ON THE t-CORE OF AN s-CORE PARTITION

Rishi Nath
York College (CUNY), Jamaica, NY 11451
rnath@york.cuny.edu

Received: 4/17/08, Revised: 6/4/08, Accepted: 6/22/08, Published: 7/16/08

Abstract

Given two relatively prime positive integers s and t, J. Olsson proved that the t-core of an s-core partition ρ is again an s-core. In this note we extend this result to the case where s and t are arbitrary distinct positive integers.

1. Main Result

Let \mathbb{N} be the set of nonnegative integers and let $n \in \mathbb{N}$. Consider sequences $\left(\alpha_{1}, \cdots, \alpha_{t}\right)$ of integers from \mathbb{N} with $\alpha_{1} \leq \alpha_{2} \leq \cdots \leq \alpha_{t}$ and $\sum_{i=1}^{t} \alpha_{i}=n$. Two such sequences $\left(\alpha_{1}, \cdots, \alpha_{t}\right)$ and $\left(\alpha_{1}^{\prime}, \cdots, \alpha_{t^{\prime}}^{\prime}\right)$ are said to be equivalent if their nonzero terms are the same. A partition λ of n will then be defined as an equivalence class of such sequences.

A sequence $\left(\alpha_{1}, \cdots, \alpha_{t}\right)$ representing λ determines a corresponding β-set, namely $\beta(\lambda)=$ $\left\{x_{1}, \cdots, x_{t}\right\}$, where $x_{i}=\alpha_{i}+(i-1)$. The equivalence relation on sequences induces an equivalence relation on β-sets. Two β-sets $\beta(\lambda)=\left\{x_{1}, \cdots, x_{t}\right\}$ and $\beta(\lambda)^{\prime}=\left\{x_{1}^{\prime}, \cdots, x_{t^{\prime}}^{\prime}\right\}$ are equivalent if $t^{\prime}-t=d \geq 0$ and $\left\{x_{1}^{\prime}, \cdots, x_{t^{\prime}}^{\prime}\right\}=\{0,1,2, \cdots, d-1\} \cup\left\{x_{1}+d, \cdots, x_{t}+d\right\}$.

We may write this as $\beta(\lambda)^{\prime}=\{0, \cdots, d-1\} \cup\{\beta(\lambda)+d\}$. Then $f_{d}:(y, x] \longrightarrow(y+d, x+d]$ is a bijection between $\beta(\lambda)$ and $\beta(\lambda)^{\prime}$. A hook h of λ is a pair of nonnegative integers $h=(y, x)$ where $x \in \beta(\rho), y \notin \beta(\rho)$ and $y<x$. We say h has length $s(t)$ if $x-y=s(x-y=t)$. A hook h of length $s(t)$ is also called an s-hook (t-hook). A partition ρ is an s-core (t-core) if it contains no s-hooks (t-hooks). In particular, f_{d} preserves hook lengths.

Theorem 1.1 Suppose s and t are distinct positive integers and ρ is an s-core. Then the t-core of ρ is also an s-core.

To prove Theorem 1.1, we must define the s-abacus $\mathcal{A}^{s}(\beta(\rho))$ of ρ. We do so as follows: create s runners numbered $0,1, \ldots, s-1$ running from north to south. In the i-th runner we place all non-negative integers of residue i modulo s in increasing order, and then underline
the numbers that occur in $\beta(\rho)$. These underlined numbers will be referred to as beads while the numbers that are not underlined will be referred to as spaces.

Suppose $\rho=(5,5,4,3), \beta(\rho)=\{3,5,7,8\}$. Then $\mathcal{A}^{3}(\beta(\rho))$ is defined to be:

0	1	2
$\underline{3}$	4	$\underline{5}$
6	$\underline{7}$	$\underline{8}$.

The subset of beads on the i-th runner will be denoted $\beta(\rho)_{i}$. Removing an s-hook from ρ is equivalent to replacing an \underline{x} (in some $\left.\beta(\rho)_{i}\right)$ with $\underline{x-s}$. Notice $x-s$ is the position directly above x on the i-th runner. This will be described as moving a bead one position north. Then $\mathcal{A}^{s}(\beta(\rho))$ is the s-abacus of a s-core if for every $\beta(\rho)_{i}$ there are no available moves one position north (Theorem 2.7.16, [2]). The replacement $\underline{x}=i+m s$ on the i-th runner of the s-abacus with $\underline{x}^{\prime}=i^{\prime}+m^{\prime} s$ where $x^{\prime}<x, i^{\prime} \neq i$ will be described as moving a bead $x-x^{\prime}$ positions west. (The reader is referred to Section 2.7, [2] and Sections I.1-I.3, [6] for further details on partitions, β-sets, hooks, and the s-abacus.)

Proof. When $(s, t)=1$ the result is true by [5]. Suppose $(s, t) \neq 1$. Either (1) s divides t or (2) $\operatorname{gcd}(s, t) \notin\{1, s\}$. If s divides t, then any s-core partition is itself a t-core, so we are done. Suppose s does not divide t and $\operatorname{gcd}(s, t)>1$. Removing a t-hook from ρ is equivalent to taking a bead x on the ℓ-th runner (for some ℓ between 0 and $s-1$) of $\mathcal{A}^{s}(\beta(\rho))$ and placing it in empty position to the west in the $(\ell-t)$-th runner. (For the remainder of this note, if $t>\ell$ we will interpret this difference as $\ell-t(\bmod s)$.) Removing another t-hook starting from a bead on the $(\ell-t)$-th runner, we arrive at the $(\ell-2 t)$-th runner, and so on, until eventually for some $j>0$ we obtain $\ell-j t \equiv \ell(\bmod s)$. This suggests the following definition. A t-orbit of the s-abacus is a finite sequence (read from right-to-left) of distinct runners reached by repeated moves of t-positions west. Then, if $k^{\prime}=\operatorname{gcd}(s, t)$, each t-orbit of $\mathcal{A}^{s}(\beta(\rho))$ will have exactly k^{\prime} distinct runners. Starting from $\ell=1$, for each value $1,2,3 \cdots$ we denote by $\mathcal{O}_{t}(s-\ell)$ a t-orbit of runners which begins at the $(s-\ell)$-th runner. Since for $0 \leq z, z^{\prime} \leq s-1$ and $z \neq z^{\prime}$ either $\mathcal{O}_{t}(z) \cap \mathcal{O}_{t}\left(z^{\prime}\right)=\emptyset$ or $\mathcal{O}_{t}(z)=\mathcal{O}_{t}\left(z^{\prime}\right)$, there will be exactly $k=\frac{s}{k^{\prime}}$ distinct t-orbits of $\mathcal{A}^{s}(\beta(\rho))$.

Now $\mathcal{O}_{t}(s-\ell)$ can itself be seen as a k^{\prime}-abacus of runners plucked from $\mathcal{A}^{(s)}(\beta(\rho))$ and re-arranged in such a way that moving a bead one position west is equivalent to removing a t-hook from ρ. (Note: from the westmost runner removing a t-hook requires placing the bead one position north on the eastmost runner.) Viewed as a k^{\prime}-abacus, moving a bead one position north in $\mathcal{O}_{t}(s-\ell)$ will still be equivalent to removing a s-hook from ρ, since it is comprised of runners of $\mathcal{A}^{s}(\beta(\rho))$. This construction is a variation of the (s, t)-abacus of J . Olsson and D. Stanton (see Section 5, [4]) which they define when s, t are relatively prime.

For all $1 \leq \ell \leq k$ the runners in $\mathcal{O}_{t}(s-\ell) \subset \mathcal{A}^{s}(\beta(\rho))$ will be labeled

$$
\begin{aligned}
\mathcal{O}_{t}(s-1) & =\left(\beta(\rho)_{s-1-\left(k^{\prime}-1\right) t}, \cdots, \beta(\rho)_{s-1}\right) \\
& \vdots \\
\mathcal{O}_{t}(s-k) & =\left(\beta(\rho)_{s-k-\left(k^{\prime}-1\right) t}, \cdots, \beta(\rho)_{s-k}\right) .
\end{aligned}
$$

For a fixed ℓ we obtain the t-core of $\mathcal{O}_{t}(s-\ell)$ by moving all available beads one position west on $\mathcal{O}_{t}(s-\ell)$ until we obtain a k^{\prime}-abacus with no available westward moves. We denote this k^{\prime}-abacus by $\widehat{\mathcal{O}}_{t}(s-\ell)$. It can be obtained systematically from $\mathcal{O}_{t}(s-\ell)$.

Algorithm for finding $\widehat{\mathcal{O}}_{t}(s-\ell)$. Let $i \in\left\{1, \cdots, k^{\prime}\right\}$ and $b_{i}=\left|\beta(\rho)_{(s-\ell)-(i-1) t}\right|$ be the number of beads in the runner i positions west on $\mathcal{O}_{t}(s-\ell)$. Then $B(1,2)=b_{1}-b_{2}$ is the difference between the number of beads in the eastmost or $(s-\ell)$-th runner and the runner immediately to the west of it, the $(s-\ell-t)$-th runner. If $B(1,2)$ is negative or zero, move no beads. If $B(1,2)=2 f$, place f of the southmost beads from the $(s-\ell)$-th runner in the northmost empty spaces of the $(s-\ell-t)$-th runner, so that the number of beads in the two runners now become equal. If $B(1,2)=2 f+1$, place the $f+1$ of the southmost beads from the $(s-\ell)$-th runner in the northmost empty spaces of $(s-\ell-t)$-th runner, so that the runner to the west now has one more bead than the eastmost runner. For $i=2,3, \cdots$ etc. follow the same procedure for $B(i, i+1)$, except when $B=\left(k^{\prime}, 1\right)=2 f+1$. In this case, place only f beads from the westmost runner in the northmost available empty spaces on the eastmost or $(s-\ell)$-th runner. Repeating this procedure a finite number of times results in the modified subsequence $\widehat{\mathcal{O}}_{t}(s-\ell)=\left(\widehat{\beta}(\rho)_{s-\ell-\left(k^{\prime}-1\right) t}, \cdots, \widehat{\beta}(\rho)_{s-\ell}\right)$ which when viewed as a k^{\prime}-abacus has no available westward moves.

Finding the t-core of ρ. For each ℓ, obtain $\widehat{\mathcal{O}}_{t}(s-\ell)$ from $\mathcal{O}_{t}(s-\ell)$ as above. Then $\mathcal{A}^{s}(\widehat{\beta}(\rho))=\left(\widehat{\beta}(\rho)_{0}, \cdots, \widehat{\beta}(\rho)_{s-1}\right)$ will be the s-abacus for the t-core of ρ. This follows by construction, since using the runners of the modified t-orbits $\widehat{\mathcal{O}}_{t}(s-\ell)$ implies there are no available moves t positions west. However $\mathcal{A}^{s}(\widehat{\beta}(\rho))$ still has no available moves one position north (by our algorithm) and hence remains an s-abacus of an s-core.

2. Examples

Example 2.1. Let $s=6$ and $t=3$. Consider the following 6 -abacus $\mathcal{A}^{6}(\beta(\rho))$ of a 6 -core ρ :

$\beta(\rho)_{0}$	$\beta(\rho)_{1}$	$\beta(\rho)_{2}$	$\beta(\rho)_{3}$	$\beta(\rho)_{4}$	$\beta(\rho)_{5}$
0	$\underline{1}$	$\underline{2}$	$\underline{3}$	$\underline{4}$	$\underline{5}$
6	$\underline{7}$	$\underline{8}$	9	$\underline{10}$	11
12	13	$\underline{14}$	15	$\underline{16}$	17
18	19	20	21	$\underline{22}$	23.

Since $\operatorname{gcd}(6,3)=3$, we have $k=3$ and $k^{\prime}=\frac{6}{3}=2$. Hence we have three 3 -orbits $\mathcal{O}_{t}(s-\ell)$ (each with $k^{\prime}=2$ runners) and their corresponding 3 -cores $\widehat{\mathcal{O}}_{t}(s-\ell)$:

$\mathcal{O}_{3}(1)=$	$\beta(\rho){ }_{2}$	$\beta(\rho)_{5}$		$\widehat{\beta}(\rho){ }_{2}$	$\widehat{\beta}(\rho)_{5}$
	$\underline{2}$	5		$\underline{2}$	$\underline{5}$
	$\underline{8}$	11	$\widehat{\mathcal{O}}_{3}(1)=$	$\underline{8}$	$\underline{11}$
	$\underline{14}$	17		14	17
	20	23		20	23

$$
\begin{aligned}
& \begin{array}{lll}
\beta(\rho)_{1} & \beta(\rho)_{4} & \widehat{\beta}(\rho)_{1}
\end{array} \widehat{\beta}(\rho)_{4} \\
& \mathcal{O}_{3}(2)=\begin{array}{llll}
\frac{1}{7} & \underline{4} \\
13 & \underline{10} \\
19 & \underline{16}
\end{array} \quad \widehat{\mathcal{O}}_{3}(2)=\begin{array}{ll}
\underline{7} & \underline{4} \\
\underline{13} & \underline{10} \\
\hline 19 & \underline{16}
\end{array}
\end{aligned}
$$

Finally we obtain the 6 -abacus $\mathcal{A}^{6}(\widehat{\beta}(\rho))$ of $\widehat{\rho}$ the 3 -core of ρ :

$\widehat{\beta}(\rho)_{0}$	$\widehat{\beta}(\rho)_{1}$	$\widehat{\beta}(\rho)_{2}$	$\widehat{\beta}(\rho)_{3}$	$\widehat{\beta}(\rho)_{4}$	$\widehat{\beta}(\rho)_{5}$
$\underline{0}$	$\underline{1}$	$\underline{2}$	3	$\underline{4}$	$\underline{5}$
6	$\underline{7}$	$\underline{8}$	9	$\underline{10}$	$\underline{11}$
12	$\underline{13}$	14	15	$\underline{16}$	17.

Example 2.2. Let $s=12$ and $t=8$. Consider the following 12 -abacus $\mathcal{A}^{12}(\beta(\rho))$ of a 12-core ρ :

$\beta(\rho)_{0}$	$\beta(\rho)_{1}$	$\beta(\rho)_{2}$	$\beta(\rho)_{3}$	$\beta(\rho)_{4}$	$\beta(\rho)_{5}$	$\beta(\rho)_{6}$	$\beta(\rho)_{7}$	$\beta(\rho)_{8}$	$\beta(\rho)_{9}$	$\beta(\rho)_{10}$	$\beta(\rho)_{11}$
0	$\underline{1}$	$\underline{2}$	$\underline{3}$	$\underline{4}$	$\underline{5}$	$\underline{6}$	7	$\underline{8}$	$\underline{9}$	$\underline{10}$	$\underline{11}$
12	$\underline{13}$	$\underline{14}$	$\underline{15}$	$\underline{16}$	17	$\underline{18}$	19	20	$\underline{21}$	$\underline{22}$	$\underline{23}$
24	$\underline{25}$	26	$\underline{27}$	$\underline{28}$	29	$\underline{30}$	31	32	$\underline{33}$	$\underline{34}$	35
36	$\underline{37}$	38	$\underline{39}$	40	41	$\underline{42}$	43	44	$\underline{45}$	$\underline{46}$	47
48	49	50	$\underline{51}$	52	53	54	55	56	$\underline{57}$	58	59
60	61	62	63	64	65	66	67	68	$\underline{69}$	70	71.

Since $\operatorname{gcd}(12,8)=4$, we have $k=4$ and $k^{\prime}=\frac{12}{4}=3$. Hence we have four 8 -orbits $\mathcal{O}_{8}(s-\ell)$ (each with $k^{\prime}=3$ runners) and their corresponding 8 -cores $\widehat{\mathcal{O}}_{8}(s-\ell)$:

$$
\begin{aligned}
& \begin{array}{llllll}
\beta(\rho)_{7} & \beta(\rho)_{3} & \beta(\rho)_{11} & \widehat{\beta}(\rho)_{7} & \widehat{\beta}(\rho)_{3} & \widehat{\beta}(\rho)_{11} \\
7 & \underline{3} & \underline{11} & \underline{7} & \underline{3} & \underline{11} \\
19 & \underline{15} & \underline{23} & \widehat{\mathcal{O}}_{8}(1)=\begin{array}{l}
\underline{19} \\
31
\end{array} & \underline{27} & \underline{15} \\
43 & \underline{39} & \underline{23} \\
55 & \underline{51} & 59 & \underline{43} & 37 & 35 \\
67 & 63 & 71 & 55 & 51 & 47 \\
& & & 67 & 63 & 71
\end{array} \\
& \begin{array}{llllll}
\beta(\rho)_{6} & \beta(\rho)_{2} & \beta(\rho)_{10} & \widehat{\beta}(\rho)_{6} & \widehat{\beta}(\rho)_{2} & \widehat{\beta}(\rho)_{10} \\
\underline{6} & \underline{2} & \underline{10} & \underline{6} & \underline{2} & \underline{10} \\
\mathcal{O}_{8}(2)= & \underline{18} & \underline{14} & \underline{22} & \widehat{\mathcal{O}}_{8}(2)= & \underline{\underline{30}} \\
\hline 42 & 38 & \underline{34} & \underline{14} & \underline{26} & \underline{34} \\
54 & 50 & \underline{46} & 54 & 50 & 58 \\
66 & 62 & 70 & 66 & 62 & 70
\end{array}
\end{aligned}
$$

Finally we obtain the 12 -abacus $\mathcal{A}^{12}(\widehat{\beta}(\rho))$ of $\widehat{\rho}$ the 8 -core of ρ :

$\widehat{\beta}(\rho){ }_{1}$	$\widehat{\beta}(\rho){ }_{2}$	$\widehat{\beta}(\rho){ }_{3}$	$\widehat{\beta}(\rho){ }_{4}$	$\widehat{\beta}(\rho){ }_{4}$	$\widehat{\beta}(\rho){ }_{5}$	$\widehat{\beta}(\rho){ }_{6}$	$\widehat{\beta}(\rho)_{7}$	$\widehat{\beta}(\rho){ }_{8}$	$\widehat{\beta}(\rho){ }_{9}$	$\widehat{\beta}(\rho){ }_{10}$	$\widehat{\beta}(\rho)_{11}$
$\underline{0}$	1	$\underline{2}$	$\underline{3}$	$\underline{4}$	$\underline{5}$	$\underline{6}$	$\underline{7}$	8	$\underline{9}$	10	11
12	13	$\underline{14}$	15	16	17	18	$\underline{19}$	20	$\underline{21}$	$\underline{22}$	$\underline{23}$
24	$\underline{25}$	$\underline{26}$	27	28	$\underline{29}$	$\underline{30}$	$\underline{31}$	32	$\underline{33}$	$\underline{34}$	35
36	$\underline{37}$	38	39	40	$\underline{41}$	42	43	44	45	46	47
48	49	50	51	52	53	54	55	56	57	58	59
60	61	62	63	64	65	66	67	68	69	70	71.

For other results on partitions that are simultaneously s-cores and t-cores see [1], [3], [7].
Acknowledgments. The author thanks P. Fong, J. Malkevitch and F. Mawyer for useful conversations on this topic. The author also thanks the organizers of the Representation Theory of Finite Groups and Related Topics program at MSRI for their support; a portion of this research was done while visiting. Finally, the author thanks the referee for the helpful comments and suggestions.

References

[1] J. Anderson, Partitions which are simultaneously t_{1} - and t_{2}-core. Discrete Math. 248 (2002), 237-243.
[2] G. James and A. Kerber, The Representation Theory of the Symmetric Groups. Encyclopedia of Mathematics, 16, Addison-Wesley 1981
[3] B. Kane, D. Aukerman, and L. Sze, On Simultaneous s-cores/t-cores lsze.cosam.calpoly.edu /research.html (2001).
[4] J. Olsson and D.Stanton, Block inclusions and cores of partitions Aequationes Math. 74 (2007), 90-110.
[5] J. Olsson, A theorem on the cores of partitions arXiv:0801.4884v1.
[6] J. Olsson, Combinatorics and Representations of Finite Groups, Vorlesungen aus dem FB Mathematick der Univ. Essen, Heft 20 Essen, 1993.
[7] J. C. Puchta, Partitions which are p-and q-core Integers 1 (2001), A6, 3 pp. (electronic).

