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Abstract

A theorem of Gauss extending Wilson’s theorem states the congruence (n − 1)n! ≡ −1
(mod n) whenever n has a primitive root, and ≡ 1 (mod n) otherwise, where Nn! denotes
the product of all integers up to N that are relatively prime to n. In the spirit of this theorem
we give a complete characterization of the multiplicative orders of

(
n−1

2

)
n
! (mod n) for odd

n. In most cases we are also able to evaluate this expression explicitly (mod n), and some
partial results extend to the more general case

(
n−1
M

)
n
! for integers M ≥ 2.

1. Introduction

One of the best-known and most important results in elementary number theory is Wilson’s
theorem and its converse by Lagrange, stating that p is a prime if and only if

(p− 1)! ≡ −1 (mod p). (1)

A proof of this result can be found in most introductory books on number theory, and it
depends on the fact that any integer a with 1 < a < p− 1 has its inverse a−1 $≡ a (mod p).

Somewhat less well-known is Gauss’ generalization of Wilson’s theorem. In order to state
it concisely, we introduce the following notation: For positive integers N and n let Nn! denote
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the product of all integers up to N that are relatively prime to n, i.e.,

Nn! =
∏

1≤j≤N
gcd(j,n)=1

j. (2)

This notation is a slight variation of the one used in [8], a useful reference on factorial
and binomial congruences. To be able to refer more easily to Nn!, we shall call it a Gauss
factorial , a terminology suggested by the theorem of Gauss, which can be stated as follows.

Theorem 1 (Gauss). For any integer n ≥ 2 we have

(n− 1)n! ≡
{
−1 (mod n) for n = 2, 4, pα, or 2pα,

1 (mod n) otherwise,
(3)

where p is an odd prime and α is a positive integer.

The first case of (3) indicates exactly those n that have primitive roots. For references,
see [5, p. 65].

If we write out the factorial (p− 1)! and exploit symmetry modulo p, we obtain

1 · 2 · . . . · p−1
2

p+1
2 · . . . · (p− 1) ≡

(
p−1
2

)
!(−1)

p−1
2

(
p−1
2

)
! (mod p), (4)

and thus, with (1),
(

p−1
2

)
!2 ≡ (−1)

p+1
2 (mod p). (5)

This was apparently first observed by Lagrange (see [5, p. 275]). Since for p ≡ 1 (mod 4)
the right-hand side of (5) is −1, we have immediately

ordp

((
p−1
2

)
!
)

= 4 for p ≡ 1 (mod 4), (6)

where ordp(a) denotes the multiplicative order of a modulo p. In the case p ≡ 3 (mod 4)
the congruence (5) gives (

p−1
2

)
! ≡ ±1 (mod p), (7)

and it turns out that determining the sign on the right-hand side is rather non-trivial. In
fact, it was proved by Mordell [14] that for an odd prime p ≡ 3 (mod 4) and p > 3,

(
p−1
2

)
! ≡ −1 (mod p) ⇔ h(−p) ≡ 1 (mod 4), (8)

where h(−p) is the class number of Q(
√
−p). See also Remark 4 in Section 7 below.

In summary, the multiplicative order (mod p) of
(

p−1
2

)
! is completely determined as

follows.
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Corollary 1. For any odd prime p we have

ordp

((
p−1
2

)
!
)

=






4 if p ≡ 1 (mod 4),

2 if p ≡ 3 (mod 4), p > 3, and h(−p) ≡ 1 (mod 4),

1 otherwise.

(9)

For explicit values of
(

p−1
2

)
!, see Section 7.5 below. It is the purpose of this paper to

extend (9) to arbitrary (composite but odd) moduli, in the spirit of Gauss’ Theorem 1, which
we shall also refer to as the Gauss-Wilson theorem.

It appears from Table 1 that just as in the prime case (9) the order of the Gauss factorial
is at most 4, and is just 1 or 2 in most cases. This is indeed the case, as indicated by our
main result.

n factored a(n) a(n)2 n factored a(n) a(n)2

9 32 −1 1 111 3 · 37 −38 1
15 3 · 5 −4 1 115 5 · 23 −24 1
21 3 · 7 8 1 117 32 · 13 −53 1
25 52 7 −1 119 7 · 17 −50 1
27 33 1 1 121 112 1 1
33 3 · 11 10 1 123 3 · 41 −40 1
35 5 · 7 6 1 125 53 57 −1
39 3 · 13 −14 1 129 3 · 43 44 1
45 32 · 5 −19 1 133 7 · 19 −20 1
49 72 1 1 135 33 · 5 26 1
51 3 · 17 −16 1 141 3 · 47 46 1
55 5 · 11 −21 1 143 11 · 13 −12 1
57 3 · 19 20 1 145 5 · 29 1 1
63 32 · 7 8 1 147 3 · 72 50 1
65 5 · 13 −1 1 153 32 · 17 35 1
69 3 · 23 22 1 155 5 · 31 −61 1
75 3 · 52 26 1 159 3 · 53 −52 1
77 7 · 11 34 1 161 7 · 23 −22 1
81 34 −1 1 165 3 · 5 · 11 1 1
85 5 · 17 −1 1 169 132 70 −1
91 7 · 13 27 1 171 32 · 19 −37 1
93 3 · 31 32 1 175 52 · 7 76 1
95 5 · 19 39 1 177 3 · 59 58 1
99 32 · 11 10 1 183 3 · 61 −62 1

105 3 · 5 · 7 1 1 187 11 · 17 −67 1

Table 1: a(n) ≡
(

n−1
2

)
n
! (mod n) for the first 50 odd composite n.
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Theorem 2. Let n ≥ 3 be an odd integer, p and q distinct odd primes, and α, β positive
integers. Then

(1) ordn

(
(n−1

2 )n!
)

= 4 when n = pα and p ≡ 1 (mod 4);

(2) ordn

(
(n−1

2 )n!
)

= 2 when

(a) n = p2α−1, p ≡ 3 (mod 4), p > 3, and h(−p) ≡ 1 (mod 4), or

(b) n = p2α, p = 3, or p ≡ 3 (mod 4) and h(−p) $≡ 1 (mod 4), or

(c) n = pαqβ, p ≡ q ≡ 1 (mod 4), and p is a quadratic nonresidue (mod q), or

(d) n = pαqβ and p or q ≡ 3 (mod 4);

(3) ordn

(
(n−1

2 )n!
)

= 1 in all other cases.

We actually show more in this paper: In all cases the value of
(

n−1
2

)
n
! (mod n) is either

given explicitly or is easily computable, and in several cases there are partial results con-
cerning

(
n−1
M

)
n
! for integers M ≥ 2 and certain classes of integers n ≡ 1 (mod M). These

results can be found in Sections 3–5.

For the proof of Theorem 2 we will have to distinguish between the cases where the
modulus n has one, two, or at least three distinct prime divisors. These cases will be dealt
with in Sections 2, 4, and 5, respectively, while the most central arguments will be given in
Section 3. In Section 6 we deal, without proofs, with

⌊
n−1

2

⌋
n
! for even n, and we conclude

this paper with some additional remarks in Section 7.

2. One Prime Divisor

We begin with a general discussion of the Gauss factorial
(

n−1
2

)
n
! for odd integers n ≥ 3.

Since (n− 1)n! has ϕ(n) factors, we obtain by the same symmetry argument as in (4),

(
n−1

2

)
n
!2 ≡ (−1)

1
2ϕ(n)+ε (mod n), (10)

where, by (3), ε = 1 when n = pα, and ε = 0 otherwise. Now ϕ(pα) = (p − 1)pα−1, and
therefore

1
2ϕ(pα) + 1 ≡ p−1

2 + 1 = p+1
2 (mod 2).

On the other hand, ϕ(n) is divisible by 4 if n has at least two distinct odd prime factors.
Hence with (10) we get

(
n−1

2

)
n
!2 ≡

{
−1 (mod n) if n = pα, p ≡ 1 (mod 4),

1 (mod n) otherwise.
(11)
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This immediately gives the partial result

ordn

((
n−1

2

)
n
!
)

= 4 for n = pα, p ≡ 1 (mod 4), (12)

which extends (6).

In order to deal with the case p ≡ 3 (mod 4), we first prove an easy lemma, which will
also be used later.

Lemma 1. Let p be an odd prime and α ≥ 1 an integer. If the integer A is such that
A2 ≡ 1 (mod pα), then A ≡ ±1 (mod p) if and only if A ≡ ±1 (mod pα), with the signs
corresponding to each other.

Proof. One direction is obvious. For the other direction, write A = kp ± 1. Then A2 =
k2p2 ± 2kp + 1, and thus we require pα | k2p2 ± 2kp, i.e., pα−1 | k(kp ± 2). Since p is odd,
this means that pα−1 | k, and therefore A = %pα−1p ± 1 for some integer %. This completes
the proof.

By (11), this lemma means that it suffices to determine
(

n−1
2

)
n
! (mod p) when n =

pα, p ≡ 3 (mod 4). To do this, we first observe that

pα − 1

2
=

pα−1 − 1

2
p +

p− 1

2
,

in other words, pα−1
2 leaves remainder p−1

2 when divided by p. If we denote r = (pα−1−1)/2,
then we can write

(
pα−1

2

)
pα! =

(
1 · 2 · . . . · (p− 1)

)(
(p + 1) · . . . · (2p− 1)

)
· . . .

·
(
(rp− p + 1) · . . . · (rp− 1)

)
·
(
(rp + 1) · . . . · (rp + p−1

2 )
)

≡ (p− 1)!r
(

p−1
2

)
! (mod p).

Since p ≡ −1 (mod 4), r is even if and only if α − 1 is even, and by Wilson’s theorem (1)
we therefore have (

pα−1
2

)
pα! ≡ (−1)α−1

(
p−1
2

)
! (mod p). (13)

With (8) and Lemma 1 we have therefore obtained the following partial result.

Proposition 1. For p ≡ 3 (mod 4),

(
pα−1

2

)
pα! ≡

{
(−1)α (mod pα) if p > 3 and h(−p) ≡ 1 (mod 4),

(−1)α−1 (mod pα) otherwise.
(14)

As an illustration of this, see the powers of 3, 7 and 11 in Table 1.
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3. An Auxiliary Result

While the case of one prime divisor holds in the above form only for
(

n−1
2

)
n
!, in the remaining

cases we can obtain more general partial results for
(

n−1
M

)
n
!, M ≥ 2, with only moderate

additional effort. The following result will be instrumental for the next two sections.

Proposition 2. Let M ≥ 2 and n = pα1
1 . . . pαt

t with t ≥ 2 and αj ≥ 1 for j = 1, 2, . . . , t.
Suppose that n ≡ pt ≡ 1 (mod M) and pj ≡ 1 (mod M) for at least one other index
j, 1 ≤ j ≤ t− 1. Then

(
n−1
M

)
n
! ≡ ε(pt−1)/M

pA
t

(mod pα1
1 . . . pαt−1

t−1 ), (15)

where ε = −1 when t = 2, ε = 1 when t ≥ 3, and

A =
1

M
pαt−1

t ϕ(pα1
1 . . . pαt−1

t−1 ).

Proof. To simplify notation, we set

ñ = pα1
1 . . . pαt−1

t−1 , s =
pαt

t − 1

M
. (16)

The idea now is to apply the Gauss-Wilson theorem for ñ to the left-hand side of (15). For
this purpose we divide n−1

M by ñ with remainder:

n− 1

M
= sñ +

ñ− 1

M
, (17)

which is obvious from (16). Note that by hypothesis we know that s and (ñ − 1)/M are
both integers. Based on (17) we split the Gauss factorial in (15) into s products of similar
lengths and into one shorter product, i.e., we write

(
n−1
M

)
n
! =

(
s∏

j=1

Pj

)
Q, (18)

where

Pj =
ñ−1∏

k=1
gcd(k,n)=1

(
(j − 1)ñ + k

)
, Q =

ñ−1
M∏

k=1
gcd(k,n)=1

(
sñ + k

)
. (19)

Now, if in each product Pj the indices k were relatively prime to just ñ, then by the Gauss-
Wilson theorem (3) they would all be congruent to −1 (mod ñ) if t = 2, or 1 (mod ñ) if
t ≥ 3. To deal with this, we multiply all relevant multiples of pt back into P1, . . . , Ps, and
Q. More exactly, on the right-hand side of (18) we multiply numerator and denominator by

∏
{(jpt) | 1 ≤ j ≤ s′, gcd(j, ñ) = 1}, (20)



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (2008), #A39 7

i.e., by the product of the elements in the set, where

s′ =
1

M

(
pα1

1 · . . . · pαt−1
t−1 pαt−1

t − 1
)
,

which comes from the obvious division

n− 1

M
= s′pt +

pt − 1

M
, (21)

where s′ and (pt − 1)/M are integers, by hypothesis. To count the number of elements in
the set in (20), we do yet another obvious division with remainder, namely

s′ =
1

M

(
pαt−1

t − 1
)
ñ +

ñ− 1

M
. (22)

The contributions to (20) from each of the intervals of length ñ are no problem; they are
just ϕ(ñ). However, in order to deal with the remainder term in (22) we need the following
lemma.

Lemma 2. Let M ≥ 2 and n = pα1
1 . . . pαt

t with n ≡ pt ≡ 1 (mod M). Then

#{j | 1 ≤ j ≤ n−1
M , gcd(j, n) = 1} =

1

M
ϕ(n). (23)

Proof. Lehmer [12, Theorem 4] showed that when n has a prime divisor p ≡ 1 (mod M),
the totatives of n are uniformly distributed, i.e., the intervals

(k − 1)
n

M
< j < k

n

M
, k = 1, 2, . . . ,M,

have equal numbers of integers j relatively prime to n, and the endpoints cannot themselves
be totatives. Hence the number of totatives in the interval 0 < j < n/M , and thus also for
1 ≤ j ≤ (n− 1)/M , is ϕ(n)/M . This completes the proof.

Returning to the proof of (15), we use (22) and (23) with ñ in place of n, and see that
the cardinality of the set in (20) is

1

M

(
pαt−1

t − 1
)
ϕ(ñ) +

1

M
ϕ(ñ) =

1

M
pαt−1

t ϕ(ñ). (24)

If we denote this number by A, we get from (18),

(
n−1
M

)
n
! ≡ P1 · . . . · Ps · Q

pA
t

∏
{j | 1 ≤ j ≤ s′, gcd(j, ñ) = 1} (mod ñ). (25)

Here the bars over the Pj and Q indicate that the products (19) are taken over all k relatively
prime to ñ (instead of n). But then the Gauss-Wilson theorem gives

P1 ≡ . . . ≡ Ps ≡
{
−1 (mod ñ) if t = 2,

1 (mod ñ) if t ≥ 3.
(26)
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From the second part of (19) we get

Q ≡
ñ−1
M∏

k=1
gcd(k,ñ)=1

k. (27)

The product in the denominator of (25) can be split up into (pαt−1
t − 1)/M products that

are congruent to the Pj and a remainder that is congruent to Q (mod ñ); this follows from
(22). Hence (26) and (27) together with (25) give

(
n−1
M

)
n
! ≡ εB

pA
t

(mod ñ), (28)

with A defined by (24) and

B = s− pαt−1
t − 1

M
= pαt−1

t

pt − 1

M
.

Since pt is odd, this completes the proof of the proposition.

4. Two Prime Divisors

When n = pαqβ with p and q odd primes and α,β ≥ 1, then by (11) we have

(
n−1

2

)
n
!2 ≡ 1 (mod n).

This may or may not mean that
(

n−1
2

)
n
! ≡ ±1 (mod n). The following result provides a

classification of the situation. Here
(

p
q

)
is the Legendre symbol, as usual.

Proposition 3. Let n be as above. Then

(
n−1

2

)
n
! ≡

(
p

q

)
(mod n) if p ≡ q ≡ 1 (mod 4), (29)

while (
n−1

2

)
n
! $≡ ±1 (mod n) if p or q ≡ 3 (mod 4). (30)

For the proof of this result we require the following lemma which is a direct consequence
of Proposition 2.

Lemma 3. With n as above, we have

(
n−1

2

)
n
! ≡ (−1)

q−1
2

q
p−1
2

(mod pα). (31)
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Proof. We use Proposition 2 with M = 2, t = 2, p1 = p, p2 = q,α1 = α, and α2 = β. Then
the hypotheses are satisfied, and also

A =
1

2
qβ−1ϕ(pα) =

p− 1

2
pα−1qβ−1,

and since q
p−1
2 ≡ ±1 (mod p), while the powers of p and q are odd, we obtain from (15),

(
n−1

2

)
n
! ≡ (−1)

q−1
2

q
p−1
2

(mod p).

Lemma 1 now immediately gives (31).

Proof of Proposition 3. By symmetry, (31) is equivalent to

(
n−1

2

)
n
! ≡ (−1)

p−1
2

p
q−1
2

(mod qβ). (32)

If p ≡ q ≡ 1 (mod 4), then the numerators in (31) and (32) are both 1, while by Euler’s
criterion we have

q
p−1
2 ≡

(
q
p

)
(mod p), p

q−1
2 ≡

(
p
q

)
(mod q),

and by quadratic reciprocity the two Legendre symbols are the same. Hence
(

n−1
2

)
n
! ≡

(
p
q

)

(mod p) and (mod q), and by Lemma 1 this can be lifted to the moduli pα and qβ. The
congruence (29) now follows from the Chinese Remainder Theorem.

On the other hand, if at least one of p and q is ≡ 3 (mod 4) then either the numerators
of (31) and (32) are the same and the denominators differ, by quadratic reciprocity (if
p ≡ q ≡ 3 (mod 4)), or the numerators differ and the denominators are the same (if p and
q are in different residue classes (mod 4)). Hence, again after using Lemma 1, we see that
modulo n = pαqβ the Gauss factorial

(
n−1

2

)
n
! can be neither 1 nor −1. This completes the

proof of the proposition.

Numerous examples for Proposition 3 can be found in Table 1.

5. Three or More Prime Divisors

We continue with the case where n has at least three distinct prime divisors. With a little
additional effort we can obtain the following more general result.

Proposition 4. Let M ≥ 2 and n = pα1
1 . . . pαt

t , t ≥ 3, with arbitrary positive exponents αj.
If n ≡ 1 (mod M) and pj ≡ 1 (mod M) for at least three indices from among 1, 2, . . . , t,
then (

n−1
M

)
n
! ≡ 1 (mod n). (33)
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Proof. Without loss of generality we may assume that pt−1 ≡ pt ≡ 1 (mod M), and we claim
that (

n−1
M

)
n
! ≡ 1 (mod pα1

1 . . . pαt−1
t−1 ). (34)

Then by symmetry we have

(
n−1
M

)
n
! ≡ 1 (mod pα1

1 . . . pαt−2
t−2 pαt

t ),

and the Chinese Remainder Theorem applied to these two congruences immediately gives
(33).

In order to prove (34) we use Proposition 2 again and note that the numerator of (15) is
1 since t ≥ 3. To evaluate the denominator, we need the following lemma.

Lemma 4. Let m ≥ 2 and n = pα1
1 . . . pαt

t , t ≥ 2. If at least two of the primes p1, . . . , pt

satisfy pj ≡ 1 (mod M), then for any integer a coprime to n we have

aϕ(n)/M ≡ 1 (mod n). (35)

Proof. By reordering, if necessary, we may assume that p1 ≡ p2 ≡ 1 (mod M). Now for
j = 1, 2 we have

ϕ(n)

M
=

pj − 1

M
p

αj−1
j ϕ(n/p

αj

j ),

where kj = pj−1
M p

αj−1
j is an integer. Hence Euler’s generalization of Fermat’s Little Theorem

gives

aϕ(n)/M =
(
aϕ(n/p

αj
j )

)kj

≡ 1 (mod n/p
αj

j ),

and with the Chinese Remainder Theorem we get (35).

Using this lemma with ñ for n and pt for a, we immediately obtain pA
t ≡ 1 (mod ñ),

which with (35) and (15) proves (34); this completes the proof of the proposition.

Proposition 4 is best possible in the sense that (33) usually does not hold when only
two of the primes p1, . . . , pt satisfy pj ≡ 1 (mod M). This is illustrated by the following
(smallest possible) example:

Let M = 3 and n = 22 · 7 · 13 = 364. Then obviously 364 ≡ 7 ≡ 13 ≡ 1 (mod 3), and it
is easy to compute (

n−1
3

)
n
! = 121364! ≡ 113 (mod 364).

Also, the multiplicative order of 113 (mod 364) is 3. This example points to more general
results which, however, would go beyond the scope of this paper.

As an immediate consequence of Proposition 4 we obtain the following result, which
concludes the proof of Theorem 2.
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Corollary 2. For all odd n with at least three distinct prime divisors we have
(

n−1
2

)
n
! ≡ 1 (mod n). (36)

Table 1 may serve as an illustration of this.

6. Even Moduli n

Obviously (n−1
2 )n! makes sense only for odd n. However, it turns out that we do get mean-

ingful results if we use the greatest integer not exceeding (n− 1)/2, i.e., if we consider
⌊

n−1
2

⌋
n
! (mod n).

The same methods as in the previous sections can be used to deal with this case, and the
results are very similar. We therefore skip the proofs.

n factored b(n) b(n)2 n factored b(n) b(n)2

202 2 · 101 −91 −1 252 22 · 32 · 7 1 1
204 22 · 3 · 17 1 1 254 2 · 127 1 1
206 2 · 103 1 1 256 28 −127 1
208 24 · 13 1 1 258 2 · 3 · 43 −85 1
210 2 · 3 · 5 · 7 1 1 260 22 · 5 · 13 1 1
212 22 · 53 105 1 262 2 · 131 −1 1
214 2 · 107 1 1 264 23 · 3 · 11 1 1
216 23 · 33 1 1 266 2 · 7 · 19 113 1
218 2 · 109 −33 −1 268 22 · 67 133 1
220 22 · 5 · 11 1 1 270 2 · 33 · 5 −109 1
222 2 · 3 · 37 73 1 272 24 · 17 1 1
224 25 · 7 1 1 274 2 · 137 37 −1
226 2 · 113 15 −1 276 22 · 3 · 23 1 1
228 22 · 3 · 19 1 1 278 2 · 139 1 1
230 2 · 5 · 23 91 1 280 23 · 5 · 7 1 1
232 23 · 29 1 1 282 2 · 3 · 47 −95 1
234 2 · 32 · 13 −53 1 284 22 · 71 141 1
236 22 · 59 117 1 286 2 · 11 · 13 131 1
238 2 · 7 · 17 69 1 288 25 · 32 1 1
240 24 · 3 · 5 1 1 290 2 · 5 · 29 1 1
242 2 · 112 1 1 292 22 · 73 145 1
244 22 · 61 121 1 294 2 · 3 · 72 −97 1
246 2 · 3 · 41 83 1 296 23 · 37 1 1
248 23 · 31 1 1 298 2 · 149 105 −1
250 2 · 53 −57 −1 300 22 · 3 · 52 1 1

Table 2: b(n) ≡
⌊

n−1
2

⌋
n
! (mod n) for even n, 202 ≤ n ≤ 300.
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We begin by stating the explicit values for
⌊

n−1
2

⌋
n
! or its square (modulo n) in various

cases, before summarizing the orders in a way similar to Theorem 2. To illustrate the results
below we list 50 consecutive even cases of n in Table 2.

Case 1. n = 2r, r ≥ 3. Then

⌊
n−1

2

⌋
n
! ≡ 1− n

2 (mod n).

Case 2. n = 2rpα, p an odd prime, and r,α ≥ 1. Then

⌊
n−1

2

⌋
n
! ≡

{
n
2 − 1 (mod n) for r = 2,

1 (mod n) for r ≥ 3.

Furthermore, when r = 1 and p ≡ 1 (mod 4), we have

⌊
n−1

2

⌋
n
!2 ≡ −1 (mod n),

and when r = 1 and p ≡ 3 (mod 4),

⌊
n−1

2

⌋
n
! ≡ (−1)α

(
2
p

)
(−1)

h(−p)+1
2 (mod n),

where (2
p) is the Legendre symbol and, as before, h(−p) is the class number of Q(

√
−p).

Compare the right-hand side of the last congruence with (37) below. Also, recall the well-

known evaluation (2
p) = (−1)

p2−1
8 .

Case 3. n = 2rpαqβ, p $= q odd primes, and r,α,β ≥ 1. Then for p ≡ q ≡ 1 (mod 4),

⌊
n−1

2

⌋
n
! ≡

{
−1 (mod n) if r = 1 and (p

q ) = −1,

1 (mod n) otherwise,

and if p ≡ 3 (mod 4) or q ≡ 3 (mod 4) then for r = 1,

⌊
n−1

2

⌋
n
!2 ≡ 1 (mod n) but

⌊
n−1

2

⌋
n
! $≡ ±1 (mod n),

while for r ≥ 2, ⌊
n−1

2

⌋
n
! ≡ 1 (mod n).

Case 4. n has at least three distinct odd prime factors. Then

⌊
n−1

2

⌋
n
! ≡ 1 (mod n).

We now summarize the above cases by giving the multiplicative orders modulo n; compare
this with Theorem 2.
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Theorem 3. Let n ≥ 4 be an even integer, p and q distinct odd primes, and let r, α, and β
be positive integers. Then

(1) ordn

(⌊
n−1

2

⌋
n
!
)

= 4 when n = 2pα and p ≡ 1 (mod 4);

(2) ordn

(⌊
n−1

2

⌋
n
!
)

= 2 when

(a) n = 2r, r ≥ 3, or

(b) n = 4pα, or

(c) n = 2pα, p ≡ 3 (mod 4), p > 3, and p2−1
8 + h(−p)+1

2 $≡ α (mod 2), or

(d) n = 2 · 3α, α ≡ 0 (mod 2), or

(e) n = 2pαqβ, p ≡ q ≡ 1 (mod 4), and (p
q ) = −1, or

(f) n = 2pαqβ and p or q ≡ 3 (mod 4);

(3) ordn

(⌊
n−1

2

⌋
n
!
)

= 1 in all other cases.

We illustrate this result by considering all the cases of n = 2pα listed in Table 2. For
n = 202, 218, 226, 250, 274, and 298 we have p ≡ 1 (mod 4), and thus by (1) the order is 4.

In the case p ≡ 3 (mod 4), part (2)(c) of Theorem 3 has to be invoked; we list the n in
question in Table 3 below.

n p2−1
8 (mod 2) h(−p)+1

2 α ordn

(⌊
n−1

2

⌋
n
!
)

2 · 103 0 3 1 1
2 · 107 1 2 1 1
2 · 112 1 1 2 1
2 · 127 0 3 1 1
2 · 131 1 3 1 2
2 · 139 1 2 1 1

Table 3: n = 2pα, p ≡ 3 (mod 4), 202 ≤ n ≤ 300.

The values of the class number h(−p) can be found, e.g., in [2, p. 425], or can be computed
with the number theoretic computer algebra system PARI/GP [15]. We see in Table 3 that
the relation in (2)(c) holds only for n = 2 · 131, which is consistent with the order being 2 in
this case, while it is 1 in the remaining five cases.
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7. Further Remarks

1. In spite of the fact that the Gauss-Wilson theorem was stated in the famous Disqusitiones
Arithmeticae [7, §78] and in the equally influential books [6, §38] and [9, p. 102], surprisingly
little can be found on this topic in the literature. The few published references to this result
include [10] and [17], where Theorem 1 was further extended, and [11] and [1], where (3)
was used to extend the classical Wilson quotient to composite moduli. The theorem was
rediscovered at least once; see [16].

2. While some partial results are known for the values or the orders (modulo n) of
(

n−1
M

)
n
!

for arbitrary integers M ≥ 2, the case M = 2, treated in this paper, is the only one that is
completely characterized. In fact, in no other case is the order bounded. Partial results on
the cases M = 3 and M = 4 will be the subject of forthcoming work by the authors.

3. It would not have been possible to find the results in this paper without the use of
computer algebra. In fact, extensive use was made of the computer algebra system Maple,
versions 7 – 9 (the current version at the time of writing is Maple 11; see [13]).

4. Mordell [14] remarks in his paper that the result (9) was independently discovered
by Chowla. A proof is also given in [18, Theorem 8]. Professor A. Schinzel kindly informed
us that this result can also be found in a book by Venkov, both in the English translation
[19, p. 9] of 1970 and already in the Russian original published in 1937. This is the earliest
mention we could find of this result, and Venkov may have been the first to prove it; no
reference is given.

A different criterion for the sign in (8) is due to Kronecker and can be found in Venkov’s
book [19, p. 227]. For a brief account of the earlier history of this problem, see [5, p. 275–276].

5. The relation (9) can be written more concisely as

(
p−1
2

)
! ≡ (−1)

h(−p)+1
2 (mod p), (37)

where p ≡ 3 (mod 4), p > 3, is a prime. This result of Venkov and Mordell was extended
by Chowla [4] (see also [18, Theorem 9]) to primes p ≡ 1 (mod 4) as follows. Let εp =
(up + vp

√
p)/2 > 1 be the fundamental unit and h(p) the class number of the real quadratic

field Q(
√

p). Then
(

p−1
2

)
! ≡ 1

2(−1)
h(p)+1

2 up (mod p). (38)

Since εp is a unit, we have u2
p +pv2

p = ±4, and it follows from (38) that
(

p−1
2

)
!4 ≡ 1 (mod p),

which is consistent with (7). On the other hand, (7) shows that we have u2
p + pv2

p = −4, i.e.,
the norm of εp is −1; this was also observed in [3].

6. Recently Chapman and Pan [3] found q-analogues of the congruences (37) and (38),
as well as of Wilson’s congruence (1).
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