A NOTE ON A CONJECTURE OF ERDŐS-TURÁN

Csaba Sándor ${ }^{1}$
Department of Stochastics, Budapest University of Technology and Economics, Hungary
csandor@math.bme.hu

Received: 1/23/08, Revised: 6/20/08, Accepted: 6/29/08, Published: 7/18/08

Abstract

Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a strictly increasing sequence of nonnegative integers. We prove that for $F(x)=\sum_{n=1}^{\infty} x^{a_{n}}$ and $F(x)^{2}=\sum_{n=0}^{\infty} R(n) x^{n}$, the condition $\lim _{\sup _{n \rightarrow \infty}} R(n)=A$ for some positive integer A implies that $\liminf _{n \rightarrow \infty} R(n) \leq A-2 \sqrt{A}+1$.

1. Introduction

Suppose that $\left\{a_{n}\right\}_{n=1}^{\infty}$ is a strictly increasing sequence of nonnegative integers. Let

$$
F(x)=\sum_{n=1}^{\infty} x^{a_{n}}
$$

and

$$
F(x)^{2}=\sum_{n=0}^{\infty} R(n) x^{n}
$$

The sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ is called an additive basis of order two if $R(n)>0$ for every nonnegative integer n and an asymptotic additive basis of order two if $R(n)>0$ for every sufficiently large n. The Erdős-Turán conjecture says that for any additive basis of order two $\left\{a_{n}\right\}_{n=1}^{\infty}$ the sequence $\{R(n)\}_{n=0}^{\infty}$ is unbounded. This conjecture can be rephrased in number theoretic language: Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a strictly increasing sequence of integers. Denote by $R(n)$ the number of solution $n=a_{i}+a_{j}$, i.e.,

$$
R(n)=\#\left\{(i, j): n=a_{i}+a_{j}\right\}
$$

Using this representation function the Erdős-Turán conjecture can be stated as follows,

[^0]Conjecture 1 (Erdős-Turán conjecture for bases of order two) Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a strictly increasing sequence of nonnegative integers such that $R(n)>0$ for every nonnegative integer n. Then the sequence $\{R(n)\}_{n=0}^{\infty}$ is unbounded.

Grekos, Haddad, Helou and Pihko [3] proved that $\limsup _{n \rightarrow \infty} R(n) \geq 6$ for every basis $\left\{a_{n}\right\}$. Later Borwein, Choi and Chu [1] improved it to $\lim _{\sup _{n \rightarrow \infty}} R(n) \geq 8$.

If for some strictly increasing sequence nonnegative integers $\left\{a_{n}\right\}_{n=1}^{\infty}$ the representation function $R(n)>0$ for every $n \geq n_{0}$ (that is $\left\{a_{n}\right\}_{n=1}^{\infty}$ forms an asymptotic additive basis), then the sequence $\left\{0,1, \ldots, n_{0}-1\right\} \cup\left\{a_{n}\right\}_{n=1}^{\infty}$ forms a basis and if its representation function is denoted by $R^{\prime}(n)$ then $R^{\prime}(n) \leq R(n)+n_{0}$. Therefore, we get that the above conjecture is equivalent to

Conjecture 2 (Erdős-Turán conjecture for asymptotic bases of order 2) Suppose that $\left\{a_{n}\right\}_{n=1}^{\infty}$ is a strictly increasing sequence of nonnegative integers such that $R(n)>0$ for every $n \geq n_{0}$. Then the sequence $\{R(n)\}_{n=0}^{\infty}$ is unbounded.

This second version can be formulated as:

Conjecture 3 (Erdős-Turán conjecture for bounded representation function)

 Suppose that $\left\{a_{n}\right\}_{n=1}^{\infty}$ is a strictly increasing sequence of nonnegative integers and$$
\limsup _{n \rightarrow \infty} R(n)=A
$$

for some positive integer A. Then we have $\liminf _{n \rightarrow \infty} R(n)=0$.

In this note we give a non-trivial upper bound for $\lim _{\inf }^{n \rightarrow \infty}$ $R(n)$ if the sequence $\{R(n)\}_{n=0}^{\infty}$ is bounded.

Theorem 1 Suppose that $\left\{a_{n}\right\}_{n=1}^{\infty}$ is a strictly increasing sequence of nonnegative integers and $\lim \sup _{n \rightarrow \infty} R(n)=A$ for some positive integer A. Then we have

$$
\liminf _{n \rightarrow \infty} R(n) \leq A-2 \sqrt{A}+1
$$

2. Proof

If $a_{N}>N^{2}$ for some N, then

$$
\#\left\{n: \quad 1 \leq n \leq N^{2}, \quad R(n)>0\right\} \leq\binom{ N}{2}
$$

and therefore

$$
\#\left\{n: \quad 1 \leq n \leq N^{2}, \quad R(n)=0\right\} \geq\binom{ N+1}{2}
$$

Hence it follows that if $a_{n}>n^{2}$ for infinitely many integers n, then $R(n)=0$ for infinitely many integers n. Then we have $\liminf _{n \rightarrow \infty} R(n)=0 \leq A-2 \sqrt{A}+1$, which proves the theorem.

Therefore we may assume that

$$
\begin{equation*}
a_{n} \leq n^{2} \quad \text { for } n \geq n_{1} \tag{1}
\end{equation*}
$$

Let us suppose that there exists a strictly increasing sequence of nonnegative integers $\left\{a_{n}\right\}_{n=1}^{\infty}$ such that $\lim \sup _{n \rightarrow \infty} R(n)=A$ but $\liminf _{n \rightarrow \infty} R(n)>A-2 \sqrt{A}+1$. Then there exist an integer n_{2} and $0<\epsilon<\sqrt{A}$ for which $A-2 \sqrt{A}+1+\epsilon \leq R(n) \leq A$ for $n \geq n_{2}$. Set $C=A-\sqrt{A}+\epsilon$. By elementary calculus we have $f(x)=\frac{(x-C)^{2}}{x}<1$ for every $x \in[A-2 \sqrt{A}+1+\epsilon, A]$, and therefore there exists a $\delta>0$ such that

$$
\begin{equation*}
(R(n)-C)^{2} \leq(1-\delta)^{2} R(n) \quad \text { for } n \geq n_{2} \tag{2}
\end{equation*}
$$

Let

$$
F(z)=\sum_{n=1}^{\infty} z^{a_{n}}
$$

Then

$$
F(z)^{2}=\sum_{n=0}^{\infty} R(n) z^{n}
$$

Let

$$
z=\left(1-\frac{1}{N}\right) e^{2 \pi i \alpha}=r e^{2 \pi i \alpha}
$$

where N is a large integer. We give an upper and a lower bound for the integral

$$
\begin{equation*}
\int_{0}^{1}\left|F(z)^{2}-\sum_{n=0}^{\infty} C z^{n}\right| d \alpha \tag{3}
\end{equation*}
$$

to reach a contradiction. We get an upper bound for (3) by Cauchy's inequality, Parseval's formula and (2):

$$
\begin{align*}
& \int_{0}^{1}\left|F(z)^{2}-\sum_{n=0}^{\infty} C z^{n}\right| d \alpha=\int_{0}^{1}\left|\sum_{n=0}^{\infty}(R(n)-C) z^{n}\right| d \alpha \leq\left(\int_{0}^{1}\left|\sum_{n=0}^{\infty}(R(n)-C) z^{n}\right|^{2} d \alpha\right)^{1 / 2}= \\
& \left(\sum_{n=0}^{\infty}(R(n)-C)^{2} r^{2 n}\right)^{1 / 2} \leq\left(c_{1}+(1-\delta)^{2}\left(\sum_{n=0}^{\infty} R(n) r^{2 n}\right)\right)^{1 / 2} \leq c_{2}+(1-\delta) F\left(r^{2}\right) \tag{4}
\end{align*}
$$

Now here is the lower bound for (3). Obviously,

$$
\begin{equation*}
\int_{0}^{1}\left|F(z)^{2}-\sum_{n=0}^{\infty} C z^{n}\right| d \alpha \geq \int_{0}^{1}\left|F(z)^{2}\right| d \alpha-\int_{0}^{1}\left|\sum_{n=0}^{\infty} C z^{n}\right| d \alpha \tag{5}
\end{equation*}
$$

where by Parseval's formula

$$
\begin{equation*}
\int_{0}^{1}\left|F^{2}(z)\right| d \alpha=\sum_{n=1}^{\infty} r^{2 a_{n}}=F\left(r^{2}\right) \tag{6}
\end{equation*}
$$

Moreover

$$
\int_{0}^{1}\left|\sum_{n=0}^{\infty} C z^{n}\right| d \alpha=C \int_{0}^{1} \frac{1}{|1-z|} d \alpha=2 C \int_{0}^{1 / 2} \frac{1}{|1-z|} d \alpha
$$

Since
$|1-z|^{2}=(1-r \cos 2 \pi \alpha)^{2}+(r \sin 2 \pi \alpha)^{2}=(1-r)^{2}+2 r(1-\cos 2 \pi \alpha)=(1-r)^{2}+4 r \sin ^{2} \pi \alpha$, we have $|1-z| \geq \max \left\{\frac{1}{N}, \alpha\right\}$ for every $0<\alpha<\frac{1}{2}$. Hence

$$
\begin{equation*}
\int_{0}^{1}\left|\sum_{n=0}^{\infty} C z^{n}\right| d \alpha \leq 2 C\left(\int_{0}^{1 / N} N d \alpha\right)+\int_{1 / N}^{1 / 2} \frac{1}{\alpha} d \alpha \leq c_{3} \log N \tag{7}
\end{equation*}
$$

for some $c_{3}>0$. By (4), (6) and (7) we have

$$
F\left(r^{2}\right)-c_{3} \log N \leq \int_{0}^{1}\left|F^{2}(z)-\sum_{n=0}^{\infty} C z^{n}\right| d \alpha \leq(1-\delta) F\left(r^{2}\right)+c_{2}
$$

therefore

$$
\begin{equation*}
\delta F\left(r^{2}\right)<c_{2}+c_{3} \log N \tag{8}
\end{equation*}
$$

but in view of (1)

$$
F\left(r^{2}\right)=\sum_{n=1}^{\infty} r^{2 a_{n}} \geq \sum_{n=n_{1}}^{\sqrt{N}}\left(1-\frac{1}{N}\right)^{2 a_{n}}>c_{4} \sqrt{N}
$$

for some positive c_{4}, which is a contradiction to (8) if N is large enough.

References

[1] P. Borwein, S. Choi and F. Chu, An old conjecture of Erdös-Turán on additive bases, Math. Comp., 75(2006), no. 253, 475-484
[2] P. Erdős and P. Turán, On a problem of Sidon in additive number theory and some related problems, J. London Math. Soc., 16:212-215, 1941.
[3] G. Grekos, L. Haddad, C. Helou and J. Pinko, On the Erdős-Turán conjecture, J. Number Theory, 102(2): 339-352, 2003.

[^0]: ${ }^{1}$ Supported by Hungarian National Foundation for Scientific Research, Grant No T 49693 and 61908

