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Abstract

We study the sequence of integers given by x1, . . . , xd ∈ Z and xn+1 = F (xn, . . . , xn−d+1)f(n)+
g(n), n = d, d+ 1, d+ 2, . . . , where F is a polynomial in d variables with integer coefficients,
and f : N "→ N, g : Z "→ Z are two functions. In particular, we prove that the sequence
x1, x2, x3, . . . is ultimately periodic modulo m, where m ≥ 2, if f and g are both ultimately
periodic modulo every q ≥ 2 and limn→∞ f(n) = ∞. We also give a result in the opposite

direction for the sequence x1 ∈ Z, xn+1 = xf(n)
n + 1, n = 1, 2, 3, . . . . If there is no infinite

arithmetic progression au+b, u = 0, 1, 2, . . . , with a, b ∈ N such that f(au+b), u = 0, 1, 2, . . . ,
is purely periodic modulo q for some q ≥ 2, then xn (mod m), n = 1, 2, 3, . . . , is not
ultimately periodic. Finally, we give some examples based on these two results.

1. Introduction

In this note, we are interested in sequences of integers given by the recurrence relations of
the form

xn+1 = F (xn, xn−1, . . . , xn−d+1)
f(n) + g(n),

where F (z0, z1, . . . , zd−1) is a polynomial in d variables with integer coefficients, f : N "→ N
and g : Z "→ Z. For example, the sequences

yn+1 = (yn + 2y3
n−1)

n2+2n
+ n, n = 2, 3, 4, . . . , and un+1 = u[n

√
2]

n + 1, n = 1, 2, 3, . . . ,

where y1, y2, u1 ∈ Z, are of this form. (Throughout, [x] stands for the integral part of a
real number x.) Our results imply that the first sequence y1, y2, y3, . . . is ultimately peri-
odic modulo m for every integer m ≥ 2, whereas the second sequence u1, u2, u3, . . . is not
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ultimately periodic modulo m if m is not a power of 2. A sequence s1, s2, s3, . . . is called
ultimately periodic if there are positive integers r and t such that sn = sn+t for each n ≥ r.
If r = 1, then s1, s2, s3, . . . is called purely periodic.

The study of such recurrence sequences (in particular, of the sequence given by xn+1 =

xf(n)
n + 1, where limn→∞ f(n) = ∞) was motivated by the construction of some special

transcendental numbers ζ for which the sequences of their integral parts [ζn], n = 1, 2, 3, . . . ,
have some divisibility properties [2], [4]. It seems very likely that, for each ζ > 1, the
sequence [ζn], n = 1, 2, 3, . . . , contains infinitely many composite elements (compare with
Problem E19 on p. 220 in [6]), although such a statement is very far from being proved. One
may consult [5] for the latest developments concerning this problem.

In [3], the first named author proved that the sequence given by x1 ∈ N and xn+1 =
xn+1

n + P (n) for n ≥ 1, where P (z) is an arbitrary polynomial with integer coefficients, is
ultimately periodic modulo m for every m ≥ 2.

More generally, let f : N "→ N, g : Z "→ Z be two functions, and let xn, n = 1, 2, 3, . . . , be
a sequence of integers given by x1 ∈ Z and xn+1 = xf(n)

n + g(n) for each n ≥ 1. Suppose that
m ≥ 2 is a positive integer. Our aim is to investigate the conditions on f and g under which
the sequence xn (mod m), n = 1, 2, 3, . . . , is ultimately periodic. Are there some ‘simple’
functions f, g for which this sequence is not ultimately periodic?

In the next section, we shall prove that this sequence is ultimately periodic provided that
the functions f and g are ultimately periodic sequences themselves modulo every q ≥ 2. In
fact, Theorem 1 is more general, whereas the above result is its corollary with d = 1 and
the polynomial F (z) = z. We also prove a result in the opposite direction assuming that
no subsequence of f(n), n = 1, 2, 3, . . . , having the form of infinite arithmetic progression is
ultimately periodic modulo q ≥ 2. Finally, in Section 3 we shall give some examples.

2. Results

Theorem 1 Let d be a positive integer, F (z0, . . . , zd−1) ∈ Z[z0, . . . , zd−1], f : N "→ N and
g : Z "→ Z. Suppose that f and g are ultimately periodic modulo q for every integer q ≥ 2,
and limn→∞ f(n) =∞. Let x1, . . . , xd ∈ Z and

xn+1 = F (xn, . . . , xn−d+1)
f(n) + g(n)

for n = 1, 2, 3, . . . . Then, for each m ≥ 2, the sequence xn (mod m), n = 1, 2, 3, . . . , is
ultimately periodic.

Proof. Let Dm be the set of divisors of m greater than 1 including m itself. Put M for the
least common multiple of the numbers {ϕ(j) : j ∈ Dm}, where ϕ is Euler’s function.

Since g is ultimately periodic modulo m and f is ultimately periodic modulo M, there
are n0, s, # ∈ N such that m|(g(n + s) − g(n)) and M |(f(n + #) − f(n)) for every integer
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n ≥ n0. Set l = s#. It follows that m|(g(n+ul)− g(n)) and M |(f(n+ul)−f(n)) for n ≥ n0

and each u ∈ N.

We assert that there is an integer n1 ≥ n0 such that m|(af(n+l) − af(n)) for each n ≥ n1

and each a ∈ {0, 1, . . . ,m− 1}. Then the theorem easily follows by induction on n. Indeed,
the sequence of vectors (xn1+kl, . . . , xn1+kl−d+1), k = 0, 1, 2, . . . , contains some two equal
elements modulo m, because there are only md different vectors. The corresponding values of
polynomials F (xn1+k1l, . . . , xn1+k1l−d+1) and F (xn1+k2l, . . . , xn1+k2l−d+1) are also equal modulo
m. Setting

a = F (xn1+k1l, . . . , xn1+k1l−d+1) (mod m) = F (xn1+k2l, . . . , xn1+k2l−d+1) (mod m),

where k1 > k2 ≥ 0, n = n1+k2l, u = k1−k2, and subtracting xn+1 = F (xn, . . . , xn−d+1)f(n)+
g(n) from xn+ul+1 = F (xn+ul, . . . , xn+ul−d+1)f(n+ul) + g(n + ul), we find that xn+ul+1 − xn+1

modulo m equal to af(n+ul) − af(n) modulo m. By the above assertion, this is zero, because
af(n+ul)−af(n) =

∑u
k=1(a

f(n+kl)−af(n+(k−1)l)). Hence xn+ul+1 (mod m) = xn+1 (mod m).
Consequently, by induction on n, the sequence xn (mod m), n = 1, 2, 3, . . . , is ultimately
periodic.

In order to prove the assertion we need to show that m divides af(n)(af(n+l)−f(n) − 1).
This is obvious if a = 0 or a = 1. Suppose that a ≥ 2. If gcd(a,m) > 1, write a = a′pu1

1 . . . puk
k

and m = m′pv1
1 . . . pvk

k , where p1, . . . , pk are some prime numbers, u1, . . . , uk, v1, . . . , vk ∈ N
and gcd(a′,m′) = 1. (Otherwise, if gcd(a,m) = 1, take a′ = a and m′ = m.)

Assume that f(n+l) ≥ f(n). Using limn→∞ f(n) =∞, we see that pv1
1 . . . pvk

k divides af(n)

for each sufficiently large n, say, for n ≥ n1 ≥ n0. This proves the claim if m′ = 1. Suppose
that m′ ≥ 2. By Euler’s theorem, m′|(aϕ(m′) − 1), because gcd(a,m′) = 1. So it remains to
show that f(n+l)−f(n) is divisible by ϕ(m′). But ϕ(m′)|M, by the choice of M. Since, by the
above, we have M |(f(n+ l)−f(n)), it follows that ϕ(m′) divides f(n+ l)−f(n), as claimed.
The proof of this statement when f(n+ l) < f(n) is the same, because af(n)(af(n+l)−f(n)−1)
can be written as af(n+l)(1− af(n)−f(n+l)). This completes the proof of the theorem. !

We remark that the assertion of Theorem 1 is true under weaker assumptions on f and
g. We do not need them to be ultimately periodic modulo every q ≥ 2. It is sufficient that
g : Z "→ Z is ultimately periodic modulo m and f : N "→ N is ultimately periodic modulo M,
where M is defined in the proof of Theorem 1 and is given in terms of m only.

The following corollary generalizes the main result of [3]:

Corollary 2 Let f : N "→ N and g : Z "→ Z be two functions which are ultimately periodic
modulo q for every integer q ≥ 2, and limn→∞ f(n) =∞. Suppose that x1 ∈ Z and

xn+1 = xf(n)
n + g(n)

for n = 1, 2, 3, . . . . Then, for each m ≥ 2, the sequence xn (mod m), n = 1, 2, 3, . . . , is
ultimately periodic.
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We also give a statement in the opposite direction:

Theorem 3 Let m ≥ 3 be an integer, which is not a power of 2, and let f : N "→ N. Suppose
that x1 ∈ Z and

xn+1 = xf(n)
n + 1

for n = 1, 2, 3, . . . . If the sequence xn (mod m), n = 1, 2, 3, . . . , is ultimately periodic, then
there are positive integers q, b, t, where 2 ≤ q ≤ m − 1, such that the sequence f(b + ut)
(mod q), u = 0, 1, 2, . . . , is purely periodic.

Proof. Since m is not a power of 2, it has an odd prime divisor, say, p. The sequence xn

(mod m), n = 1, 2, 3, . . . , is ultimately periodic, so the sequence xn (mod p), n = 1, 2, 3, . . . ,
must be an ultimately periodic sequence too. Hence there are n1 and t such that p|(xn+t−xn)
for each n ≥ n1. Fix any b ≥ n1 for which a = xb (mod p) /∈ {0, 1}. Such b exists, because
p ≥ 3, so each 0 of the sequence xn (mod p), n = 1, 2, 3, . . . , is followed by 1, which is
followed by 2. Clearly, xb+ut (mod p) = a for each nonnegative integer u.

Subtracting xb+1 = xf(b)
b + 1 from xb+ut+1 = xf(b+ut)

b+ut + 1, we obtain p|(af(b+ut) − af(b)).
Since 2 ≤ a ≤ p − 1 and p is a prime number, we have gcd(a, p) = 1. It follows that
p|(a|f(b+ut)−f(b)| − 1). Let q be the least positive integer for which p|(aq − 1). Since a < p, we
have 2 ≤ q ≤ ϕ(p) = p− 1 ≤ m− 1. Furthermore, q divides the difference |f(b + ut)− f(b)|
for every integer u ≥ 0. Thus the sequence f(b + ut) (mod q), u = 0, 1, 2, . . . , is purely
periodic, as claimed. !

The condition that m is not a power of 2 is essential. Evidently, any sequence given by
xn+1 = xf(n)

n + 1, where f : N "→ N, is purely periodic modulo 2. If m = 2s, where s ≥ 2,
we can take any function f : N "→ N satisfying f(n) ≥ s for each sufficiently large n. It is
easy to see that, starting from some n0, the sequence xn (mod 2s) is 1, 2, 1, 2, 1, 2, . . . , so
xn (mod 2s), n = 1, 2, 3, . . . , is ultimately periodic.

In general, the problem of periodicity of residues of a recurrence sequence can be very
difficult even for a ‘simply looking’ sequence. In [1], the authors considered the sequence
xn+1 = −[λxn] − xn−1, n = 1, 2, 3, . . . . It is conjectured that, for any x0, x1 ∈ Z and λ ∈
[−2, 2], the sequence xn, n = 0, 1, 2, . . . is purely periodic. The nontrivial case is when λ ∈
(−2, 2) \ {−1, 0, 1}. For λ = 1/2, the sequence is given by x0, x1 ∈ Z, xn+1 = −[xn/2]− xn−1

for n = 1, 2, 3, . . . . Note that [xn/2] = xn/2 for even xn and [xn/2] = (xn − 1)/2 for odd
xn. Hence the sequence xn, n = 0, 1, 2, . . . is purely periodic, if and only if, the sequence xn

(mod 2), n = 0, 1, 2, . . . , is ultimately periodic. However, even the statement concerning the
periodicity of xn (mod 2), n = 0, 1, 2, . . . , seems to be out of reach.
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3. Examples

Let a,m ≥ 2 be integers. The functions f(n) = an, f(n) = P (n), where P (z) ∈ Z[z],
P (n) ≥ 1 for n ≥ 1, f(n) = n! and their linear combinations are ultimately periodic modulo
m. Thus, by Theorem 1, the sequence given by y1, y2 ∈ Z and yn+1 = (yn+2y3

n−1)
n2+2n

+n for
n ≥ 2 (see Section 1) is ultimately periodic modulo m. Similarly, for instance, the sequence
given by x1 ∈ Z and xn+1 = xna

n + 1, where n ≥ 1, is ultimately periodic modulo m. The
same is true for the sequence x1 ∈ Z, xn+1 = xan

n + 1, n = 1, 2, 3, . . . .

Let α > 0 be an irrational number and β ≥ 0. Consider the sequence x1 ∈ Z,

xn+1 = x[αn+β]
n + 1

for n = 1, 2, 3, . . . . We claim that this sequence is not ultimately periodic modulo m, if
m (= 2s with integer s ≥ 0.

Suppose that the sequence xn (mod m), n = 1, 2, 3, . . . , is ultimately periodic. By
Theorem 3, there exist positive integers q, b, t, where 2 ≤ q ≤ m− 1, such that the sequence
[α(b + ut) + β] (mod q), u = 0, 1, 2, . . . , is purely periodic. Suppose that the length of the
period is # ≥ 1. Then q divides the difference [α(b + ut + #t) + β]− [α(b + ut) + β]. For any
real numbers x, y, we have [x + y] = [x] + [y] if the sum of the fractional parts {x} + {y} is
smaller 1 and [x + y] = [x] + [y] + 1 if {x}+ {y} ≥ 1. Setting x = α(b + ut) + β and y = α#t,
we find that

[α(b + ut + #t) + β]− [α(b + ut) + β] =

{
[α#t] if {α(b + ut) + β} < 1− {α#t},
[α#t] + 1 if {α(b + ut) + β} ≥ 1− {α#t}.

Since αt /∈ Q, by Weyl’s criterion, the sequence {α(b+ut)+β}, u = 0, 1, 2, . . . , is uniformly
distributed in [0, 1] (see, e.g., [8] or Section 2.8 in [7]). In particular, it is everywhere dense
in [0, 1]. Hence the sets S1 and S2 of u ∈ N for which the first or the second alternative holds,
respectively, are both not empty. Setting N = [α#t], we deduce that q|N, because S1 is not
empty, and q|(N + 1), because S2 is not empty, a contradiction.

Since
√

2 /∈ Q, this implies that the sequence given by un+1 = u[n
√

2]
n + 1, n = 1, 2, 3, . . . ,

and some u1 ∈ Z (see Section 1) is not ultimately periodic modulo m if m is not a power of
2.

One can give more ‘natural’ examples of sequences which are not ultimately periodic
modulo m using the following:

Lemma 4 Let f : N "→ N be a non-decreasing function satisfying limn→∞ f(n) = ∞ with
the property that, for every l ∈ N, there is an integer nl such that f(n + l) − f(n) ≤ 1 for
each n ≥ nl. Then there is no arithmetic progression au + b, u = 0, 1, 2, . . . , with a, b ∈ N
such that, for some q ≥ 2, the sequence f(au + b) (mod q), u = 0, 1, 2, . . . , is ultimately
periodic.
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Proof. Suppose there are positive integers a, b and q ≥ 2 such that f(au + b) (mod q),
u = 0, 1, 2, . . . , is ultimately periodic. Then there are r, # ∈ N such that q divides the
difference f(a(u + #) + b)− f(au + b) for each u ≥ r. By the condition of the lemma, there
is an integer v ≥ r such that du = f(au + b + a#)− f(au + b) ≤ 1 for every u ≥ v. If dv = 1,
then q does not divide dv, a contradiction. Thus dv = 0.

Note that dv+dv+$+. . .+dv+k$ = f(av+b+a(k+1)#)−f(av+b). Clearly, limn→∞ f(n) =∞
implies that dv +dv+$ + . . .+dv+k$ →∞ as k →∞. Therefore, there exists a positive integer
t such that dv = dv+$ = . . . = dv+(t−1)$ = 0 and dv+t$ = 1. Since q divides du for every u ≥ v,
it must divide the sum dv + dv+$ + . . . + dv+(t−1)$ + dv+t$ = 1, a contradiction. !

It is easy to see that the functions f(n) = [γ log n], f(n) = [αnσ], where α, γ > 0 and
0 < σ < 1, satisfy the conditions of the lemma. (Of course, the fact that several first values
of f can be zero makes no difference in our arguments.) Hence, by Theorem 3 and the
remark following its proof, the sequences given by x1 ∈ Z and, for n ≥ 1,

xn+1 = x[γ log n]
n + 1 or xn+1 = x[αnσ]

n + 1

are ultimately periodic modulo m ∈ N, if and only if, m = 2s with some integer s ≥ 0.

In conclusion, let us consider the sequence x1 = 0, xn+1 = xn
n + 1 for n = 1, 2, 3, . . . .

The sequence xn (mod 3), n = 1, 2, 3, . . . , is 0, 1, 2, 0, 1, 2, . . . , so it is purely periodic. By

the main lemma of [2], the limit ζ = limn→∞ x1/n!
n exists, it is a transcendental number,

and, furthermore, [ζn!] = xn for every n ∈ N. Hence the sequence [ζn!], n = 1, 2, 3, . . . , has
infinitely many elements of the form 3k0, 3k1 + 1 and 3k2 + 2, where k0, k1, k2 ∈ N.
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