
INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (2008), #A43

ON THE FROBENIUS PROBLEM FOR GEOMETRIC SEQUENCES

Amitabha Tripathi
Department of Mathematics, Indian Institute of Technology, Hauz Khas, New Delhi – 110016, India

atripath@maths.iitd.ac.in

Received: 8/12/08, Revised: 8/29/08, Accepted: 9/16/08, Published: 10/7/08

Abstract

Let a, b, k be positive integers, with gcd(a, b) = 1, and let A denote the geometric sequence
ak, ak−1b, . . . , abk−1, bk. Let Γ(A) denote the set of integers that are expressible as a linear
combination of elements of A with non-negative integer coefficients. We determine g(A)
and n(A) which denote the largest (respectively, the number of) positive integer(s) not
in Γ(A). We also determine the set S!(A) of positive integers not in Γ(A) which satisfy
n + Γ!(A) ⊂ Γ!(A), where Γ!(A) = Γ(A) \ {0}.

1. Introduction

For a sequence of relatively prime positive integers A = a1, a2, . . . , ak, let Γ(A) denote the
set of all integers of the form

∑k
i=1 aixi where each xi ≥ 0. It is well known and not

difficult to show that Γc(A) := N \ Γ(A) is a finite set. The Coin Exchange Problem of
Frobenius is to determine the largest integer in Γc(A). This is denoted by g(A), and called
the Frobenius number of A. The Frobenius number is known in the case k = 2 to be
g(a1, a2) = a1a2 − a1 − a2, but is generally otherwise unsolved except in some special cases.
A related problem is the determination of the number of integers in Γc(A), which is denoted
by n(A) and known in the case k = 2 to be given by n(a1, a2) = (a1 − 1)(a2 − 1)/2. More
complete information on the Frobenius problem may be found in [3].

Ong and Ponomarenko recently determined the Frobenius number for geometric se-
quences in [2]. If we denote the geometric sequence ak, ak−1b, . . . , abk−1, bk by Ak(a, b), and
the corresponding Frobenius number by Gk = g

(
Ak(a, b)

)
, Ong & Ponomarenko proved their

claim by showing that the sequence {Gk}k≥1 satisfies a certain first order recurrence, and
then using induction. The main purpose of this note is to show that both the Frobenius
number g(A) and n(A) follow in the case of geometric sequences from an old reduction for-
mula due to Johnson [1] and Rödseth [4]. We further determine the set S!, introduced in [5],
in the case of geometric sequences. This gives another proof of the result for the Frobenius
number since g(A) is the largest integer in S!

(
A

)
.
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2. Main Results

Throughout this section, for positive integers a, b, k with gcd(a, b) = 1, we denote by Ak(a, b)
the geometric sequence ak, ak−1b, . . . , abk−1, bk. We derive the values of both g

(
Ak(a, b)

)
:=

Gk and n
(
Ak(a, b)

)
:= Nk by two methods. We first use a well-known reduction formula

to derive recurrence relations for the two sequences {Gk}k≥1 and {Nk}k≥1, and then use
telescoping sums to solve each recurrence. The second method to derive g

(
Ak(a, b)

)
consists

in showing that S!
(
Ak(a, b)

)
has exactly one element, which must then be g

(
Ak(a, b)

)
. Our

second proof of the result for n
(
Ak(a, b)

)
is indirect; we show that 2n

(
Ak(a, b)

)
− 1 =

g
(
Ak(a, b)

)
. We first recall the reduction formula that is central to our first derivation.

Lemma 1. ([1, 4]) Let a1, a2, . . . , ak be positive integers. If gcd(a2, . . . , ak) = d and aj = da ′
j

for each j > 1, then

(a) g(a1, a2, . . . , ak) = d g(a1, a ′
2, . . . , a

′
k) + a1(d− 1);

(b) n(a1, a2, . . . , ak) = dn(a1, a ′
2, . . . , a

′
k) + 1

2(a1 − 1)(d− 1).

Theorem 1. Let a, b, k be positive integers, with gcd(a, b) = 1. Let Ak(a, b) denote the
sequence ak, ak−1b, . . . , abk−1, bk, and let σk(a, b) denote the sum of the integers in Ak(a, b).
Then

(a) g(Ak(a, b)) = σk+1(a, b)− σk(a, b)− (ak+1 + bk+1);

(b) n(Ak(a, b)) = 1
2

{
σk+1(a, b)− σk(a, b)− (ak+1 + bk+1) + 1

}
.

Proof.

(a) For k ≥ 1, by Lemma 1, with a1 = ak and d = b, we have

g
(
Ak(a, b)

)
= b g(ak, ak−1, ak−2b, . . . , abk−2, bk−1) + ak(b− 1)

= b g(ak−1, ak−2b, . . . , abk−2, bk−1) + ak(b− 1)

= b g
(
Ak−1(a, b)

)
+ ak(b− 1).

If we write g
(
Ak(a, b)

)
:= Gk, then the sequence {Gn}n≥1 satisfies the first order

recurrence
Gn = b Gn−1 + an(b− 1), G1 = g(a, b) = ab− a− b.

Dividing both sides of the recurrence by bn, summing from n = 2 to n = k and
simplifying, we get

Gk

bk
=

G1

b
+ a2(b− 1)

bk−1 − ak−1

bk(b− a)
,

so that

g
(
Ak(a, b)

)
= Gk = a2(b− 1)

bk−1 − ak−1

b− a
+ bk−1(ab− a− b)

= σk+1(a, b)− σk(a, b)− (ak+1 + bk+1).
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(b) This is similar to part (a). For k ≥ 1, by Lemma 1, with a1 = ak and d = b, we have

n
(
Ak(a, b)

)
= b n(ak, ak−1, ak−2b, . . . , abk−2, bk−1) +

1

2
(ak − 1)(b− 1)

= b n(ak−1, ak−2b, . . . , abk−2, bk−1) +
1

2
(ak − 1)(b− 1)

= b n
(
Ak−1(a, b)

)
+

1

2
(ak − 1)(b− 1).

If we write n
(
Ak(a, b)

)
:= Nk, then the sequence {Nn}n≥1 satisfies the first order

recurrence

Nn = b Nn−1 +
1

2
(an − 1)(b− 1), N1 = n(a, b) =

1

2
(a− 1)(b− 1).

Dividing both sides of the recurrence by bn, summing from n = 2 to n = k and
simplifying, we get

Nk

bk
=

N1

b
+

1

2
a2(b− 1)

bk−1 − ak−1

bk(b− a)
− 1

2

bk−1 − 1

bk
,

so that

n
(
Ak(a, b)

)
= Nk =

1

2
a2(b− 1)

bk−1 − ak−1

b− a
− 1

2
(bk−1 − 1) +

1

2
bk−1(a− 1)(b− 1)

=
1

2

{
1 + g(Ak(a, b)

)}

=
1

2

{
σk+1(a, b)− σk(a, b)− (ak+1 + bk+1) + 1

}
. !

The formulae for both g
(
Ak(a, b)

)
and n

(
Ak(a, b)

)
in Theorem 1 display a nice symmetry

in the variables a, b. From Theorem 1 we have n
(
Ak(a, b)

)
= 1

2

{
1+ g(Ak(a, b)

)}
. If m,n are

integers with sum g(Ak(a, b)
)
, then it is easy to see that at most one of m,n can belong to

Γ(Ak(a, b)
)
. On the other hand, if for some such pair m,n, neither belongs to Γ(Ak(a, b)

)
,

there would be less than 1
2

{
1 + g(Ak(a, b)

)}
integers in Γc

(
Ak(a, b)

)
. Thus, for every pair of

non-negative integers m,n with sum g(Ak(a, b)
)
, exactly one of m,n belong to Γc(Ak(a, b)

)
.

We use this to derive n(Ak(a, b)
)
, giving a second proof of the assertion in the second part

of Theorem 1.

Theorem 2. Let a, b, k be positive integers, with gcd(a, b) = 1. Let Ak(a, b) denote the
sequence ak, ak−1b, . . . , abk−1, bk, and let σk(a, b) denote the sum of the integers in Ak(a, b).
If m + n = g(Ak(a, b)), then m ∈ Γ

(
Ak(a, b)

)
if and only if n /∈ Γ

(
Ak(a, b)

)
.

Proof. Let m + n = g(Ak(a, b)). If m ∈ Γ
(
Ak(a, b)

)
, then n /∈ Γ

(
Ak(a, b)

)
, for otherwise

m + n = g(Ak(a, b)) ∈ Γ
(
Ak(a, b)

)
, which is impossible.

Conversely, suppose n /∈ Γ
(
Ak(a, b)

)
. If n < 0, then m > g(Ak(a, b)) and so m ∈ Γ

(
Ak(a, b)

)
.

We may therefore assume that 1 ≤ n ≤ g(Ak(a, b)) since both 0 and any integer greater than
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g(Ak(a, b)) belong to Γ
(
Ak(a, b)

)
. Since n + λbk ∈ Γ

(
ak, ak−1b, . . . , abk−1

)
for all sufficiently

large integer λ and n /∈ Γ
(
ak, ak−1b, . . . , abk−1

)
, we may write n =

∑k−1
i=0 ak−ibixi − bkxk,

where xi ≥ 0 for 0 ≤ i ≤ k − 1 and xk ≥ 1. If x0 > b in this representation, by repeatedly
using the identity ak(x0−b)+ak−1b(x1+a) = akx0+ak−1bx1 we may assume that 0 ≤ x0 < b
while maintaining x1 ≥ 0. Assuming that x0, x1, . . . , xj−1 are all non-negative integers less
than b for some j < k, by repeatedly using the identity ak−jbj(xj−b)+ak−j−1bj+1(xj+1+a) =
ak−jbjxj + ak−j−1bj+1xj+1, we may assume that 0 ≤ xj < b and still have xj+1 ≥ 0. Thus we
may write

n =
k−1∑

i=0

ak−ibixi − bkxk,

with 0 ≤ xi ≤ b − 1 for 0 ≤ i ≤ k − 1, and since n /∈ Γ
(
Ak(a, b)

)
, also xk ≥ 1. Writing

g(Ak(a, b)) = (b− 1)
∑k−1

i=0 ak−ibi − bk, we have

m = g(Ak(a, b))− n =
k−1∑

i=0

(b− 1− xi)a
k−ibi + (xk − 1)bk ∈ Γ

(
Ak(a, b)

)
.

This completes the proof. !

Corollary 1. Let a, b, k be positive integers, with gcd(a, b) = 1. Then

n
(
Ak(a, b)

)
=

1

2

{
1 + g

(
Ak(a, b)

)}
.

Proof. Consider pairs {m,n} of integers in the interval [0, g
(
Ak(a, b)

)
] with m + n =

g
(
Ak(a, b)

)
. By Theorem 2, exactly one integer from each such pair is in Γc

(
Ak(a, b)

)
. This

completes the proof since no integer greater than g
(
Ak(a, b)

)
is in Γc

(
Ak(a, b)

)
. !

Remark 1. Let a, b, k be positive integers, with gcd(a, b) = 1. Then g
(
Ak(a, b)

)
is an odd

integer.

The evaluation of g given in Theorem 1 can also be derived by explicitly determining the
set S!, introduced in [5], since g(a1, a2, . . . , ak) is the largest element in S!(a1, a2, . . . , ak).
For positive and coprime integers a1, a2, . . . , ak, let Γ(a1, a2, . . . , ak) denote the non-negative
integers in the set {a1x1 + a2x2 + · · · + akxk : xj ≥ 0}, let mj denote the least positive
integer in Γ(a1, a2, . . . , ak) that is congruent to j mod a1 for 1 ≤ j ≤ a1 − 1, and let
Γ!(a1, a2, . . . , ak) = Γ(a1, a2, . . . , ak) \ {0}. Then

S!(a1, a2, . . . , ak) := {n /∈ Γ(a1, . . . , ak) : n + Γ!(a1, . . . , ak) ⊂ Γ!(a1, . . . , ak)}
⊆ {mj − a1 : 1 ≤ j ≤ a1 − 1}.

Moreover,

mj − a1 ∈ S!(a1, a2, . . . , ak)⇐⇒ mj + mi > mj+i for 1 ≤ i ≤ a1 − 1. (1)

We refer to [5] for more notations and results. With the notations above, we show that
S!

(
Ak(a, b)

)
= {σk+1(a, b)−σk(a, b)−(ak+1+bk+1)}. Since g(a1, a2, . . . , ak) ∈ S!(a1, a2, . . . , ak),

this further verifies the first result of Theorem 1.
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Lemma 2. Let a1, a2, . . . , ak be positive integers with gcd(a2, . . . , ak) = d. Define, a′j = aj/d
for 2 ≤ j ≤ k. Let mj (respectively, m′

j) denote the least positive integer in Γ(a1, a2, . . . , ak)
(resp., in Γ(a1, a′2, . . . , a

′
k)) that is congruent to j mod a1. Then mj − a1 ∈ S!(a1, a2, . . . , ak)

if and only if m′
j − a1 ∈ S!(a1, a′2, . . . , a

′
k) for 1 ≤ j ≤ a1 − 1.

Proof. Let A denote the sequence a1, a2, . . . , ak and A′ the sequence a1, a′2, . . . , a
′
k. Since

each mj and m′
j must also be representable as a non-negative linear combination of a2, . . . , ak

and a′2, . . . , a
′
k respectively, it follows that {mj : 1 ≤ j ≤ a1 − 1} = {dm′

j : 1 ≤ j ≤ a1 − 1}.
Therefore, by (1), mj−a1 ∈ S!(a1, a2, . . . , ak) if and only if mj +mi > mj+i for 1 ≤ i ≤ a1−1
if and only if m′

j + m′
i > m′

j+i for 1 ≤ i ≤ a1 − 1 if and only if m′
j − a1 ∈ S!(a1, a′2, . . . , a

′
k).

This completes the proof. !

Theorem 3. Let a, b, k be positive integers, with gcd(a, b) = 1. Let Ak(a, b) denote the
sequence ak, ak−1b, . . . , abk−1, bk, and let σk(a, b) denote the sum of the integers in Ak(a, b).
Then S!

(
Ak(a, b)

)
=

{
σk+1(a, b)− σk(a, b)− (ak+1 + bk+1)

}
for k ≥ 1.

Proof. We apply Lemma 2 with A = Ak(a, b) and a1 = ak. Then d = b and mj − ak ∈
S!

(
Ak(a, b)

)
if and only if 1

bmj − ak ∈ S!
(
ak, ak−1, ak−2b, . . . , abk−2, bk−1

)
= S!

(
Ak−1(a, b)

)
.

Therefore, by Theorem 1 in [5],
∣∣S!

(
Ak(a, b)

)∣∣ =
∣∣S!

(
A1(a, b)

)∣∣ = 1 for each k > 1. Since
we have g(Ak(a, b)) ∈ S!

(
Ak(a, b)

)
, there can be no other integer in this set. !

Corollary 2. Let a, b, k be positive integers, with gcd(a, b) = 1. Then

g
(
Ak(a, b)

)
= maxS!

(
Ak(a, b)

)
= σk+1(a, b)− σk(a, b)− (ak+1 + bk+1).

Remark 2. The proof of Theorem 3 shows that the sequence of Frobenius numbers
{g(Ak(a, b))}k≥1 satisfies the recurrence Gk = b Gk−1 + ak(b− 1) since g(Ak(a, b)) = mj − ak

is the only element in S!
(
Ak(a, b)

)
. This result coincides with the result in the first part of

Theorem 1.
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