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Abstract

This paper classifies the sequences that satisfy a generalization of the Cauchy determinant
formula. They are the generalized Fibonacci numbers, up to a scalar multiple. Following
this, it is determined which of these sequences generate Hankel matrices of unit fractions with
integer inverses. As a corollary we obtain another proof that the Filbert Matrix has an inverse
with integer entries, complementing proofs using WZ theory and orthogonal polynomials.

1. Introduction

The first goal of this paper is to classify the sequences that satisfy a particular generalization
of the Cauchy determinant formula. Let f : Z → C, let x = (x0, x1, . . . xn) ∈ Zn+1 and y =
(y0, y1, . . . yn) ∈ Zn+1 be finite sequences of integers, and let M(f, x, y) be the (n+1)×(n+1)
matrix with (i, j) entry given by 1/f(xi + yj). We classify functions f for which

det(M(f, x, y)) = qgn(x,y)

∏
0≤i<j≤n

f(xj − xi)f(yj − yi)

∏
0≤i,j≤n

f(xi + yj)
, (1)

where q is a constant that depends only on f , and gn is an affine function.

Given a function f that satisfies equation (1), define the matrix H(f, n, s) by H(f, n, s) =
M(f, (0, 1, . . . , n− 1), (s + 1, . . . , s + n)), where s is a non-negative integer. The second goal
of this paper is to determine for which of the functions f that satisfy equation (1) and have
integer values does the inverse of H(f, n, s) have integer entries for all n and s?

One motivation for considering this problem is the Filbert matrix, which is the special
case of H(f, n, 0) when f(m) is the mth Fibonacci number. The inverse of the Filbert matrix
has been shown to have integer entries using WZ theory [6] and orthogonal polynomials [3].
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As a result of the second part of this paper, we provide another proof using the generalized
Cauchy determinant.

Various generalizations of the Fibonacci numbers have been shown to generate matrices
of unit fractions whose inverses have integer entries [6], [3], [4]. The class of sequences which
we determine in the second part includes all of these generalizations, and others. In addition,
the generalized Cauchy determinant formula applies to the quantum Hilbert matrices studied
by Andersen and Berg[2].

2. The Cauchy Determinant Formula

The Cauchy determinant formula says that the determinant of the matrix with (i, j) entry
1/(xi + yj) is ∏

0≤i<j≤n
(xj − xi)(yj − yi)

∏
0≤i,j≤n

xi + yj
.

For the matrices M(f, x, y) that we consider, the simplest generalization of the Cauchy

determinant formula would be det(M(f, x, y)) =

∏
0≤i<j≤n

f(xj−xi)f(yj−yi)

∏
0≤i,j≤n

f(xi+yj)
. This generalization

is too simple to apply even to the Filbert matrix, since the determinant of the Filbert
matrix has an additional factor that is a power of −1. Thus we consider the generalization
of equation (1). We want to find all functions f that satisfy this equation for all n and all
x, y ∈ Zn+1.

The affine functions gn in the exponent of q in equation (1) are dependent on the size
of the matrix M(f, x, y). Trivially, we see that g0(x0, y0) = 0. We will determine the exact
formula for gn in what follows. By symmetry, we can assume that the coefficient of xi equals
the coefficient of yi. Thus we can write gn(x, y) = an,−1 +an,0(x0 + y0)+an,1(x1 + y1)+ . . .+
an,n(xn + yn). It would be interesting to investigate the functions that satisfy a generalized
Cauchy determinant formula for other forms of g besides affine.

Let f be a function that satisfies equation (1). Observe that since any matrix with a
repeated row or column has a zero determinant, f must satisfy f(0) = 0.

3. Generalized Fibonacci Numbers and 2× 2 Matrices

Continuing to assume that f : Z → C satisfies equation (1), consider the matrix based on
the vectors x = (0, 1) and y = (1,m), where m %= 0 and m %= −1. For conciseness in referring
to the coefficients of g1, we let a−1 = a1,−1, a0 = a1,0, and a1 = a1,1. Computing directly we



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (2008), #A44 3

have

det(M(f, x, y)) =
f(2)f(m)− f(1)f(m + 1)

f(1)f(2)f(m)f(m + 1)
, (2)

while equation (1) implies that

det(M(f, x, y)) = qa−1+a0+a1(m+1) f(1)f(m− 1)

f(1)f(2)f(m)f(m + 1)
. (3)

Equating numerators of equations (2) and (3), and solving for f(m + 1) gives

f(m + 1) =
f(2)

f(1)
f(m)− qa−1+a0+a1(m+1)f(m− 1). (4)

Next, we consider a number of two by two matrices with xi + yj ≤ 6, and the corresponding
equations that result. The determinant formula gives

f(x0 + y1)f(x1 + y0)− f(x0 + y0)f(x1 + y1)

f(x0 + y0)f(x0 + y1)f(x1 + y0)f(x1 + y1)

=
qa−1+a0(x0+y0)+a1(x1+y1)f(x1 − x0)f(y1 − y0)

f(x0 + y0)f(x0 + y1)f(x1 + y0)f(x1 + y1)
, (5)

and equating numerators gives

f(x0 + y1)f(x1 + y0)− f(x0 + y0)f(x1 + y1)

= qa−1+a0(x0+y0)+a1(x1+y1)f(x1 − x0)f(y1 − y0). (6)

Choosing appropriate values for x0, x1, y0 and y1 gives the eight equations

f(2)f(2)− f(1)f(3) = qa−1+a0+3a1f(1)f(1) (7)

f(2)f(3)− f(1)f(4) = qa−1+a0+4a1f(1)f(2) (8)

f(2)f(4)− f(1)f(5) = qa−1+a0+5a1f(1)f(3) (9)

f(2)f(5)− f(1)f(6) = qa−1+a0+6a1f(1)f(4) (10)

f(3)f(3)− f(2)f(4) = qa−1+2a0+4a1f(1)f(1) (11)

f(3)f(4)− f(2)f(5) = qa−1+2a0+5a1f(1)f(2) (12)

f(3)f(3)− f(1)f(5) = qa−1+a0+5a1f(2)f(2) (13)

f(3)f(4)− f(1)f(6) = qa−1+a0+6a1f(2)f(3). (14)

For reference, the values of x0, x1, y0 and y1 that give these equations are x0 = 0 for all
equations; and, respectively, (x1, y0, y1) = (1, 1, 2) for equation (7), (x1, y0, y1) = (1, 1, 3) for
equation (8), (x1, y0, y1) = (1, 1, 4) for equation (9), (x1, y0, y1) = (1, 1, 5) for equation (10),
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(x1, y0, y1) = (1, 2, 3) for equation (11), (x1, y0, y1) = (1, 2, 4) for equation (12), (x1, y0, y1) =
(2, 1, 3) for equation (13), and (x1, y0, y1) = (2, 1, 4) for equation (14).

Subtracting equation (9) from (13) gives

f(3)f(3)− f(2)f(4) = qa−1+a0+5a1(f(2)f(2)− f(1)f(3)). (15)

Substituting the right-hand sides of equations (11) and (7) for f(3)f(3) − f(2)f(4) and
f(2)f(2)− f(1)f(3), respectively, gives

qa−1+2a0+4a1f(1)f(1) = qa−1+a0+5a1qa−1+a0+3a1f(1)f(1). (16)

Cancelling f(1) gives
qa−1+2a0+4a1 = q2a−1+2a0+8a1 , (17)

which is equivalent to
qa−1+4a1 = 1. (18)

Subtracting equation (10) from equation (14) gives

f(3)f(4)− f(2)f(5) = qa−1+a0+6a1(f(2)f(3)− f(1)f(4)). (19)

Substituting the right-hand sides of equations (12) and (8) for f(3)f(4) − f(2)f(5) and
f(2)f(3)− f(1)f(4), respectively, gives

qa−1+2a0+5a1f(1)f(2) = qa−1+a0+6a1qa−1+a0+4a1f(1)f(2). (20)

This gives
qa−1+2a0+5a1 = q2a−1+2a0+10a1 , (21)

which is equivalent to
qa−1+5a1 = 1. (22)

Equations (18) and (22) now imply that qa−1 = 1 and qa1 = 1. This allows us to rewrite
equation (4) as

f(m + 1) =
f(2)

f(1)
f(m)− qa0f(m− 1). (23)

Now let k = f(2)
f(1) , and replace qa0 with q to make equation (23) equivalent to

f(m + 1) = kf(m)− qf(m− 1). (24)

The observations about a−1 and a1, and the substitution of q for qa0 imply that we may
assume that g1((x0, x1), (y0, y1)) = x0 + y0.

At the beginning of this section we assumed that m %= 0 and m %= −1. Thus we have not
shown than equation (24) holds for m = 0,−1. We now establish it for those values.
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Recall the vectors x = (0, 1) and y = (1,m), and consider M(f, x, z), where z = (m, 1).
Equation (1) implies that

det(M(f, x, z)) = qm f(1)f(1−m)

f(1)f(2)f(m)f(m + 1)
. (25)

Since M(f, x, z) is obtained from M(f, x, y) by a column swap, we also have

det(M(f, x, z)) = −det(M(f, x, y)) = −q
f(1)f(m− 1)

f(1)f(2)f(m)f(m + 1)
. (26)

Equating the right-hand sides of equations (25) and (26) and cancelling common factors
gives

f(1−m) = −f(m− 1)

qm−1
, (27)

for all m such that m %= 0 and m %= −1. This is equivalent to

f(−m) = −f(m)

qm
, (28)

for all m %= −1 and m %= −2, in particular, for all non-negative m. Now equation (24) for
m %= 0 and m %= −1, and equation(28) imply that equation (24) holds for all m ∈ Z.

This now implies that we can normalize the sequence f(m) to have the form f(m) =
f(1)f0(m), where f0(1) = 1 and f0 also satisfies equation (24) for all m ∈ Z. Since f(0) = 0,
as we previously observed, the sequence f0(m) for m ≥ 0 consists of what Kalman and Mena
call generalized Fibonacci numbers [5].

Summarizing, we have just proved the following theorem:

Theorem 1. Assume that f : Z → C, and that for all x = (x0, . . . , xn) and y = (y0, . . . , yn)
with f(xi + yj) %= 0, the matrix M(f, x, y) is defined by M(f, x, y)i,j = 1/f(xi + yj). Assume
that there exists a constant q such that f satisfies equation (1). Then there exist constants
k and q such that f is defined by f(0) = 0, f(1) %= 0, and f(m + 1) = kf(m)− qf(m− 1).

4. The Generalized Formula for 2× 2 Matrices

Now let k and q be constants, and let f : Z → C be defined by f(0) = 0, f(1) = 1,
and f(m + 1) = kf(m) − qf(m − 1). We show that f satisfies the generalized Cauchy
determinant formula for all 2 × 2 matrices of the form M(f, (x0, x1), (y0, y1)). This follows
from the identity

f(x0 + y1)f(x1 + y0)− f(x0 + y0)f(x1 + y1) = qx0+y0f(x1 − x0)f(y1 − y0). (29)
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Equation (29) can be proved using either the Binet formula for generalized Fibonacci num-
bers, see equation (9) in [5], or the convolution property for generalized Fibonacci numbers,
see equation (19) in [5]. We prove it using the convolution formula. The convolution
property,

f(n) = f(m)f(n−m + 1)− qf(m− 1)f(n−m), (30)

gives us

f(x0 + y1)f(x1 + y0) = qf(x0 + y1 − 1)f(x1 + y0 − 1) + f(x0 + y0 + x1 + y1 − 1) (31)

and

f(x0 + y0)f(x1 + y1) = qf(x0 + y0 − 1)f(x1 + y1 − 1) + f(x0 + y0 + x1 + y1 − 1). (32)

Thus we get

f(x0 + y1)f(x1 + y0)− f(x0 + y0)f(x1 + y1)

= q(f(x0 + y1 − 1)f(x1 + y0 − 1)− f(x0 + y0 − 1)f(x1 + y1 − 1)). (33)

Repeating this x0 + y0 times we get

f(x0 + y1)f(x1 + y0)− f(x0 + y0)f(x1 + y1)

=qx0+y0(f(y1 − y0)f(x1 − x0)− f(0)f(x1 + y1 − x0 − y0))

=qx0+y0f(y1 − y0)f(x1 − x0),

(34)

the last equality following from f(0) = 0.

We remark that equation (29) implies that g1(f, x, y) = x0 + y0, and that in particular
g1 is not just affine, but linear.

5. The Generalized Formula for n× n Matrices

Now we show that generalized Fibonacci numbers satisfy the generalized Cauchy determi-
nant formula for all n× n matrices of the form M(f, x, y), using the Dodgson condensation
method [1]. We have verified the formula for 1× 1 and 2× 2 matrices.

Assume that M is an (n+1)×(n+1) matrix, indexed from 0 to n. Write M(r . . . s, t . . . u)
for the submatrix of M consisting of the entries Mi,j where r ≤ i ≤ s and t ≤ j ≤ u. The
determinant identity of Dodgson that we use is

det(M)det(M(1 . . . n− 1,1 . . . n− 1))=det(M(0 . . . n− 1, 0 . . . n− 1))det(M(1 . . . n, 1 . . . n))

− det(M(0 . . . n− 1, 1 . . . n))det(M(1 . . . n, 0 . . . n− 1)).
(35)
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For the matrix M(f, x, y), this equation becomes

det(M(f, x, y))det(M(f, (x1, . . . , xn−1), (y1, . . . xn−1)))

=det(M(f, (x0, . . . , xn−1), (y0, . . . , yn−1))det(M(f, (x1, . . . , xn), (y1, . . . , yn)))

− det(M(f, (x0, . . . , xn−1), (y1, . . . , yn)))det(M(f, (x1, . . . , xn), (y0, . . . yn−1))).

(36)

We will use induction to show both that the Cauchy determinant formula holds for n+1×n+1
matrices M(f, x, y), and that gn is in fact linear, not just affine. By induction on n, we
can apply the Cauchy determinant formula to all the terms in equation (36), except for
det(M(f, x, y)), giving

det(M(f, x, y))qgn−2((x1,...,xn−1),(y1,...,yn−1))

∏
1≤i<j≤n−1

f(xj − xi)f(yj − yi)

∏
1≤i≤n−1,1≤j≤n−1

f(xi + yj)

=qgn−1((x0,...,xn−1),(y0,...,yn−1))

∏
0≤i<j≤n−1

f(xj − xi)f(yj − yi)

∏
0≤i≤n−1,0≤j≤n−1

f(xi + yj)

× qgn−1((x1,...,xn),(y1,...,yn))

∏
1≤i<j≤n

f(xj − xi)f(yj − yi)

∏
1≤i≤n,1≤j≤n

f(xi + yj)

−qgn−1((x0,...,xn−1),(y1,...,yn)))

∏
0≤i<j≤n−1

f(xj − xi)
∏

1≤i<j≤n
f(yj − yi)

∏
0≤i≤n−1,1≤j≤n

f(xi + yj)

× qgn−1((x1,...,xn),(y0,...,yn−1))

∏
1≤i<j≤n

f(xj − xi)
∏

0≤i<j≤n−1
f(yj − yi)

∏
1≤i≤n,0≤j≤n−1

f(xi + yj)
.

(37)

By the inductive hypothesis that gn−1 and gn−2 are linear, we can combine all the powers of
q on the right-hand side to get

det(M(f, x, y))qgn−2((x1,...,xn−1),(y1,...,yn−1))

∏
1≤i≤n−1,1≤j≤n−1

f(xj − xi)f(yj − yi)

∏
1≤i≤n−1,1≤j≤n−1

f(xi + yj)

=qgn−1((x0,...,xn−1)+(x1,...,xn),(y0,...,yn−1)+(y1,...,yn))

×
( ∏

0≤i<j≤n−1
f(xj − xi)f(yj − yi)

∏
0≤i≤n−1,0≤j≤n−1

f(xi + yj)
·

∏
1≤i<j≤n

f(xj − xi)f(yj − yi)

∏
1≤i≤n,1≤j≤n

f(xi + yj)

−

∏
0≤i<j≤n−1

f(xj − xi)
∏

1≤i<j≤n
f(yj − yi)

∏
0≤i≤n−1,1≤j≤n

f(xi + yj)
·

∏
1≤i<j≤n

f(xj − xi)
∏

0≤i<j≤n−1
f(yj − yi)

∏
1≤i≤n,0≤j≤n−1

f(xi + yj)

)
.

(38)
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Now paying careful attention to the indices of the products, we get

det(M(f, x, y))qgn−2((x1,...,xn−1),(y1,...,yn−1)) = qgn−1((x0,...,xn−1)+(x1,...,xn),(y0,...,yn−1)+(y1,...,yn))

×
(

∏
0<j≤n−1

f(xj − x0)
∏

0<i<j≤n
f(xj − xi)

∏
0<j≤n−1

f(yj − y0)
∏

0<i<j≤n
f(yj − yi)

∏
0≤i,j≤n

f(xi + yj)

)

×
(
f(x0 + yn)f(xn + y0)− f(x0 + y0)f(xn + yn)

)
. (39)

Again using the convolution formula (or the Binet formula) we have

f(x0 + yn)f(xn + y0)− f(x0 + y0)f(xn + yn) = qx0+y0f(yn − y0)f(xn − x0). (40)

This results in the formula

det(M(f, x, y)) = qgn(x,y)

∏
0≤i<j≤n

f(xj − xi)f(yj − yi)

∏
0≤i,j≤n

f(xi + yj)
, (41)

where

gn(x, y) = x0 + y0 + gn−1((x0, . . . , xn−1) + (x1, . . . , xn), (y0, . . . , yn−1) + (y1, . . . , yn))

−gn−2((x1, . . . , xn−1), (y1, . . . , yn−1)).
(42)

Since g0(x0, y0) = 0, and we have already established g1((x0, y0), (x1, y1)) = x0 + y0, we find
that

gn(x, y) = n(x0 + y0) + (n − 1)(x1 + y1) + (n − 2)(x2 + y2) + . . . + (xn−1 + yn−1). (43)

This establishes our next theorem.

Theorem 2. Assume that f : Z → C, and there exist constants k and q such that f is
defined by f(0) = 0, f(1) %= 0, and f(m + 1) = kf(m) − qf(m − 1). Assume that for all
x = (x0, . . . , xn) and y = (y0, . . . , yn) with f(xi + yj) %= 0, the matrix M(f, x, y) is defined
by M(f, x, y)i,j = 1/f(xi + yj). Then f satisfies equation (1). Further, the functions gn in
equation (1) take the form of equation (43).

Combining Theorem 1 and Theorem 2, we get the next theorem, which may be interpreted
loosely as “f satisfies the generalized Cauchy determinant formula if and only if f is a
sequence of generalized Fibonacci numbers.”

Theorem 3. Assume that f : Z → C, and that for all x = (x0, . . . , xn) and y = (y0, . . . , yn)
with f(xi + yj) %= 0, the matrix M(f, x, y) is defined by M(f, x, y)i,j = 1/f(xi + yj). Then
there exists a constant q such that f satisfies equation (1) if and only if there exist constants
k, q such that f is defined by f(0) = 0, f(1) %= 0, and f(m + 1) = kf(m)− qf(m− 1), and
the functions gn in equation (1) take the form of equation (43).
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6. Inverses of M(f, x, y) With Integer Entries

We consider the inverses of Hankel matrices of reciprocals of generalized Fibonacci numbers.
Let f be defined by f(0) = 0, f(1) = 1, and f(n+1) = kf(n)− qf(n−1), where k and q are
integer constants. Define the f -factorial !f by n!f = f(1)f(2) . . . f(n), and the f -binomial
coefficient

(
n
m

)
f

to be n!f/m!f(n−m)!f .

Let H(f, n, s) be the n × n matrix whose (i, j) entry is
1

f(i + j + s + 1)
. Using the

generalized Cauchy determinant, we see that the (i, j) entry of the inverse of H(f, n, s) is

(
n+i+s
n−j−1

)
f

(
n+j+s
n−i−1

)
f

(
i+j+s

i

)
f

(
i+j+s

j

)
f
f(i + j + s + 1)

q(
i
2)+(n−i−1)i+(j

2)+(n−j−1)j+(n−1)(s+1)
. (44)

To determine whether the (i, j) entry of the inverse of H(f, n, s) is an integer, we need to
determine whether the power of q in the denominator of equation (44) divides the product
of f -binomial coefficients in the numerator of equation (44).

We exclude certain values of k and q. For example, if f(n) = 0 for some n > 0, then
H(f, n, 0) is undefined, so we exclude any pair of values for k and q that give f(n) = 0. One
example of excluded pairs is q = k2, since that implies f(3) = 0. We also exclude q = 0,
since then the denominator of equation (44) is zero. (If q = 0, then f is just a geometric
series, and H(f, n, s) is not invertible for n > 1.)

Theorem 4. Let f be defined by f(0) = 0, f(1) = 1, and f(n + 1) = kf(n) − qf(n − 1)
for n > 1, where k and q are non-zero integers. Assume that f(n) %= 0 for all n > 0. Then
H(f, n, s) is invertible for all positive integers n and non-negative integers s, and the inverse
of H(f, n, s) has integer entries if and only if q divides k2.

Proof. We have provided the inverse in equation (44). The (0, 0) entry of the inverse of
H(f, 2, 0) is k2/q, showing the necessity that q divides k2 for H(f, n, s) to have integer
entries.

The proof of the converse is a bit more involved. Assume that q divides k2. Let t and
r be positive integers with t = r2 the maximum square that divides q. Let k′ = k/r, let
q′ = q/t, and let g be defined by g(0) = 0, g(1) = 1, and g(n + 1) = k′g(n)− q′g(n− 1). Use
diag(z0, . . . , zn−1) to denote the n× n diagonal matrix with (i, i) entry zi.Then H(f, n, s) =
diag(1, r, r2, . . . , rn−1)−1H(g, n, s)diag(rs, rs+1, rs+2, . . . , rs+n−1)−1. Thus it suffices to show
that H(g, n, s) has an inverse with integer entries.

Thus we may assume that q is square free. Since q divides k2 and q is square free, it
follows that q divides k. Now observe that the defining recursion for f implies that q$

n−1
2 %

divides f(n).
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Next, we want to show that q$m(n−m)/2% divides
(

n
m

)
f
. We prove this inductively using

the following recurrence for f -binomial coefficients.

Lemma 1. The f-binomial coefficients satisfy the recurrence
(

n

m

)

f

= f(n−m + 1)

(
n− 1

m− 1

)

f

− qf(m− 1)

(
n− 1

m

)

f

.

The lemma is similar to the corresponding recursion for Fibonomial coefficients, with the
additional term q given explicitly. It may be proved by induction, or by using the Binet
formula. We omit the proof.

Lemma 2. Let f be defined by f(0) = 0, f(1) = 1, and f(n + 1) = kf(n) − qf(n − 1) for
n > 1, where k and q are integers, and q divides k. Then the f-binomial coefficient

(
n
m

)
f

is

divisible by q$m(n−m)/2%.

Proof. The case m = 0 is clear, and from the comment above, the case m = 1 follows
from the assumption that q divides k. We now proceed inductively on n. Using the
recurrence equation of Lemma 1 and the inductive hypothesis, we see that

(
n
m

)
f

is di-

visible by the minimum of q$(n−m)/2%+$(m−1)(n−m)/2% and q1+$(m−2)/2%+$(m)(n−m−1)/2%. Now
(n−m

2 )+ ( (m−1)(n−m)
2 ) ≥ m(n−m)

2 , and 1 + (m−2
2 ) + (m(n−m−1)

2 ) ≥ m(n−m)
2 , thus proving the

lemma.

By Lemma 2, the numerator of equation (44),
(

n + i + s

n− j − 1

)

f

(
n + j + s

n− i− 1

)

f

(
i + j + s

i

)

f

(
i + j + s

j

)

f

f(i + j + s + 1),

is divisible by q(i+j+s+1)(n−j−1)/2+(i+j+s+1)(n−i−1)/2+(j+s)i/2+(i+s)j/2+(i+j+s)/2. Simplifying the
exponent of q gives

(i + j + s + 1)(n− j − 1)

2
+

(i + j + s + 1)(n− i− 1)

2
+

(j + s)i

2
+

(i + s)j

2
+

(i + j + s)

2

= (i + j + s + 1)(n− 1)− (i + j + s + 1)(i + j)

2
+

(j + s)i

2
+

(i + s)j

2
+

(i + j + s)

2

= i(n− 1)− (i + 1)i

2
+ j(n− 1)− (j + 1)j

2
+ (s + 1)(n− 1) +

(i + j + s)

2

= i(n− i− 1) +
i(i− 1)

2
+ j(n− j − 1) +

j(j − 1)

2
+ (s + 1)(n− 1) +

(i + j + s)

2

≥ i(n− i− 1) +

(
i

2

)
+ j(n− j − 1) +

(
j

2

)
+ (s + 1)(n− 1).

(45)

This implies that q(
i
2)+(n−i−1)i+(j

2)+(n−j−1)j+(n−1)(s+1) divides
(

n + i + s

n− j − 1

)

f

(
n + j + s

n− i− 1

)

f

(
i + j + s

i

)

f

(
i + j + s

j

)

f

f(i + j + s + 1),
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and thus by equation (44), the entries of H(f, n, s) are integers.

7. Examples

Again, let f be defined by f(0) = 0, f(1) = 1, and f(n + 1) = kf(n) − qf(n − 1) for
constants k and q. We describe some examples by giving the values of the constants k and
q that determine the recursion for f .

Example 1. The Hilbert matrix is the matrix H(f, n, 0) where k = 2 and q = 1.

Example 2. The Filbert matrix is the matrix H(f, n, 0) where k = 1 and q = −1.

Example 3. Ismail showed that the inverses of the matrices H(f, n, 0) where f results from
k a positive integer and q = −1 have integer entries [4].

Example 4. The Quantum Hilbert matrix for the parameter z is the matrix H(f, n, 0) where
k = z1/2 + z−1/2 and q = 1. The Quantum Hilbert matrix was introduced in [2]. (The
notation in [2] uses q where we have used z, but we are already using q as one of the defining
constants for f .)

Example 5. Another q-analog of the Hilbert matrix is the matrix H(f, n, 0) where k = q +1.

Example 6. Define f with k = q1 +q2 and q = q1q2, where q1 and q2 are constants; the values
of q1 and q2 are the roots of the characteristic equation of the recurrence relation for f .

Example 7. The Pell numbers are the sequence f for k = 2 and q = −1. Use P (n) to denote
the nth Pell number. By Theorem 4, the inverse of H(P, n, 0) has integer entries.

Example 8. The sequence f for k = 4 and q = 2 begins 0, 1, 4, 14, 48, 164, 560, 1912, 6528.
By Theorem 4, the inverse of H(f, n, 0) has integer entries.
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