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Abstract

We discuss the enumeration of words avoiding patterns with repeated letters. More specifi-
cally, we find enumeration schemes (i.e., recurrences) to count pattern-avoiding words using
a divide-and-conquer technique, breaking up a set of words based on the pattern formed by
the smallest letters of each word. We apply this method to the counting of words avoiding
patterns of length 3 and words avoiding any monotone pattern.

1. Background

The enumeration of permutation classes has been accomplished by many beautiful tech-
niques. One natural extension of permutation classes is pattern-avoiding words. In [6], we
adapted the method of enumeration schemes, first introduced for permutations by Zeilberger
[8] and extended by Vatter [7] to the case of enumerating words avoiding a permutation pat-
tern. In this paper, we modify the enumeration scheme paradigm further to enumerate words
avoiding patterns with repeated letters.

First, we recall the following definitions.

Definition 1 Let w ∈ [k]n, w = w1 · · ·wn. The reduction of w, denoted red(w), is the unique
word of length n obtained by replacing the ith smallest letters of w with i, for each i.

Definition 2 Let w ∈ [k]n, w = w1 · · ·wn as above, and let q ∈ [k]m, q = q1 · · · qm. We say
that w contains q if there exist 1 ≤ i1 < i2 < · · · < im ≤ n so that red(wi1 · · ·wim) = q.
Otherwise, we say that w avoids q.

For example, the reduction of w = 2432 ∈ [4]3 is 1321. Also w contains the pattern 121 as
evidenced by the substring w1w2w4 = 242, which reduces to 121.
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While it is straightforward to fix a word w and list all the patterns q which it contains, it is
a more difficult task to fix q and then enumerate the set of words w which do not contain q.
To this end, we introduce our main object of study:

Definition 3 A frequency vector is a vector a = [a1, . . . , ak] such that k ≥ 1 and ai ≥ 0 for
1 ≤ i ≤ k. Let ‖a‖ denote

∑k
i=1 ai. Then, given a frequency vector a and a set of reduced

words Q in [k]m for some m > 0, we define

A(a, Q) := {w ∈ [k]‖a‖ | w avoids q for every q ∈ Q,w has ai i’s for 1 ≤ i ≤ k}.

Notice that if a1 = · · · = ak = 1, the enumeration of A(a, Q) is equivalent to the classical case
of counting pattern-avoiding permutations. Further, observe that if ai=0 for some i, then
A([a1, . . . ai, . . . , ak], Q) = A([a1, . . . , ai−1, ai+1, . . . , ak], Q), so in general, we may assume
that a has positive entries. When the set of patterns Q is clear from context, we may simply
write A(a).

Much of the work studying pattern avoidance in permutations and in words adapts techniques
that are dependent on what patterns are being avoided. However, ideally, we want to
find a single technique that enumerates many different classes of pattern-avoiding words.
In 1998, Zeilberger [8] introduced prefix enumeration schemes to count pattern-avoiding
permutations, giving a more universal framework for counting these permutation classes. In
2005, Vatter [7] extended these schemes, completely automating the enumeration of many
more permutation classes. Vatter’s work studies a symmetry of prefix schemes to ease
notation.

The method of Zeilberger’s prefix schemes has already been extended to pattern-avoiding
words [6] with a reasonable success rate. However, these prefix schemes for words fail com-
pletely if one wishes to enumerate words avoiding patterns with repeated letters. First, I
will review the limitations of Zeilberger and Vatter’s enumeration schemes when they are
extended to the case of pattern-avoiding words. Then, I will introduce a new notion of
schemes for words. I will use this new notion to find recurrences counting words avoiding
any pattern of length 3. The main result is that this new notion of scheme is guaranteed to
work when enumerating words avoiding any monotone pattern of arbitrary length.

2. Old Schemes for Permutations

In [6], I extended Zeilberger’s notion of prefix scheme to pattern avoiding words.

Suppose we would like to enumerate a set A(n). If we cannot find a closed-form formula
for A(n), ideally, we could find a recurrence which depends only on n. However, this is
not always possible. Following Zeilberger, we introduce the notion of refinement. Namely,
parameterize A(n) =

⋃
i∈I B(n, i) for some parameter i, so that A(n) is a disjoint union of

the B(n, i)’s. If we can then find a recurrence for each B(n, i) in terms of the A(n)’s and
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the B(n, i)’s, we then have a formula for A(n). If not, continue by parameterizing each
B(n, i) =

⋃
j∈J C(n, i, j).

Zeilberger’s schemes for pattern-avoiding permutations refine by looking at prefixes. That
is if A(n) is the set of words whose first l letters reduce to p, then B(n, i) is the set of
words whose first l + 1 letters reduce to some longer prefix p̂ = p1 · · · pl · i and such that
red(p1 · · · pl) = p.

For example, given prefix p, let Ap(a) be the set of words with alphabet vector a = [a1, . . . , ak]
whose first |p| letters reduce to p. We have:

A∅(a) = A1(a) = A12(a) ∪A11(a) ∪A21(a) = · · · .

Furthermore, we can deduce recurrences by knowing the prefix of a word. For example,
consider a 123-avoiding word w with prefix 21 (that is, w1 > w2). The only way for the “2”
to be involved in a forbidden 123 pattern is for there to be positions a and b (1 < a < b)
such that w1 < wa < wb. However, this means that w2 < wa < wb, so that the “1”
is also involved in a forbidden 123 pattern. Thus, deleting and inserting w1 provides a
bijection between 123-avoiding words of length n with prefix 21 and 123-avoiding words of
length n − 1 with prefix 1. In particular, if the role of “2” is played by a letter j, we have
|A21([a1, . . . , aj, . . . , ak])| = |A1([a1, . . . , aj − 1, . . . , ak])|.

While this method of refining based on prefixes and finding recurrences has a reasonable
success rate for words avoiding permutations, it was shown in [6] that it necessarily fails if
the pattern to be avoided has a repeated letter. Thus, we turn to a symmetric approach
introduced by Vatter [7].

3. Old Schemes for Permutations: A Symmetry

Vatter’s schemes for permutations take a symmetry of this approach and look at the patterns
formed by the i smallest letters in a permutation instead of the initial i letters.

In his case, the notation Ap(a) denotes the set of words with alphabet vector a = [a1, . . . , ak]
whose smallest |p| letters form pattern p. For example, A132(a) denotes the set of words
where 1 appears before 3, which appears before 2. Still, we have:

A∅(a) = A1(a) = A12(a) ∪A11(a) ∪A21(a) = · · · .

The logic for finding recurrences is similar. For example, if we wish to avoid the pattern 123,
and consider the set A21([a1, . . . , ak]), we know that if 1 is involved in a 123 pattern, then 2
must also be involved in a 123 pattern, so if the role of 1 is played by j, then we have
|A21([a1, . . . , aj, . . . , ak])| = |A1([a1, . . . , aj − 1, . . . , ak])| = |A1([a1, . . . aj−1, aj+1, . . . , ak])|,
where the last equality is because Vatter considers the special case of permutations.
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In essence, Vatter takes inverses of the permutations in Zeilberger’s schemes, and as the
inverse map provides an involution on the set of all permutations, this is an equivalent
construction.

For words, however, the inverse map no longer exists. Enumerating words by considering
the pattern formed by the i smallest letters is no longer as straightforward. In general, to
count pattern-avoiding words, the chain of prefixes of smallest letters 1 → 11 → 111 → · · ·
forms an infinite chain of subsets of A([a1, . . . , ak]) without recurrences.

Clearly, while both Zeilberger’s and Vatter’s schemes are effective for enumerating permu-
tations, they have their drawbacks when extended to words. Thus, we must make more
significant modifications.

4. New Schemes

Vatter’s approach can be modified in the following way. Instead of looking at the patterns
formed by the i smallest letters in a word by adding one letter at a time, refine by successively
adding all copies of the smallest letter at once. As we will see, this introduces new parameters
into the enumeration scheme, but it allows the enumeration of classes of words which were
unable to be enumerated by previous methods.

For example, let A∅(a) be the set of words with alphabet vector a = [a1, . . . , ak] avoiding
112. Then, we can refine A∅(a) = A1(a) ∪ A0(a), where A1(a) = { the set of words with at
least two 1s }, and A0(a) = {the set of words with only one 1}. That is, A1(a) is the set
of words with enough 1s to be the start of a forbidden 112 pattern, and A0(a) is the set of
words without enough 1s to start a forbidden 112 pattern.

Essentially, instead of tracking the patterns formed by the initial letters of the word (as in
Zeilberger’s method) or the patterns formed by the smallest letters of the word (as in Vatter’s
method), we begin with the empty word, and successively insert all copies of a letter at once.
After each insertion of new letters, we keep track of the maximal subpattern of a forbidden
112 pattern. More explicitly, begin with an empty word and insert all a1 1s. Keep track of
the earliest 11 pattern and insert all a2 2s. Keep track of the new first 11 pattern, and insert
all a3 3s. Repeat this process until all a1 + · · ·+ ak letters have been inserted into the word.

Here, we introduce a revised notion of scheme.

Definition 4 Let S be a set of triples [Ai, Ci, Ri] where

• Ai is a set, possibly with extra parameters distinguishing elements of Ai.

• Ci is a set of pairs [Pi,1, Pi,2] where each Pi,1 is a set Aj with j ≥ i, and the Pi,2’s are
disjoint conditions on the parameters of Ai.
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• Ri is a linear combination of cardinalities of sets Aj, j ≤ i, possibly with coefficients
depending on the parameters of Ai.

We say that S is an enumeration scheme if for each triple [Ai, Ci, Ri] in S, exactly one of Ci

or Ri is non-empty.

The extra complications introduced in this definition will be powerful tools in developing
enumeration schemes for the cases discussed in the following sections. Since we are interested
in determining the number of elements of some set A, we define |Ai| to be the cardinality of
the set Ai. Although each Ci is a set of pairs, note that the first item in each pair c ∈ Ci is
a set. For ease of notation, we let |c| be the cardinality of the first element of the pair c.

Now, notice that a scheme can be considered to be an encoding for a system of recurrences.
Namely, Ci are the children of Ai, so |Ai| =

∑
c∈Ci

|c|, and Ri is a recurrence for Ai in terms
of earlier sets, so |Ai| = Ri.

A simple example is the following:

{[A∅([a1, . . . , ak]), {[A0([a1, . . . , ak]), (a1 = 1)] , [A1([a1, . . . , ak]), (a1 > 1)]} , ∅] ,
[
A0([a1, . . . , ak]), ∅,

(
a2 + · · · + ak + 1

1

)
· |A∅([a2, . . . , ak])|

]
,

[A1([a1, . . . , ak]), ∅, 0]}

This scheme can be interpreted in the following way: Let A∅([a1, . . . , ak]) be the set of
all words avoiding 11, A0([a1, . . . , ak]) the set of all words avoiding 11 with a1 = 1, and
A1([a1, . . . , ak]) the set of all words avoiding 11 where a1 > 1.

If a1 = · · · = ak = 1, we have

|A∅([a1, . . . , ak])| = |A0([a1, . . . , ak])| =

(
a2 + · · · + ak + 1

1

)
|A∅([a2, . . . , ak])|

=

(
a2 + · · · + ak + 1

1

)
· |A0([a2, . . . , ak])|

=

(
a2 + · · · + ak + 1

1

)
·
(

a3 + · · · + ak + 1

1

)
|A∅([a3, . . . , ak])|

= · · · =

(
a2 + · · · + ak + 1

1

)
·
(

a3 + · · · + ak + 1

1

)
· · ·

(
ak−1 + ak + 1

1

)
·
(

ak + 1

1

)
= k!.

Otherwise, let j be the smallest integer for which aj > 1, and let (k)j = k·(k−1) · · · (k−j+1).
We have:

|A∅([a1, . . . , aj, . . . , ak])| = · · · = (k)j−1 · |A∅([aj, . . . , ak])|
= (k)j−1 · |A1([aj, . . . , ak])| = (k)j−1 · 0 = 0

both as expected.
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5. Finding Schemes

In Vatter and Zeilberger’s schemes, we found recurrences by looking for letters that were
reversibly deletable, that is, letters that could be deleted from and reinserted into a word
without inducing a forbidden pattern. Now we make the notion of reversibly deletable more
general.

Definition 5 Let w ∈ [k]n be an arbitrary word and p ∈ [k]m a forbidden pattern written in
reduced form. Let si(p) denote the substring of p formed by the letters ≤ i, and set s0(p) = ε,
the empty pattern. We say that w is i-critical with respect to p (i ≥ 0) if w contains a copy
of si(p) but avoids si+1(p).

For example, let w = 1431532231, and let p = 12324. Then s1(p) = 1, s2(p) = 122,
s3(p) = 1232, and s4(p) = 12324. w is 3-critical, since it contains s1(p), s2(p), and s3(p) as
patterns while it avoids the pattern 12324.

Now, we have a more formal way to produce a scheme in the sense of Section 4. Given a
forbidden pattern p ∈ [k]m,

• The Ai’s are the sets of words that are i-critical for 0 ≤ i ≤ k − 1, plus Ak (the set
of words containing p) and A∅ (the set of ALL words avoiding p). Ai may include
parameters to track the location of a copy of si(p).

• If Ai is the set of i-critical words, then Ci consists of the pairs [Ai, ( conditions to insert
new letters while keeping an i-critical word i-critical )] and [Ai+1, ( conditions to insert
new letters so that an i-critical word becomes (i + 1)-critical )]

• Ri results from a case by case analysis of the structure of i-critical words. Namely, if
there are letters in an i-critical word that cannot possibly be involved in a forbidden
pattern, they may be deleted. Also, the parameters of Ai that keep track of the location
of a copy of si(p) within a given word may be adjusted.

As in the case of permutations, the operations of complement and reversal are involutions on
the set of words in [k]n with some useful properties. Namely, if p is a forbidden pattern, pc

is its complement (formed by replacing i → k + 1− i), and pr is its reversal, in the notation
of section 1, we have:

|A([a1, . . . , ak], p)| = |A([ak, . . . , a1], p
c)|

|A([a1, . . . , ak], p)| = |A([a1, . . . , ak], p
r)|

Let Av(p) denote the set of all words avoiding p. If, we can find a scheme for Av(p), then
we have a system of recurrences for counting Av(p), Av(pc), Av(pr), and Av(prc).

In the following sections, we illustrate the power of this method by finding recurrences to
count Av(p), where p is any pattern of length 3.
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As a final comment on the As notation, As([a1, . . . , al], Q) denotes the set of Q-avoiding
words which are s-critical when restricted to the alphabet {1, . . . , i}, but with a1 i+1’s, a2

(i+2)’s, . . . , al (i+l)’s . Thus, in this paper the vector [a1, . . . , al] is not an alphabet vector,
but rather only contains the information for the frequency of letters > i for some i. We
may refer to such a vector as the upper alphabet vector. For each of the patterns below, we
consider letters 1, 2, . . . , i “old letters” and (i + 1) as the “new letter” to be inserted.

6. Avoiding the Pattern 111

The simplest pattern of length 3 is 111. The scheme for Av(111) is very similar to the scheme
for Av(11) given in Section 4. Notice that s1(111) = 111, so a word is 1-critical if it contains
three copies of the same letter.

Let w ∈ A∅([a1, . . . , ak]) be an arbitrary word in [k]||a||. Either a1 ≤ 2, i.e. w is 0-critical, or
a1 ≥ 3, in which case w is 1-critical. If a word is 0-critical, the letters in it cannot possibly
be part of a bad pattern after subsequent insertion of larger letters, so they may be inserted
anywhere in the word, i.e. |A0([a1, . . . , ak])| =

(
a1+···+ak

a1

)
· |A∅([a2, . . . , ak])|. We represent

the situation graphically as follows:

Figure 1: Av(111)

The nodes in this graph are the sets Ai, the solid lines go from Ai to the sets in Ci, and are
labeled with the corresponding conditions. A labeled dotted arrow contains the information
of Ri.

Or, in the more familiar scheme notation, we have

{[A∅([a1, . . . , ak]), {[A0([a1, . . . , ak]), (a1 ≤ 2)], [A1([a1, . . . , ak]), (a1 ≥ 3)]}, ∅],

[A0([a1, . . . , ak]), ∅,
(

a1 + · · · + ak

a1

)
· |A∅([a2, . . . , ak])|],

[A1([a1, . . . , ak]), ∅, 0]}.

We can read this scheme to obtain the following system of recurrences:

If ai ≤ 2 for all i, then
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|A∅([a1, . . . , ak])| = |A0([a1, . . . , ak])| =
(

a1 + · · · + ak

a1

)
· |A∅([a2, . . . , ak])| = · · ·

=

(
a1 + · · · + ak

a1

)
· · ·

(
ak−1 + · · · + ak

ak−1

)
·
(

ak

ak

)

=

(
a1 + · · · + ak

a1, . . . , ak

)
= |{all words with alphabet vector a}| .

Otherwise, let j be the smallest integer for which aj ≥ 3. Then

|A∅([a1, . . . , ak])| =

(
a1 + · · · + ak

a1

)
· · ·

(
aj−1 + · · · + ak

aj−1

)
· |A∅([aj, . . . , ak])|

=

(
a1 + · · · + ak

a1

)
· · ·

(
aj−1 + · · · + ak

aj−1

)
· |A1([aj, . . . , ak])|

=

(
a1 + · · · + ak

a1

)
· · ·

(
aj−1 + · · · + ak

aj−1

)
· 0 = 0.

7. Avoiding the Pattern 112

Now, we turn to the case of avoiding patterns of length 3 with two distinct letters. Taking
into account the symmetries of complement and reversal, once we can count Av(112), we
may also count Av(211), Av(122), and Av(221).

Consider the example of 112-avoiding words in more detail. As before, let A∅ be the set
of all words avoiding 112, and let A0 and A1 be the sets of 0-critical and 1-critical words
respectively. That is, A0 denotes words without a repeated letter, and A1 denotes words
with a 11 pattern but no 112 pattern.

We still write A∅([a1, . . . , ak]), and A0([a1, . . . , ak]) to denote words with a particular alphabet
vector, but for A1, we write A1([ai, . . . , ak], j), where j is the position of last letter of the
first 11 pattern formed by the letters 1, 2, . . . , i− 1 already in the word.

We have the following trivial base cases: If k = 1, then |A0([a1])| = 1 (since there is only
one word with an alphabet vector [a1] and it avoids 112), and |A1([ai], j)| =

(
j−1+ai

ai

)
(since

any letter inserted after the repeated letter in position j forms a 112 forbidden pattern).

Now, consider what happens when k > 1. In general, we start with the empty word, and
insert all a1 copies of 1 into the word. Next, we insert all a2 copies of 2 into the word. At
each iteration, the word composed of all letters 1, 2, . . . , i is called the “old word,” and the
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word composed of 1, 2, . . . , i, i + 1, immediately after all copies of the letter i + 1 have been
inserted, is called the “new word.”

If k > 1 and a1 = 1, there is no way for a single smallest letter to be part of a 112 pattern, so
we may find the number of words with alphabet vector [a2, . . . , ak], and insert the smallest
letter anywhere. Thus, |A0([a1, . . . , ak])| =

(
a2+···+ak+1

1

)
· |A∅([a2, . . . , ak])|.

If k > 1 and a1 > 1, the first repeated letter in a string of identical letters 1 . . . 1︸ ︷︷ ︸
a1

is in position

2, so we have |A∅([a1, . . . ak])| = |A1([a2, . . . , ak], 2)|.

Now, we move on to considering the sets A1([a1, . . . , ak], j).

If k > 1 and a1 = 1, we may not insert the new (larger) letter after position j. There are
j choices for where to insert this letter into the word before position j. Moreover, inserting
this letter in the beginning of the word moves the first repeated letter to position j + 1 (see
Figures 2 and 3). Thus, we have |A1([a1, . . . , ak], j)| = j · |A1([a2, . . . , ak], j + 1)|.

j − 1 old letters 1

position j

Figure 2: Old word, before inserting a1 2s

j − 1 old letters 1
+1 new letter

position j + 1

Figure 3: New word, after inserting a1 2s

If k > 1 and a1 > 1, again we know that none of the a1 (larger) letters to be inserted may
appear after position j. Since there are at least two identical letters to insert before position
j, the new first repeated letter will be one of the newly inserted letters. Thus, let the new
first repeated letter be in position l (as in Figure 5). There are l − 2 old letters and 1 new
letter before position l, and there are (j−1)−(l−2) old letters and a1−2 old letters between
position l and the old first repeated letter in position j. Thus, summing over all possibilities
for position l, |A1([a1, . . . , ak], j)| =

∑j+1
l=2 (l − 1)

(
(i−1)+(l−2)+(a1−2)

(a1−2)

)
|A1([a2, . . . , ak], j)|.

(j − 1) old letters 1

position j

Figure 4: Old word, before inserting a1 2s
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l − 2 old letters 2 (j − 1)− (l − 2) old letters 1
+1 new letter +(a1 − 2) new letters

position l j + a1

Figure 5: New word, after inserting a1 2s

Graphically, we have the following situation

Figure 6: Av(112)

which is the same as:

|A([a1, . . . , ak])| =






1 k = 1(
a2+···+ak+1

1

)
|A([a2, . . . , ak])| k > 1, a1 = 1

|B([a2, . . . , ak], 2)| k > 1, a1 > 1;

|B([a1, . . . , ak], j)| =






(
j−1+a1

a1

)
k = 1

j ∗ |B([a2, . . . , ak], j + 1)| a1 = 1
∑j+1

l=2 (l − 1)
(
(j−1)−(l−2)+(a1−2)

a1−2

)
|B([a2, . . . , ak], l)| a1 > 1.

This recurrence is uniquely satisfied by

|A([a1, . . . , ak])| =
k∏

i=2

(ai + · · · + ak + 1).

This is a new proof of a result given by Heubach and Mansour [5]. More significantly it can
be easily generalized, as we will see.

8. Avoiding the Pattern 121

To completely count all patterns of length 3 with at most two letters, it remains to count
Av(121) (which will allow us to enumerate Av(212)).
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We can do this easily by adding a new parameter. The algorithm remains the same. Begin
with an empty word, and insert all copies of the smallest letter. Then, consider how many
ways to insert the next largest letter, keeping track of the maximal forbidden pattern. Since
121 is not a monotone pattern, however, it no longer suffices to keep track of the earliest 11
pattern in 1-critical words.

More specifically, when we consider all copies of a letter l in a 121-avoiding word, we know
that there can be no larger letters between the first l and the last l in the word. Thus,
this first l, last l, and all letters in between act as if they were only one letter. Instead of
parameterizing our scheme in terms of locations of letters, it suffices to keep track of the
number of such “blocks” of letters in the word. Notice that a word may be either 0-critical or
1-critical from our previous notation and still have any number of blocks. Thus, for 1-critical
words, we define the following:

A1(a, i) := {1-critical words with upper alphabet vector a and exactly i blocks of letters }

so A∅([a1, . . . , ak]) := {all 121-avoiding words} = A1([a2, . . . , ak], 1); i.e., a word consisting
of a1 1s consists of a single block.

Now, consider a word with i blocks. We may not insert new letters into the middle of a
block, but we may insert letters anywhere between blocks. Moreover, if the new letters are
not all adjacent, the first new letter and the last new letter form the beginning and end of
a new block.

For example, suppose the current 121-avoiding word is 33211222 and we wish to insert 2 4s.
The current word has 2 blocks: 33, and 211222. So we may put the 4s together: 4433211222,
3344211222 or 3321122244, or we may separate them 4334211222, 4332112224, 3342112224.

In general, suppose we have a word w ∈ A([a1, . . . , al−1]) with i blocks, and we wish to insert
al copies of the letter l. The position of the first new l and the last new l determine a new
block. Suppose that between these two new letters there were b old blocks. Then there are(
(al−2)+(b)

b

)
ways to arrange the other new letters inside this new block. Moreover this turned

b blocks into 1 block for a net loss of b− 1 blocks. So if j is the new number of blocks after
letter insertions, there are j = i − (b − 1); i.e. b = i + 1− j. Now there are j ways to pick
which consecutive b blocks will become one single new block, so there are j ·

(
(al−2)+(i+1−j)

(i+1−j)

)

ways to get j blocks from i blocks by inserting al letters.

This is represented graphically in Figure 7, and can be written as:

|A1([a1, . . . , ak], i)| =
i+1∑

j=1

j ·
(

(a1 − 2) + (i + 1− j)

(i + 1− j)

)
|A1([a2, . . . , ak], j)|

Together with the base case of |A1([], i)| = 1, for the empty word, we have a recurrence
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Figure 7: Av(121)

completely counting all words avoiding the pattern 121 which yields the unique solution:

|A∅([a1, . . . , ak])| =
k∏

i=2

(ai + · · · + ak + 1)

This result was also given by Heubach and Mansour [5], but was shown in a different way.

9. Avoiding the Pattern 213

We now move on to words avoiding patterns of length 3 with three letters, i.e., words avoiding
permutations. This case can be taken care of by prefix schemes, as noted in [6], but for the
sake of completeness, we describe an alternate enumeration using the method of this paper.

Again, by the symmetries of complement and reversal, an enumeration scheme for Av(213)
allows us to count Av(312), Av(132), and Av(231).

We return to our original notation of i-critical words, and add a few parameters.

Let
A∅([a1, . . . , ak]) = {all words}

A1([a1, . . . , ak], p) = { all 1-critical words with p letters after the left-most 1 pattern}
A2([a1, . . . , ak], p) = { all 2-critical words with leftmost 21 pattern ending in position p}

Trivially, by inserting a1 identical letters into the empty word, we have |A∅([a1, . . . , ak])| =
|A1([a2, . . . , ak], a1 − 1)|.

Now consider an arbitrary 1-critical word. Since this word contains a 1 pattern, but not a
21 pattern, all letters must be in increasing order.

Consider a generic member of A1([a1, . . . , ak], p), as in Figure 8. When we insert a1 new
letters into this word, either (a) we do not create a new 21 pattern (i.e., all new letters are
appended to the end of the word), as in Figure 9, or (b), we do create a new 21 pattern, and
keep track of where the leftmost such pattern ends, as in Figure 10.
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1 p old letters

position 1

Figure 8: Generic Member of A1([a1, . . . , ak], p)

1 p old letters a1 new letters
(old letter)

position 1

Figure 9: Case a: No New 21 Pattern

j 2 l − 1 1 (p− j) old letters
old letters (new letter) new letters (old letter) +(a1 − l) new letters

position j + 1 j + l + 1

Figure 10: Case b: New 21 Pattern Induced

Thus, |A1([a1, . . . , ak], p)| =

|A1([a2, . . . , ak], p + a1)| +
a1∑

l=1

p∑

j=0

(
(p− j) + (a1 − l)

a1 − l

)
· |A2([a2, . . . , ak], j + l + 1)| .

Finally, consider all 2-critical words, that is, words that contain a 21 pattern, but not a 213.
Say that the leftmost 21 ends in position p. Then no new (larger) letters may be inserted
after position p without creating a forbidden 213 pattern. Again, either (a) the letter that
plays the role of 1 in the current leftmost 21 pattern stays the same, as in Figure 11, or (b)
the newly inserted letters create an earlier 21 pattern, as in Figure 12.

p− 1 old letters a1 new letters 1

position p + a1

Figure 11: Case a: 2-critical Word With Same Leftmost 21 Pattern

j 2 l − 1 1 ((p− 1)− (j + 1)) old 1
old new old letters

letters (new letter) letters (old letter) +(a1 − l)
new letters

position j + 1 j + l + 1

Figure 12: Case a: 2-critical Word With New Leftmost 21 Pattern



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (2008), #A40 14

Thus, |A2([a1, . . . , ak], p)| =

|A2([a2, . . . , ak], p + a1)|+
a1∑

l=1

p−2∑

j=0

(
(p− 1)− (j + 1) + (a1 − l)

a1 − l

)
·|A2([a2, . . . , ak], j + l + 1)| .

We can represent this in the more compact graphical notation, as in Figure 13.

Figure 13: Av(213)

Although this does not readily yield a nice closed formula as in the previous examples, we
have now deduced a system of recurrences that completely enumerates all words avoiding
213. This is an alternative way to enumerate these words from Burstein [3].

10. Avoiding the Pattern 123

To complete our classification of words avoiding patterns of length 3, we examine words
avoiding the permutation 123. The analysis of Av(123) turns out to be very similar to the
analysis of Av(213).

Let:
A∅([a1, . . . , ak]) = {all words}

A1([a1, . . . , ak], p) = { all 1-critical words with p letters after the left-most 1 pattern}

A2([a1, . . . , ak], p) = { all 2-critical words with leftmost 12 pattern ending in position p}

Trivially, by inserting a1 identical letters into the empty word, we have |A∅([a1, . . . , ak])| =
|A1([a2, . . . , ak], a1 − 1)|.

Now consider an arbitrary 1-critical word. Since this word contains a 1 pattern, but not a
12 pattern, all letters must be in decreasing order, as in Figure 14. Notice that we keep the
leftmost 1 pattern separate for further analysis.
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When we insert a1 new letters into this word, either (a) we do not create a new 12 pattern
(i.e., all new letters are appended to the beginning of the word), as in Figure 15, or (b) we
do create a new 12 pattern, and keep track of where the leftmost such pattern ends, as in
Figure 16.

1 p old letters

position 1

Figure 14: Generic Member of A1([a1, . . . , ak], p)

1 (a1 − 1) new letters old 1 p old letters
(new letter)

position 1 a1 + 1

Figure 15: Case a: No New 12 Pattern

l − 1 1 j 2 p− j old letters
new letters (old letter) old letters new letter +a1 − l new letters

position l j + l + 1

Figure 16: Case b: New 12 Pattern Induced

Thus, |A1([a1, . . . , ak], p)| =

|A1([a2, . . . , ak], p + a1)| +
a1∑

l=1

p∑

j=0

(
(p− j) + (a1 − l)

a1 − l

)
· |A2([a2, . . . , ak], j + l + 1)| .

Finally, consider all 2-critical words, that is, words that contain a 12 pattern, but not a 123.
A generic 2-critical word is shown in Figure 17.

Say that the leftmost 12 ends in position p. Then no letters may be inserted after position p
without creating a forbidden 123 pattern. Again, either (a) the letter that plays the role of 2
in the current leftmost 12 pattern stays the same, as in Figure 18, or (b) the newly inserted
letters create an earlier 12 pattern, as in Figure 19.

p− 1 old letters 2 remaining old letters
including “1” (from leftmost 12 pattern)

position p

Figure 17: Generic 2-critical Word
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a1 new letters p− 1 old letters 2
(old letter)

position p + a1

Figure 18: Case a: Same Leftmost 12 Pattern

l − 1 1 j 2 ((p− 1)− (j + 1)) old 2
new old old letters

letters (old letter) letters (new letter) +a1 − l
new letters

position l j + l + 1

Figure 19: Case b: Earlier Leftmost 12 Pattern Induced

Thus, |A2([a1, . . . , ak], p)| =

|A2([a2, . . . , ak], p + a1)|+
a1∑

l=1

p−2∑

j=0

(
(p− 1)− (j + 1) + (a1 − l)

a1 − l

)
·|A2([a2, . . . , ak], j + l + 1)| .

This can be represented using the more compact graphical notation as in Figure 20.

Figure 20: Av(123)

The fact that Av(123) and Av(132) are equinumerous, as noted by Burstein [3], can be
illustrated in a new way via these identical schemes.

Now that we have used our divide and conquer method of finding schemes for words avoiding
any pattern of length 3, we turn to the main theorem of this paper.
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11. Avoiding Monotone Patterns

The results of this paper, to this point, have previously been shown using other methods.
As the case by case analysis involved in finding schemes for pattern-avoiding words seems to
be quite tedious at times, one may wonder what the advantage of the present method is.

To date, there had been no infinite family of classes of pattern avoiding words (or permu-
tations) which have been shown to each have a finite enumeration scheme. This new kind
of scheme has the advantage that there provably exists a scheme for words avoiding any
monotone pattern.

For ease of notation, consider the monotone pattern p = 1b1 · · ·mbm. Let A∅([a1, . . . , ak]) be
the set of all words avoiding p with frequency vector [a1, . . . , ak]. As before, Ai([a, . . . , ak])
is the set of i-critical words with respect to p.

If a1 < b1, then we have |A∅([a1, . . . , ak])| =
(

a2+···+ak+1
a1

)
|A∅([a2, . . . , ak])|, and also |Ai([])| =

1 for any i. For Ai, we also keep track of the positions of the end of the leftmost 1b1 , 1b12b2 ,
1b12b23b3 , . . . , 1b12b2 · · · ibi patterns. Now, to find a recurrence equation for each Ai, one must
only complete a case by case counting exercise, as in the examples above. That is, consider
the cases:

• the insertion of new (larger) letters does not affect any of the existing 1b1 , 1b12b2 ,
1b12b23b3 , . . . , 1b12b2 · · · ibi patterns

• the new letters create a new leftmost 1b12b2 pattern, but do not affect any of the
1b12b23b3 , . . . , 1b12b2 · · · ibi patterns

• the new letters create a new leftmost 1b12b23b3 pattern, but do not affect any of the
1b12b23b34b4 ,. . . , 1b12b2 · · · ibi patterns

• . . .

• the new letters create new leftmost 1b12b2 , 1b12b23b3 , . . . , 1b12b2 · · · ibi patterns

Although the counting and notation may get quite hairy, there are no added subtleties: to
count words avoiding a monotone pattern, one must only take sums of combinations of old
sets as shown above.

Theorem The set of words avoiding the monotone pattern 1b1 · · ·mbm has a scheme consist-
ing of at most m + 1 triples [Ai, Ci, Ri].

Proof. For each Ai above, Ai can clearly be written as a combination of Ai’s (adding new
letters does not create an (i + 1)-critical pattern) and Ai+1’s (adding new letters creates at
worst an (i + 1)-critical pattern). Since Ai = 0 for i ≥ m, the scheme ends with the set
Am−1, which has children Am−1 and Am, plus the triple [Am, ∅, 0]. This gives a scheme of
m + 1 triples.
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It should be noted that this is the first method that guarantees a way to count a non-trivial
family of classes of pattern-avoiding words of arbitrary length. It should also be noted that
the case of enumerating pattern avoiding permutations avoiding a monotone pattern is a
special case of this theorem, given by setting a1 = · · · ak = b1 · · · bm = 1.

12. Future Work

The new version of enumeration schemes described in this paper gives a way to count words
avoiding any pattern of length up to 3. Further, the simple structure of monotone patterns
makes it easy to track occurrences of subpatterns. Thus, words avoiding any monotone
pattern are guaranteed to be counted by this method.

Together with the method of prefix schemes for words given in [6], one can find recurrences
counting many classes of pattern-avoiding words. However, the following questions still
remain:

• Barton [1] defined clumpy patterns as patterns on the alphabet {1, . . . , k} where all
copies of the letter i appear consecutively for 1 ≤ i ≤ k. This is an intermediate
step between permutations and words. Can the method of enumeration schemes be
modified to count words avoiding these clumpy patterns?

• More generally, can the method of enumeration schemes for monotone patterns be
modified to count words avoiding any pattern?

• What are other methods to count many classes of pattern-avoiding words?
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