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Abstract

Let p(n) denote the overpartition function. In a recent paper, K. Mahlburg showed that
p(n) ≡ 0 (mod 64) for a set of integers of arithmetic density 1. In this paper, we will prove
that p(n) ≡ 0 (mod 128) for almost all integers n.

1. Introduction

An overpartition of n is a non-increasing sequence of natural numbers whose sum is n in which
the first occurrence of a number may be overlined. Let p(n) be the number of overpartitions
of an integer n. For convenience, define p(0) = 1. For example, p(3) = 8 because there are
8 overpartitions of 3: 3, 3, 2 + 1, 2 + 1, 2 + 1, 2 + 1, 1 + 1 + 1, 1 + 1 + 1.

We observe that the overlined parts form a partition into distinct parts and that the un-
overlined parts form an ordinary partition. Thus, the generating function for overpartitions
is

P (q) =
∑

n≥0

p(n)qn =
(−q; q)∞
(q; q)∞

.

Here we use the following standard q-series notation:

(a; q)0 := 1,

(a; q)n := (1− a)(1− aq) · · · (1− aqn−1), n ≥ 1,

and

(a; q)∞ := lim
n→∞

(a; q)n, |q| < 1.

The overpartition function can be used to interpret identities arising from basic hypergeo-
metric series. For more information and references, see the works of S. Corteel, J. Lovejoy
and A.J. Yee [4], [5], [17].
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S. Treneer [16] showed that the coefficients of a wide class of weakly holomorphic modular
forms have infinitely many congruence relations for powers of every prime p except 2 and
3. For example, Treneer showed that p(5l3n) ≡ 0 (mod 5) for all n which are coprime to l,
where l is a prime such that l ≡ −1 (mod 5). However, much less is known modulo 2 and
3. For powers of 2, two different approaches have been used. One method is to find the
generating function for an arithmetic progression by using q-series identities. For example,
the identity

∑
n≥0 p(8n + 7)qn = 64 (q2,q2)22∞

(q,q)23∞
implies that p(8n + 7) ≡ 0 (mod 64). For more

information, see J.-F. Fortin, P. Jacob and P. Mathieu [6] and M.D. Hirschhorn and J. Sellers
[10]. Another way is to use relations between p(n) and the number of representations of n
as a sum of squares. In this direction, K. Mahlburg [14] showed that p(n) ≡ 0 (mod 64) for
a set of integers of arithmetic density 1. This approach uses the fact that the generating
function for the overpartition function can be represented by one of Ramanujan’s classical
theta functions. Here we will follow the method of Mahlburg [14] in order to prove the
following.

Theorem 1. p(n) ≡ 0 (mod 128) for a set of integers of arithmetic density 1.

Mahlburg conjectured that for all positive integers k, p(n) ≡ 0 (mod 2k) for almost all
integers n. The method here, like Mahlburg’s method, relies on an ad-hoc argument, and
therefore seems unlikely to generalize to arbitrary powers of 2. In general, 2-adic properties
of coefficients of modular form of half-integral weight are somewhat mysterious. For example,
it has long been conjectured that

|{n ≤ x : p(n) ≡ 0 (mod 2)}|
x

∼ 1

2
,

where p(n) is the number of ordinary partition of n. (See [1], for example, for references
regarding this problem). This stands in contrast to the behavior exhibited by p(n).

We will conclude by proving the explicit example: p(10672200n+624855) ≡ 0 (mod 128).

2. Proof of Theorem

Let θ(q) =
∞∑

n=−∞
qn2

, ψ(q) =
∞∑

n=0

q(n2+n)/2, and ϕ(q) =
∞∑

n=1

qn2
.

The coefficients rk(n) of θ(q)k =
∑

n≥0 rk(n)qn are the number of representations of n as
the sum of k squares, where different orders and signs are counted as different. Similarly, the
coefficients of ϕ(q)k =

∑
n≥0 ck(n)qn are the number of representations of n = n2

1 + · · · + n2
k

where each ni is a positive integer.

From Mahlburg’s paper [14], we have

P (q) = 1 +
∞∑

k=1

2k
∞∑

n=1

(−1)n+kck(n)qn. (1)
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Reducing this expression modulo 128 we obtain

P (q) ≡1 + 2
∞∑

n=1

(−1)n+1c1(n)qn + 4
∞∑

n=1

(−1)nc2(n)qn + 8
∞∑

n=1

(−1)n+1c3(n)qn

+ 16
∞∑

n=1

(−1)nc4(n)qn + 32
∞∑

n=1

(−1)n+1c5(n)qn + 64
∞∑

n=1

(−1)nc6(n)qn (mod 128).

We will show that in each of the six sums, the coefficient of qn is zero modulo 128 for a
set of arithmetic density 1.

The following lemma and its proof summarize results of Mahlburg [14].

Lemma 2. For almost all integers n, c1(n), c2(n), r1(n) and r2(n) are zero. If k is a fixed
positive integer, then c3(n), c4(n), r3(n) and r4(n) are almost always divisible by 2k.

Sketch of proof. First, note that by a simple combinatorial argument, we have

rk(n) = 2kck(n) +
k∑

i=1

(
k

i

)
(−1)i−1rk−i(n). (2)

In [14], Mahlburg showed that c1(n), c2(n), r1(n) and r2(n) are almost always zero.

For c3(n) and r3(n), note that c3(n) = r3(n)/8 for almost all integers n by (2). By the
famous result of Gauss [7], we have

r3(n) =






12H(−4n), if n ≡ 1, 2, 5, 6 (mod 8),

24H(−n), if n ≡ 3 (mod 8),

r3(n/4), if n ≡ 0, 4 (mod 8).

Here H(−n) is the Hurwitz class number of positive definite binary quadratic forms. If
2m‖H(−n), then m is at least or equal to the number of distinct odd primes dividing the
squarefree part of n. Thus if n has at least l distinct odd primes in its squarefree part, then
r3(n) is divisible by 2l. By (8) of [14], if σl(x) is the number of integers n ≤ x having at
most l distinct odd prime factors, then asymptotically

σl(x) ∼ x(log log x)(l−1)

(l − 1)! log x
. (3)

Since σl(x)/x tends to 0 as x tends to infinity, for a fixed positive integer k, r3(n) is divisible
by 2k for almost all n and so the same is true for c3(n), since c3(n) = r3(n)/8 for almost all
integers n.

For c4(n) and r4(n), define σ′(n) =
∑

d|n,4!d d. Then, by [3], r4(n) = 8σ′(n). Since r3(n)

is almost always divisible by 2k, by (2), c4(n) ≡ 1
2σ
′(n) (mod 2k) for almost all integers n.

By (11) of [14], we have

σ′(n) = C ·
a1∑

i=0

pi
1 · · ·

am∑

i=0

pi
m, (4)
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where n = 2a0pa1
1 · · · pam

m and C = 1 or 3 according to a0 = 0 or not. Let w(n) = the number
of distinct prime factors of n with odd exponents. Then, by (4), we have 2w(n)|σ′(n). Thus
if there are at least l distinct odd primes with odd exponent in the factorization of n, then
2l|σ′(n). Since the complement of this set is the set of integers whose squarefree parts have
at most l distinct odd prime factors, by (3), for a fixed positive integer k, 2k|σ′(n) for almost
all integers n. This completes the proof. !

By Lemma 2, it remains to show that c5(n) ≡ 0 (mod 4) and c6(n) ≡ 0 (mod 2) for
almost all integers n. Let us show that c5(n) ≡ 0 (mod 4) for almost all integers n.

First, note that
ϕ5(q) ≡ ϕ2(q2)ϕ(q) (mod 4). (5)

Let ϕ2(q2)ϕ(q) =
∑∞

n=1 R(n)qn. Then R(n) is the number of representations of n of the form
n = x2 + 2y2 + 2z2 where x, y and z are positive integers and different orders are counted as
different. It suffices to show that R(n) is divisible by 4 for almost all integers n.

Before going further, we need the following lemma.

Lemma 3. Let r1,2(n) be the number of representations of n = x2 + 2y2, where x and y are
integers. Then, we have r1,2(n) = 0 for almost all integers n.

Sketch of proof. By [3, Theorem 3.7.3], we have r1,2(n) = 2(d1,8(n)+d3,8(n)−d5,8(n)−d7,8(n)),
where dj,8(n), j = 1, 3, 5, 7, is the number of positive divisors d of n such that d ≡ j (mod 8).
Thus r1,2(n) > 0 if and only if n = 2aµν2, where µ is a product of primes congruent to 1
or 3 (mod 8) and ν is a product of primes congruent to 5 or 7 (mod 8). We denote primes
8n + 1, 8n + 3, 8n + 5 and 8n + 7 by q, r, u, and v, respectively.

Since the remainder of the proof is very similar to a proof by E. Landau [12] that r2(n)
is almost always 0, we will follow the idea of this proof as given in G.H. Hardy’s book
Ramanujan [8, Sect. 4.5 and Sect. 4.6] and give only a very brief sketch here.1 Define b(n)
as 1 when r1,2(n) > 0 and 0 otherwise. Then consider the functions:

f(s) =
∑ b(n)

ns
=

1

1− 2−s

∏

q

1

1− q−s

∏

r

1

1− r−s

∏

u

1

1− u−2s

∏

v

1

1− v−2s
,

ζ(s) =
1

1− 2−s

∏

q

1

1− q−s

∏

r

1

1− r−s

∏

u

1

1− u−s

∏

v

1

1− v−s
,

L(s,χ) =
∑ χ(n)

ns
=

∏

q

1

1− q−s

∏

r

1

1− r−s

∏

u

1

1 + u−s

∏

v

1

1 + v−s
,

where χ(n) is a Dirichlet character of conductor 8. Thus we have

f(s)2 = ξ(s)ζ(s)L(s,χ),

where ξ(s) = (1− 2−s)−1
∏

u(1− u−2s)−1
∏

v(1− v−2s)−1.

1As G. Hardy indicated, the idea of the proof is very similar to the proof of the prime number theorem.
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It is well known that neither ζ(s) nor L(s,χ) vanishes in a region D, stretching to the
left of σ = 1, of type

σ > 1− A

{log (|t| + 2)}A
,

where, as usual, s = σ + it [14]. Finally, note that ζ(s) and L(s,χ) are O((log |t|)A), as
|t| tends to infinity in D and that ξ(s) has no zeros for σ > 1

2 . It follows that f(s) =
(s− 1)1/2g(s), where g(s) is analytic in D and g(1) = (L(1,χ)ξ(1))1/2. If B(x) =

∑
n≤x b(n),

then B(x) is the number of representable numbers up to x, and we can approximate B(x)
by examining the integral

1

2πi

∫ c+i∞

c−i∞
f(s)

xs

s
ds

for c > 1. We can transform the path of integration into a path, stretching to the left of
σ = 1 in the zero-free region D. By approximating this integral, we can conclude that

B(x) =
∑

n≤x

b(n)' x√
log x

.

Therefore, b(n) = 0 for almost all n. !

Let R(n,Q) be the number of essentially distinct representations of n by the quadratic
form Q = ax2 + by2 + cz2 where a, b and c are positive integers and x, y and z are integers.
Let r(n,Q) be the number of essentially distinct primitive representations of n by Q. Recall
that essentially distinct representation means that different orders and signs are counted as
the same and primitive representation means that the greatest common divisor of x, y and
z is 1.

Then, by [15], we have

R(n,Q) =
∑

d2|n

r(
n

d2
, Q). (6)

Note that in R(n, x2 + 2y2 + 2z2), x, y or z could be 0 and a change of order between y
and z is considered as the same. On the other hand, R(n) is the number of representations
of n of the form n = x2 + 2y2 + 2z2, where x, y and z are positive integers and different
orders are counted as different. By Lemma 2 and Lemma 3, we know that R(n, 2x2 + 2y2),
R(n, x2), R(n, x2 +2y2) and R(n, 2x2) are almost always 0. Therefore, we can conclude that
R(n) = 2R(n, x2 + 2y2 + 2z2)−R(n, x2 + 4y2) for almost all n. By Lemma 3 again, we have

R(n) = 2R(n, x2 + 2y2 + 2z2) for almost all integers n, (7)

because x2 + 4y2 = x2 + (2y)2.

For future use, we recall Theorem 86 of W. Jones [11].

Lemma 4. Let Q be a ternary form in a genus consisting of a single class. Let d be the
determinant of Q and Ω be the greatest common divisor of the two-rowed minor determinants
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of Q. Then, for all n )= ±1 which are coprime to 2d, we have

r(n,Q) = h(−4nd/Ω2)2−t(d/Ω2)ρ or 0,

where h(D) is the discriminant D class number, t(ω) is the number of odd prime factors of
ω and ρ = 1/8, 1/6, 1/4, 1/3, 1/2, 1 or 2.

Let Q be the ternary quadratic form x2 +2y2 +2z2. Then Q is a ternary form in a genus
consisting of a single class. Thus, we can use Lemma 4 whenever n is an odd integer.

Therefore, for odd integer n, we have

r(n,Q) = h(−4n)ρ or 0.

Let t(n) be the number of odd primes dividing the squarefree part of n. Then, by simple
genus theory, recall that the exponent of 2 in h(−n) is greater than or equal to t(n) − 1.
Thus if n has at least 5 distinct odd primes in its squarefree part, then r(n,Q) is divisible
by 2. Thus, by (6) and (7), we see that R(n) is divisible by 4 for such n. By (3), R(n) ≡ 0
(mod 4) for almost all n. Thus for odd integer n, we are done.

Let us consider the case n ≡ 2 (mod 4). Since n = x2 + 2y2 + 2z2 and n is divisible by
2, x must be an even number. Thus, we can write n′ = 2x′2 + y2 + z2, where n = 2n′ and
x = 2x′. Set Q = x2 + y2 + 2z2. Then Q is a ternary form in a genus consisting of a single
class. Since n′ is odd, the result follows again from Lemma 4.

For the case n ≡ 0 (mod 4), we need the following identities.

θ(q) = θ(q4) + 2qψ(q8), (8)

θ2(q) = θ2(q2) + 4qψ2(q4). (9)

Define U by
U

∑

n≥0

a(n)qn =
∑

n≥0

a(4n)qn.

Note that ϕ(q) = 1
2(θ(q)− 1). Thus we have

ϕ2(q2)ϕ(q) = (
1

2
(θ(q2)− 1))2

1

2
(θ(q)− 1)

=
1

8
(θ2(q2)− 2θ(q2) + 1))(θ(q)− 1)

=
1

8
{θ2(q2)θ(q)− 2θ(q2)θ(q) + θ(q)− θ2(q2) + 2θ(q2)− 1}.

Therefore, the coefficient of qn in ϕ2(q2)ϕ(q) is almost always the same as the coefficient
of qn in 1

8θ
2(q2)θ(q) because the coefficients of the other terms are almost always 0 by Lemma

2 and Lemma 3.
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Let θ2(q2)θ(q) =
∑

n≥0 R′(n)qn. Then, by (5), it suffices to show that R′(n) ≡ 0 (mod 32)
for almost all integers n. By (8) and (9), we have

Uθ2(q2)θ(q) = U((θ2(q4) + 4q2ψ2(q8))(θ(q4) + 2qψ(q8))

= U(θ3(q4) + 2qθ2(q4)ψ(q8) + 4q2θ(q4)ψ2(q8) + 8q3ψ3(q8))

= θ3(q),

Uθ3(q) = θ3(q).

From this, we have R′(4λn) = r3(4λ−1n) = · · · = r3(n), where n is not divisible by 4. Thus
by Lemma 2, c5(n) ≡ 0 (mod 4) for almost all integers n ≡ 0 (mod 4). From the last three
cases, we conclude that c5(n) ≡ 0 (mod 4) for almost all integers n.

Finally, we need to show that c6(n) is almost always even. To show this, note that

ϕ6(q) ≡ ϕ3(q2) (mod 2).

Then,

c6(n) ≡
{

0 (mod 2), if n is odd,

c3(n/2) (mod 2), if n is even.
(10)

Therefore, by Lemma 2 again, we conclude that c6(n) is almost always even. This com-
pletes the proof of Theorem 1. !

We conclude with an example. When n ≡ 7 (mod 8), c1(n), c2(n), c3(n) and c5(n) are
zero. Moreover, c6(n) is always even by (10). Thus, if c4(n) is divisible by 8, then p(n) ≡ 0
(mod 128) for such n. Recall the proof of Lemma 2. We have c4(n) = 1

2σ
′(n), where

σ′(n) =
∑

d|n,4!d d. By (4), to guarantee that 1
2σ
′(n) is divisible by 16, n must have at least

four distinct odd prime factors with odd exponent.

We solve the following system of congruences:

n ≡ 7 (mod 8),

n ≡ 3 (mod 32),

n ≡ 5 (mod 52),

n ≡ 7 (mod 72),

n ≡ 11 (mod 112).

By a simple calculation, we find that n ≡ 624855 (mod 10672200). Since 3‖n, 5‖n, 7‖n,
11‖n and n ≡ 7 (mod 8), the proof of Theorem 1 implies that p(10672200n + 624855) ≡ 0
(mod 128).
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