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Abstract

We give two new infinite families of “closed form” evaluations of 2F1 hypergeometric series
using sheer brute force.

Important Note: This article is accompanied by the Maple package BruteTwoFone available fromthis ar-

ticle’s webpage: http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/sheer.html, where

one can also find sample input and output.

1. Preface

The classical hypergeometric series F (a , b , c , x) =
∞∑

k=0

(a)k(b)k

k!(c)k
xk , (where (z)k := z(z+1)(z+

2) · · · (z + k − 1)), that nowadays is more commonly denoted by

2F1

(
a, b

c
; x

)
,

has a long and distinguished history, going back to Lehonard Euler and Carl Friedrich Gauss.
It was also one of Ramanujan’s favorites. Under the guise of binomial coefficient sums it
goes even further back, to Chu, in his 1303 combinatorics treatise, that summarized a body of
knowledge that probably goes yet further back.

The hypergeometric function, and its generalized counterparts, enjoy several exact evalu-
ations, for some choices of the parameters, in terms of the Gamma function. The classical
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identities of Chu-Vandermonde, Gauss, Kummer, Euler, Pfaff-Saalschütz, Dixon, Dougall, and
others, can be looked up in the classic classic text of Bailey[B], and the modern classic text of
Andrews, Askey, and Roy [AAR].

For example, when x = 1, Gauss found the 3-parameter exact evaluation:

F (a , b , c , 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

. (Gauss)

(When a is a negative integer, a = −n, then this goes back to Chu’s 1303 identity, rediscovered
by Vandermonde).

Next comes Kummer’s two-parameter exact evaluation at x = −1

F (a , b , 1 + a− b , −1) =
Γ(1 + a− b)Γ(1 + a/2)
Γ(1 + a)Γ(1 + a/2− b)

, (Kummer)

and two other ones, at x = 1
2 , due to Gauss (see [B] or [AAR]). In addition, Gosper conjectured,

and Gessel and Stanton[GS] proved, several ‘strange’ one-parameter evaluations at other values
of x.

The Hypergeometric function also enjoys several transformation formulas, both rational and
quadratic, due to Euler, and Pfaff (see [AAR], Theorem 2.2.5, Corollary 2.3.3 and Theorem
3.1.3), so any exact evaluation implies quite a few other ones, equivalent to it via these trans-
formations, and iterations thereof. [See procedures Buddies21C and QuadBuddies21, in our
Maple package BruteTwoFone. ]

In [E], a systematic search for all such strange identities, up to a certain “complexity” was
attempted. It was done by implementing the method of [Z], that used Wilf-Zeilberger theory
and Zeilberger’s algorithm as simplified in [MZ]. The drawback of that method, however, was
that it only searched for those identities for which the Zeilberger algorithm outputs a first-order
recurrence. While rare, there are cases where the Zeilberger algorithm outputs a higher-order
recurrence, yet still is evaluable in closed-form. This is because this algorithm is not guaranteed
to output the minimal-order recurrence, although it usually does.

This gave us the idea to systematically search for such closed-form evaluations by sheer
brute force. Surprisingly, it lead us to the discovery of two new infinite families of “closed-form”
evaluations, that we will describe later.

When a or b happen to be a negative integer,a = −n, say, then the infinite series termi-
nates, for the sum then only has n+1 terms, and one does not have to worry about convergence.
In most cases, one can easily pass from the terminating case to the non-terminating case by
Carlson’s theorem ([AAR], p. 108; [B], p. 39). In this article we will only consider such
terminating series.
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The Haystack

In this etude in Experimental Mathematics, the haystack consists of

F (−an, bn + b0, cn + c0, x) , (2F1)

where a is a positive integer, b and c are integers, while b0, c0, x are complex numbers.

The Needles

The needles are those (2F1)’s that are evaluable in terms of the Gamma function, or more
precisely, those for which the sequence un := F (−an, bn + b0, cn + c0, x), is a hypergeometric
sequence, which means that

rn :=
un+1

un
,

is a rational function of n, i.e.,

rn =
P (n)
Q(n)

,

where P (n) and Q(n) are polynomials in n. It is easy to see, by looking at the asymptotics,
that the degrees of P and Q must be the same.

How to Test Whether Something is a Needle or just a Boring piece of Hay?

Even with a specific choice of a, b, c, b0, c0, x, there is no way, a priori, to rule out (conclu-
sively) the possibility that the sequence un is hypergeometric, since, who knows?, the degree d

could be a zillion. But if we restrict the search for some fixed (not too big!) d, then it is very
easy (with computers, of course), to decide whether the studied sequence un is hypergeometric
with the degree of both top and bottom of the rn being ≤ d.

Indeed, write rn = P (n)/Q(n) generically,

rn =
∑d

i=0 pini

∑d
i=0 qini

,

in terms of the 2d + 2 undetermined coefficients p0, p1, . . . pd, q0, q1, . . . , qd, and plug-in
n = 0, 1, 2, . . . , 2d + 6, say. You would get 2d + 7 equations for the 2d + 2 unknowns, and
short of a miracle, they would not be solvable. If there are solvable, then with probability
1−10−10000, rn is indeed the conjectured rational function, and if you want to have it true with
probability 1, then all you need to do is find the corresponding un (that solves un+1/un = rn),
and then use Zeilberger’s algorithm to prove the conjectured identity rigorously. [The above
is done in procedure NakhD in our Maple package BruteTwoFone. For example, to guess the
Chu-Vandermonde identity, type NakhD([[-n,a],[c],1],n,1);, and you would get (c + n −
a)/(c + n). ]
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Alas the Haystack is infinite

Even with a specific a and a specific degree d, there are infinitely many things to try.
However, if we leave b, b0, c, c0, x symbolic, then for any specific, numeric n0, un0 will no longer
be a mere number, but a certain rational function of (b, b0, c, c0, x).

We are looking for those choices of the parameters (b, b0, c, c0, x), for which the linear equa-
tions in the coefficients of rn, namely p0, . . . , pd, q0, . . . , qd, are solvable. This means, using linear
algebra, that certain determinants vanish. We can add as many conditions as we want, by find-
ing the determinants corresponding to the set of equation P (i)/Q(i) = ri, for i = 1, . . . ,M ,
for M big enough to have more equations than unknowns. Then using the Buchberger algo-
rithm, we can solve them, and get all the choices of b, b0, c, c0, x (including infinite families, for
example, we should get x = 1 to account for the Chu-Vandermonde identity).

Alas our Computers are not Big Enough

Unfortunately, the above scheme is not feasible, since the equations are sooo huge, and
Buchberger’s algorithm is sooo slow. So we have to compromise. We fix b, b0, c, c0, and search for
the lucky x. Now we only need two determinants, both being certain polynomials in the single
variable x, and simply take their greatest common divisor (gcd in Maple), to get those x that
(have the potential, and probably will) yield closed-form evaluations (with the given d) for those
fixed a, b, c, b0, c0. [The above is done in procedure NakhDx in our Maple package BruteTwoFone.
For example, to guess Theorem 12 of [E], type NakhDx([-n,-3*n-1],[-2*n],n,10);, and you
would get x = (1 ±

√
3i)/2, for the two choices for x that would make

F (−n,−3n− 1,−2n, x) hypergeometric of degree ≤ 10. ]

2. The Big Five-Fold Do-Loop

So we decide beforehand on an M , and a denominator D, and try all F (−an, bn+b0, cn+c0, x)
(x yet-to-be-determined) with integers a, b, c such that 1 ≤ a ≤ M , and −M ≤ b, c ≤ M , and
rational numbers b0, c0 with denominator D such that −M ≤ b0, c0 ≤ M and wait for the
luck-of-the-draw.

Removing the Chaff

Of course x = 1 is just Gauss. There are also Kummers with x = −1 and their associates
via the transformation rules that have to be removed.
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The Wheat

The output with M = 4 and D ≤ 4 and d = 6 was rather numerous, but most of them
turned out to be special cases of the following two infinite families of strange evaluations.

Theorem 1. For any non-negative integer r, we have

F (−2n, b,−2n + 2r − b,−1) =
(1
2 )n(b + 1− r)n

(b/2 + 1− r)n(b/2 + 1
2 − r)n

·
(

r−1∑

i=0

22ii!
(r+i−1

2i

)

(b− r + 1)i
·
(

n

i

))
.

(PerturbedKummer)
Note. There is an analogous statement with 2r replaced by 2r + 1 that we omit. There are
also analogous statements for F (−2n, b + r,−2n− b,−1) that we also omit).

3. Three Sketches of Three Proofs

First Proof. (Shalosh B. Ekhad) For each specific r this is immediately doable by the Zeil-
berger algorithm, but even the general case is doable that way by dividing both sides of
(PerturbedKummer) by

(1
2 )n(b + 1− r)n

(b/2 + 1− r)n(b/2 + 1
2 − r)n

,

leaving a polynomial on the right side. Now apply the Zeilberger algorithm to this new left
side, getting a certain second-order linear recurrence operator that annihilates this new left side
(leaving r symbolic), and then verifying that the polynomial on the right side indeed annihilates
it (and checking the trivial initial conditions).

Second Proof. (Dennis Stanton) Use an appropriate specialization of Eq. (1), Sec. 4.7 of [B],
and iterate.

Third Proof. (Christian Krattenthaler) Using his versatile package HYP ([K]), Krattenthaler
used contiguous relations. See his write-up: http://www.math.rutgers.edu/~zeilberg/mamarim/

mamarimhtml/ck.pdf, that he kindly allowed us to post.

Conjecture 1. For any integers i and j, F
(
−2n,−1

2 + i,−3n− 1
2 + j,−3

)
is evaluable in

closed-form.

Comment. We can easily find the explicit forms for every specific i and j. The list of all those
exact evaluations for −5 ≤ i, j ≤ 5 can be found at http://www.math.rutgers.edu/~zeilberg/

tokhniot/findhg/oApaZclosedForm.

However, we were unable to find a uniform expression in terms of i and j, like in Theorem
1. It is very possible that it can be proved (perhaps without being able to write it uniformly),
by using contiguous relations, as done in Krattenthaler’s proof above.
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4. The Remaining Strange Identities

After removing all the identities covered by Theorem 1 and Conjecture 1, 19 (inequivalent)
strange hypergeometric identities remained. Most of them are already in [E], so we won’t list
them here, but refer the reader to PreComputed21(); in our package BruteTwoFone, and, in a
more human-readable form, complete with the evaluations to: http://www.math.rutgers.edu/

~zeilberg/tokhniot/findhg/oSefer21.
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