ON THE FROBENIUS PROBLEM FOR GEOMETRIC SEQUENCES

Amitabha Tripathi
Department of Mathematics, Indian Institute of Technology, Hauz Khas, New Delhi - 110016, India atripath@maths.iitd.ac.in

Received: 8/12/08, Revised: 8/29/08, Accepted: 9/16/08, Published: 10/7/08

Abstract

Let a, b, k be positive integers, with $\operatorname{gcd}(a, b)=1$, and let \mathcal{A} denote the geometric sequence $a^{k}, a^{k-1} b, \ldots, a b^{k-1}, b^{k}$. Let $\Gamma(\mathcal{A})$ denote the set of integers that are expressible as a linear combination of elements of \mathcal{A} with non-negative integer coefficients. We determine $g(\mathcal{A})$ and $n(\mathcal{A})$ which denote the largest (respectively, the number of) positive integer(s) not in $\Gamma(\mathcal{A})$. We also determine the set $\mathcal{S}^{\star}(\mathcal{A})$ of positive integers not in $\Gamma(\mathcal{A})$ which satisfy $n+\Gamma^{\star}(\mathcal{A}) \subset \Gamma^{\star}(\mathcal{A})$, where $\Gamma^{\star}(\mathcal{A})=\Gamma(\mathcal{A}) \backslash\{0\}$.

1. Introduction

For a sequence of relatively prime positive integers $A=a_{1}, a_{2}, \ldots, a_{k}$, let $\Gamma(A)$ denote the set of all integers of the form $\sum_{i=1}^{k} a_{i} x_{i}$ where each $x_{i} \geq 0$. It is well known and not difficult to show that $\Gamma^{c}(A):=\mathbb{N} \backslash \Gamma(A)$ is a finite set. The Coin Exchange Problem of Frobenius is to determine the largest integer in $\Gamma^{c}(A)$. This is denoted by $g(A)$, and called the Frobenius number of A. The Frobenius number is known in the case $k=2$ to be $g\left(a_{1}, a_{2}\right)=a_{1} a_{2}-a_{1}-a_{2}$, but is generally otherwise unsolved except in some special cases. A related problem is the determination of the number of integers in $\Gamma^{c}(A)$, which is denoted by $n(A)$ and known in the case $k=2$ to be given by $n\left(a_{1}, a_{2}\right)=\left(a_{1}-1\right)\left(a_{2}-1\right) / 2$. More complete information on the Frobenius problem may be found in [3].

Ong and Ponomarenko recently determined the Frobenius number for geometric sequences in [2]. If we denote the geometric sequence $a^{k}, a^{k-1} b, \ldots, a b^{k-1}, b^{k}$ by $\mathcal{A}_{k}(a, b)$, and the corresponding Frobenius number by $\mathrm{G}_{k}=g\left(\mathcal{A}_{k}(a, b)\right)$, Ong \& Ponomarenko proved their claim by showing that the sequence $\left\{\mathrm{G}_{k}\right\}_{k \geq 1}$ satisfies a certain first order recurrence, and then using induction. The main purpose of this note is to show that both the Frobenius number $g(A)$ and $n(A)$ follow in the case of geometric sequences from an old reduction formula due to Johnson [1] and Rödseth [4]. We further determine the set \mathcal{S}^{\star}, introduced in [5], in the case of geometric sequences. This gives another proof of the result for the Frobenius number since $g(A)$ is the largest integer in $\mathcal{S}^{\star}(A)$.

2. Main Results

Throughout this section, for positive integers a, b, k with $\operatorname{gcd}(a, b)=1$, we denote by $\mathcal{A}_{k}(a, b)$ the geometric sequence $a^{k}, a^{k-1} b, \ldots, a b^{k-1}, b^{k}$. We derive the values of both $g\left(\mathcal{A}_{k}(a, b)\right):=$ G_{k} and $n\left(\mathcal{A}_{k}(a, b)\right):=\mathrm{N}_{k}$ by two methods. We first use a well-known reduction formula to derive recurrence relations for the two sequences $\left\{\mathrm{G}_{k}\right\}_{k \geq 1}$ and $\left\{\mathrm{N}_{k}\right\}_{k \geq 1}$, and then use telescoping sums to solve each recurrence. The second method to derive $g\left(\mathcal{A}_{k}(a, b)\right)$ consists in showing that $\mathcal{S}^{\star}\left(\mathcal{A}_{k}(a, b)\right)$ has exactly one element, which must then be $g\left(\mathcal{A}_{k}(a, b)\right)$. Our second proof of the result for $n\left(\mathcal{A}_{k}(a, b)\right)$ is indirect; we show that $2 n\left(\mathcal{A}_{k}(a, b)\right)-1=$ $g\left(\mathcal{A}_{k}(a, b)\right)$. We first recall the reduction formula that is central to our first derivation.
Lemma 1. ($[\mathbf{1}, \mathbf{4}])$ Let $a_{1}, a_{2}, \ldots, a_{k}$ be positive integers. If $\operatorname{gcd}\left(a_{2}, \ldots, a_{k}\right)=d$ and $a_{j}=d a_{j}^{\prime}$ for each $j>1$, then
(a) $g\left(a_{1}, a_{2}, \ldots, a_{k}\right)=d g\left(a_{1}, a_{2}^{\prime}, \ldots, a_{k}^{\prime}\right)+a_{1}(d-1)$;
(b) $n\left(a_{1}, a_{2}, \ldots, a_{k}\right)=d n\left(a_{1}, a_{2}^{\prime}, \ldots, a_{k}^{\prime}\right)+\frac{1}{2}\left(a_{1}-1\right)(d-1)$.

Theorem 1. Let a, b, k be positive integers, with $\operatorname{gcd}(a, b)=1$. Let $\mathcal{A}_{k}(a, b)$ denote the sequence $a^{k}, a^{k-1} b, \ldots, a b^{k-1}, b^{k}$, and let $\sigma_{k}(a, b)$ denote the sum of the integers in $\mathcal{A}_{k}(a, b)$. Then
(a) $g\left(\mathcal{A}_{k}(a, b)\right)=\sigma_{k+1}(a, b)-\sigma_{k}(a, b)-\left(a^{k+1}+b^{k+1}\right)$;
(b) $n\left(\mathcal{A}_{k}(a, b)\right)=\frac{1}{2}\left\{\sigma_{k+1}(a, b)-\sigma_{k}(a, b)-\left(a^{k+1}+b^{k+1}\right)+1\right\}$.

Proof.
(a) For $k \geq 1$, by Lemma 1 , with $a_{1}=a^{k}$ and $d=b$, we have

$$
\begin{aligned}
g\left(\mathcal{A}_{k}(a, b)\right) & =b g\left(a^{k}, a^{k-1}, a^{k-2} b, \ldots, a b^{k-2}, b^{k-1}\right)+a^{k}(b-1) \\
& =b g\left(a^{k-1}, a^{k-2} b, \ldots, a b^{k-2}, b^{k-1}\right)+a^{k}(b-1) \\
& =b g\left(\mathcal{A}_{k-1}(a, b)\right)+a^{k}(b-1) .
\end{aligned}
$$

If we write $g\left(\mathcal{A}_{k}(a, b)\right):=\mathrm{G}_{k}$, then the sequence $\left\{\mathrm{G}_{n}\right\}_{n \geq 1}$ satisfies the first order recurrence

$$
\mathrm{G}_{n}=b \mathrm{G}_{n-1}+a^{n}(b-1), \quad \mathrm{G}_{1}=g(a, b)=a b-a-b .
$$

Dividing both sides of the recurrence by b^{n}, summing from $n=2$ to $n=k$ and simplifying, we get

$$
\frac{\mathrm{G}_{k}}{b^{k}}=\frac{\mathrm{G}_{1}}{b}+a^{2}(b-1) \frac{b^{k-1}-a^{k-1}}{b^{k}(b-a)}
$$

so that

$$
\begin{aligned}
g\left(\mathcal{A}_{k}(a, b)\right) & =\mathrm{G}_{k}=a^{2}(b-1) \frac{b^{k-1}-a^{k-1}}{b-a}+b^{k-1}(a b-a-b) \\
& =\sigma_{k+1}(a, b)-\sigma_{k}(a, b)-\left(a^{k+1}+b^{k+1}\right) .
\end{aligned}
$$

(b) This is similar to part (a). For $k \geq 1$, by Lemma 1, with $a_{1}=a^{k}$ and $d=b$, we have

$$
\begin{aligned}
n\left(\mathcal{A}_{k}(a, b)\right) & =b n\left(a^{k}, a^{k-1}, a^{k-2} b, \ldots, a b^{k-2}, b^{k-1}\right)+\frac{1}{2}\left(a^{k}-1\right)(b-1) \\
& =b n\left(a^{k-1}, a^{k-2} b, \ldots, a b^{k-2}, b^{k-1}\right)+\frac{1}{2}\left(a^{k}-1\right)(b-1) \\
& =b n\left(\mathcal{A}_{k-1}(a, b)\right)+\frac{1}{2}\left(a^{k}-1\right)(b-1) .
\end{aligned}
$$

If we write $n\left(\mathcal{A}_{k}(a, b)\right):=\mathrm{N}_{k}$, then the sequence $\left\{\mathrm{N}_{n}\right\}_{n \geq 1}$ satisfies the first order recurrence

$$
\mathrm{N}_{n}=b \mathrm{~N}_{n-1}+\frac{1}{2}\left(a^{n}-1\right)(b-1), \quad \mathrm{N}_{1}=n(a, b)=\frac{1}{2}(a-1)(b-1) .
$$

Dividing both sides of the recurrence by b^{n}, summing from $n=2$ to $n=k$ and simplifying, we get

$$
\frac{\mathrm{N}_{k}}{b^{k}}=\frac{\mathrm{N}_{1}}{b}+\frac{1}{2} a^{2}(b-1) \frac{b^{k-1}-a^{k-1}}{b^{k}(b-a)}-\frac{1}{2} \frac{b^{k-1}-1}{b^{k}},
$$

so that

$$
\begin{aligned}
n\left(\mathcal{A}_{k}(a, b)\right) & =\mathrm{N}_{k}=\frac{1}{2} a^{2}(b-1) \frac{b^{k-1}-a^{k-1}}{b-a}-\frac{1}{2}\left(b^{k-1}-1\right)+\frac{1}{2} b^{k-1}(a-1)(b-1) \\
& =\frac{1}{2}\left\{1+g\left(\mathcal{A}_{k}(a, b)\right)\right\} \\
& =\frac{1}{2}\left\{\sigma_{k+1}(a, b)-\sigma_{k}(a, b)-\left(a^{k+1}+b^{k+1}\right)+1\right\} .
\end{aligned}
$$

The formulae for both $g\left(\mathcal{A}_{k}(a, b)\right)$ and $n\left(\mathcal{A}_{k}(a, b)\right)$ in Theorem 1 display a nice symmetry in the variables a, b. From Theorem 1 we have $n\left(\mathcal{A}_{k}(a, b)\right)=\frac{1}{2}\left\{1+g\left(\mathcal{A}_{k}(a, b)\right)\right\}$. If m, n are integers with sum $g\left(\mathcal{A}_{k}(a, b)\right)$, then it is easy to see that at most one of m, n can belong to $\Gamma\left(\mathcal{A}_{k}(a, b)\right)$. On the other hand, if for some such pair m, n, neither belongs to $\Gamma\left(\mathcal{A}_{k}(a, b)\right)$, there would be less than $\frac{1}{2}\left\{1+g\left(\mathcal{A}_{k}(a, b)\right)\right\}$ integers in $\Gamma^{c}\left(\mathcal{A}_{k}(a, b)\right)$. Thus, for every pair of non-negative integers m, n with sum $g\left(\mathcal{A}_{k}(a, b)\right)$, exactly one of m, n belong to $\Gamma^{c}\left(\mathcal{A}_{k}(a, b)\right)$. We use this to derive $n\left(\mathcal{A}_{k}(a, b)\right)$, giving a second proof of the assertion in the second part of Theorem 1 .

Theorem 2. Let a, b, k be positive integers, with $\operatorname{gcd}(a, b)=1$. Let $\mathcal{A}_{k}(a, b)$ denote the sequence $a^{k}, a^{k-1} b, \ldots, a b^{k-1}, b^{k}$, and let $\sigma_{k}(a, b)$ denote the sum of the integers in $\mathcal{A}_{k}(a, b)$. If $m+n=g\left(\mathcal{A}_{k}(a, b)\right)$, then $m \in \Gamma\left(\mathcal{A}_{k}(a, b)\right)$ if and only if $n \notin \Gamma\left(\mathcal{A}_{k}(a, b)\right)$.

Proof. Let $m+n=g\left(\mathcal{A}_{k}(a, b)\right)$. If $m \in \Gamma\left(\mathcal{A}_{k}(a, b)\right)$, then $n \notin \Gamma\left(\mathcal{A}_{k}(a, b)\right)$, for otherwise $m+n=g\left(\mathcal{A}_{k}(a, b)\right) \in \Gamma\left(\mathcal{A}_{k}(a, b)\right)$, which is impossible.
Conversely, suppose $n \notin \Gamma\left(\mathcal{A}_{k}(a, b)\right)$. If $n<0$, then $m>g\left(\mathcal{A}_{k}(a, b)\right)$ and so $m \in \Gamma\left(\mathcal{A}_{k}(a, b)\right)$. We may therefore assume that $1 \leq n \leq g\left(\mathcal{A}_{k}(a, b)\right)$ since both 0 and any integer greater than
$g\left(\mathcal{A}_{k}(a, b)\right)$ belong to $\Gamma\left(\mathcal{A}_{k}(a, b)\right)$. Since $n+\lambda b^{k} \in \Gamma\left(a^{k}, a^{k-1} b, \ldots, a b^{k-1}\right)$ for all sufficiently large integer λ and $n \notin \Gamma\left(a^{k}, a^{k-1} b, \ldots, a b^{k-1}\right)$, we may write $n=\sum_{i=0}^{k-1} a^{k-i} b^{i} x_{i}-b^{k} x_{k}$, where $x_{i} \geq 0$ for $0 \leq i \leq k-1$ and $x_{k} \geq 1$. If $x_{0}>b$ in this representation, by repeatedly using the identity $a^{k}\left(x_{0}-b\right)+a^{k-1} b\left(x_{1}+a\right)=a^{k} x_{0}+a^{k-1} b x_{1}$ we may assume that $0 \leq x_{0}<b$ while maintaining $x_{1} \geq 0$. Assuming that $x_{0}, x_{1}, \ldots, x_{j-1}$ are all non-negative integers less than b for some $j<k$, by repeatedly using the identity $a^{k-j} b^{j}\left(x_{j}-b\right)+a^{k-j-1} b^{j+1}\left(x_{j+1}+a\right)=$ $a^{k-j} b^{j} x_{j}+a^{k-j-1} b^{j+1} x_{j+1}$, we may assume that $0 \leq x_{j}<b$ and still have $x_{j+1} \geq 0$. Thus we may write

$$
n=\sum_{i=0}^{k-1} a^{k-i} b^{i} x_{i}-b^{k} x_{k}
$$

with $0 \leq x_{i} \leq b-1$ for $0 \leq i \leq k-1$, and since $n \notin \Gamma\left(\mathcal{A}_{k}(a, b)\right)$, also $x_{k} \geq 1$. Writing $g\left(\mathcal{A}_{k}(a, b)\right)=(b-1) \sum_{i=0}^{k-1} a^{k-i} b^{i}-b^{k}$, we have

$$
m=g\left(\mathcal{A}_{k}(a, b)\right)-n=\sum_{i=0}^{k-1}\left(b-1-x_{i}\right) a^{k-i} b^{i}+\left(x_{k}-1\right) b^{k} \in \Gamma\left(\mathcal{A}_{k}(a, b)\right)
$$

This completes the proof.
Corollary 1. Let a, b, k be positive integers, with $\operatorname{gcd}(a, b)=1$. Then

$$
n\left(\mathcal{A}_{k}(a, b)\right)=\frac{1}{2}\left\{1+g\left(\mathcal{A}_{k}(a, b)\right)\right\} .
$$

Proof. Consider pairs $\{m, n\}$ of integers in the interval $\left[0, g\left(\mathcal{A}_{k}(a, b)\right)\right]$ with $m+n=$ $g\left(\mathcal{A}_{k}(a, b)\right)$. By Theorem 2, exactly one integer from each such pair is in $\Gamma^{c}\left(\mathcal{A}_{k}(a, b)\right)$. This completes the proof since no integer greater than $g\left(\mathcal{A}_{k}(a, b)\right)$ is in $\Gamma^{c}\left(\mathcal{A}_{k}(a, b)\right)$.
Remark 1. Let a, b, k be positive integers, with $\operatorname{gcd}(a, b)=1$. Then $g\left(\mathcal{A}_{k}(a, b)\right)$ is an odd integer.

The evaluation of g given in Theorem 1 can also be derived by explicitly determining the set \mathcal{S}^{\star}, introduced in [5], since $g\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ is the largest element in $\mathcal{S}^{\star}\left(a_{1}, a_{2}, \ldots, a_{k}\right)$. For positive and coprime integers $a_{1}, a_{2}, \ldots, a_{k}$, let $\Gamma\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ denote the non-negative integers in the set $\left\{a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{k} x_{k}: x_{j} \geq 0\right\}$, let m_{j} denote the least positive integer in $\Gamma\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ that is congruent to $j \bmod a_{1}$ for $1 \leq j \leq a_{1}-1$, and let $\Gamma^{\star}\left(a_{1}, a_{2}, \ldots, a_{k}\right)=\Gamma\left(a_{1}, a_{2}, \ldots, a_{k}\right) \backslash\{0\}$. Then

$$
\begin{aligned}
\mathcal{S}^{\star}\left(a_{1}, a_{2}, \ldots, a_{k}\right) & :=\left\{n \notin \Gamma\left(a_{1}, \ldots, a_{k}\right): n+\Gamma^{\star}\left(a_{1}, \ldots, a_{k}\right) \subset \Gamma^{\star}\left(a_{1}, \ldots, a_{k}\right)\right\} \\
& \subseteq\left\{m_{j}-a_{1}: 1 \leq j \leq a_{1}-1\right\} .
\end{aligned}
$$

Moreover,

$$
\begin{equation*}
m_{j}-a_{1} \in \mathcal{S}^{\star}\left(a_{1}, a_{2}, \ldots, a_{k}\right) \Longleftrightarrow m_{j}+m_{i}>m_{j+i} \text { for } 1 \leq i \leq a_{1}-1 \tag{1}
\end{equation*}
$$

We refer to [5] for more notations and results. With the notations above, we show that $\mathcal{S}^{\star}\left(\mathcal{A}_{k}(a, b)\right)=\left\{\sigma_{k+1}(a, b)-\sigma_{k}(a, b)-\left(a^{k+1}+b^{k+1}\right)\right\}$. Since $g\left(a_{1}, a_{2}, \ldots, a_{k}\right) \in \mathcal{S}^{\star}\left(a_{1}, a_{2}, \ldots, a_{k}\right)$, this further verifies the first result of Theorem 1 .

Lemma 2. Let $a_{1}, a_{2}, \ldots, a_{k}$ be positive integers with $\operatorname{gcd}\left(a_{2}, \ldots, a_{k}\right)=d$. Define, $a_{j}^{\prime}=a_{j} / d$ for $2 \leq j \leq k$. Let m_{j} (respectively, m_{j}^{\prime}) denote the least positive integer in $\Gamma\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ (resp., in $\left.\Gamma\left(a_{1}, a_{2}^{\prime}, \ldots, a_{k}^{\prime}\right)\right)$ that is congruent to $j \bmod a_{1}$. Then $m_{j}-a_{1} \in \mathcal{S}^{\star}\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ if and only if $m_{j}^{\prime}-a_{1} \in \mathcal{S}^{\star}\left(a_{1}, a_{2}^{\prime}, \ldots, a_{k}^{\prime}\right)$ for $1 \leq j \leq a_{1}-1$.

Proof. Let A denote the sequence $a_{1}, a_{2}, \ldots, a_{k}$ and A^{\prime} the sequence $a_{1}, a_{2}^{\prime}, \ldots, a_{k}^{\prime}$. Since each m_{j} and m_{j}^{\prime} must also be representable as a non-negative linear combination of a_{2}, \ldots, a_{k} and $a_{2}^{\prime}, \ldots, a_{k}^{\prime}$ respectively, it follows that $\left\{m_{j}: 1 \leq j \leq a_{1}-1\right\}=\left\{d m_{j}^{\prime}: 1 \leq j \leq a_{1}-1\right\}$. Therefore, by (1), $m_{j}-a_{1} \in \mathcal{S}^{\star}\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ if and only if $m_{j}+m_{i}>m_{j+i}$ for $1 \leq i \leq a_{1}-1$ if and only if $m_{j}^{\prime}+m_{i}^{\prime}>m_{j+i}^{\prime}$ for $1 \leq i \leq a_{1}-1$ if and only if $m_{j}^{\prime}-a_{1} \in \mathcal{S}^{\star}\left(a_{1}, a_{2}^{\prime}, \ldots, a_{k}^{\prime}\right)$. This completes the proof.

Theorem 3. Let a, b, k be positive integers, with $\operatorname{gcd}(a, b)=1$. Let $\mathcal{A}_{k}(a, b)$ denote the sequence $a^{k}, a^{k-1} b, \ldots, a b^{k-1}, b^{k}$, and let $\sigma_{k}(a, b)$ denote the sum of the integers in $\mathcal{A}_{k}(a, b)$. Then $\mathcal{S}^{\star}\left(\mathcal{A}_{k}(a, b)\right)=\left\{\sigma_{k+1}(a, b)-\sigma_{k}(a, b)-\left(a^{k+1}+b^{k+1}\right)\right\}$ for $k \geq 1$.

Proof. We apply Lemma 2 with $A=\mathcal{A}_{k}(a, b)$ and $a_{1}=a^{k}$. Then $d=b$ and $m_{j}-a^{k} \in$ $\mathcal{S}^{\star}\left(\mathcal{A}_{k}(a, b)\right)$ if and only if $\frac{1}{b} m_{j}-a^{k} \in \mathcal{S}^{\star}\left(a^{k}, a^{k-1}, a^{k-2} b, \ldots, a b^{k-2}, b^{k-1}\right)=\mathcal{S}^{\star}\left(\mathcal{A}_{k-1}(a, b)\right)$. Therefore, by Theorem 1 in [5], $\left|\mathcal{S}^{\star}\left(\mathcal{A}_{k}(a, b)\right)\right|=\left|\mathcal{S}^{\star}\left(\mathcal{A}_{1}(a, b)\right)\right|=1$ for each $k>1$. Since we have $g\left(\mathcal{A}_{k}(a, b)\right) \in \mathcal{S}^{\star}\left(\mathcal{A}_{k}(a, b)\right)$, there can be no other integer in this set.

Corollary 2. Let a, b, k be positive integers, with $\operatorname{gcd}(a, b)=1$. Then

$$
g\left(\mathcal{A}_{k}(a, b)\right)=\max \mathcal{S}^{\star}\left(\mathcal{A}_{k}(a, b)\right)=\sigma_{k+1}(a, b)-\sigma_{k}(a, b)-\left(a^{k+1}+b^{k+1}\right) .
$$

Remark 2. The proof of Theorem 3 shows that the sequence of Frobenius numbers $\left\{g\left(\mathcal{A}_{k}(a, b)\right)\right\}_{k \geq 1}$ satisfies the recurrence $\mathrm{G}_{k}=b \mathrm{G}_{k-1}+a^{k}(b-1)$ since $g\left(\mathcal{A}_{k}(a, b)\right)=m_{j}-a^{k}$ is the only element in $\mathcal{S}^{\star}\left(\mathcal{A}_{k}(a, b)\right)$. This result coincides with the result in the first part of Theorem 1.

Acknowledgement. The author is grateful to the referee for several comments that has resulted in a clearer exposition of this work.

References

[1] S. M. Johnson, A Linear Diophantine Problem, Canad. J. Math. 12 (1960), 390-398.
[2] D. C. Ong and V. Ponomarenko, The Frobenius Number of Geometric Sequences, Integers 8, no. A33 (2008), 1-3.
[3] J. L. Ramírez Alfonsín, The Frobenius Diophantine Problem, Oxford Lecture Series in Mathematics and its Applications, no. 30, Oxford University Press, 2005.
[4] Ö. J. Rödseth, On a linear Diophantine problem of Frobenius, Crelle 301 (1978), 171-178.
[5] A. Tripathi, On a variation of the Coin Exchange Problem for Arithmetic Progressions, Integers 3, no. A01 (2003), 1-5.

