} p^{1 / \ell} \leq t \leq d_{\ell-1} p^{1 / \ell-1}$ for some half integer $\ell \geq 11 / 2$. If $29 \leq t<50$ then we can take $\lambda=.28$ in the definition of d_{ℓ} (10.2) since

$$
\frac{|A-A|}{|A|^{3 / 2}} \geq \frac{2 t-1}{t^{3 / 2}} \geq \frac{99}{50^{3 / 2}} \geq .28
$$

and get $d_{9 / 2}=1.6501 \ldots$. Thus by Corollary 10.2

$$
\delta(k, p) \leq \frac{8}{3}\left(29+\frac{1}{1595}\right)^{\frac{\ln 4}{\ln (29 / 1.6502)}} k^{\frac{\ln 4}{\ln (29 / 1.6502)}} \leq 14 k^{.49}
$$

Finally, if $t \geq 50$ then we take $\lambda=.25, d_{9 / 2}=1.70$, and get

$$
\delta(k, p) \leq \frac{8}{3}\left(50+\frac{1}{1595}\right)^{\frac{\ln 4}{\ln (50 / 1.70)}} k^{\frac{\ln 4}{\ln (50 / 1.70)}} \leq 14 k^{.41}
$$

References

[1] J. Bourgain, Mordell's exponential sum estimate revistited, J. Amer. Math. Soc. 18, no. 2 (2005), 477-499.
[2] J. Bourgain, A.A. Glibichuk and S.V. Konyagin, Estimates for the number of sums and products and for exponential sums in fields of prime order, J. London Math. Soc. (2) 73 (2006), 380-398.
[3] J. D. Bovey, A new upper bound for Waring's problem (mod p), Acta Arith. 32 (1977), 157-162.
[4] A. Cauchy, Recherches sur les nombres, J. Ecole Polytechnique 9 (1813), 99-116.
[5] S. Chowla, H. B. Mann and E. G. Straus, Some applications of the Cauchy-Davenport theorem, Norske Vid. Selsk. Forh. Trondheim 32 (1959), 74-80.
[6] J.A. Cipra, T. Cochrane, C. Pinner, Heilbronn's conjecture on Waring's Number (mod p), J. Number Theory 125, no. 2, (2007), 289-297.
[7] T. Cochrane and C. Pinner, Small values for Waring's number modulo p, preprint.
[8] A.A. Glibichuk, Combinational properties of sets of residues modulo a prime and the Erdös-Graham problem, Mat. Zametki 79, no. 3, (2006), 384-395. Translated in Math. Notes 79, no. 3, (2006), 356-365.
[9] A.A. Glibichuk and S.V. Konyagin, Additive properties of product sets in fields of prime order, Additive combinatorics, 279-286, CRM Proc. Lecture Notes, 43, Amer. Math. Soc., Providence, RI, 2007.
[10] D. R. Heath-Brown and S. Konyagin, New bounds for Gauss sums derived from kth powers, and for Heilbronn's exponential sum, Quart. J. Math. 51 (2000), 221-235.
[11] H. Heilbronn, Lecture Notes on Additive Number Theory mod p, California Institute of Technology (1964).
[12] L.K. Hua and H.S. Vandiver, Characters over certain types of rings with applications to the theory of equations in a finite field, Proc. Nat. Acad. Sci. U.S.A. 35 (1949), 94-99.
[13] S. V. Konyagin, On estimates of Gaussian sums and Waring's problem for a prime modulus, Trudy Mat. Inst. Steklov 198 (1992), 111-124; translation in Proc. Steklov Inst. Math. 1994, 105-107.
[14] S. V. Konyagin and I. E. Shparlinski, Character sums with exponential functions and their applications, Cambridge Univ. Press, Cambridge, 1999.
[15] M.B. Nathanson, Additive Number Theory, Inverse Problems and the Geometry of Sumsets, Graduate Texts in Mathematics 165, Springer, New York, 1996.
[16] A. Weil, Number of solutions of equations in finite fields, Bull. AMS 55 (1949), 497-508.

