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Abstract

Given two relatively prime positive integers s and t, J. Olsson proved that the t-core of an
s-core partition ρ is again an s-core. In this note we extend this result to the case where s
and t are arbitrary distinct positive integers.

1. Main Result

Let N be the set of nonnegative integers and let n ∈ N. Consider sequences (α1, · · · ,αt) of
integers from N with α1 ≤ α2 ≤ · · · ≤ αt and

∑t
i=1 αi = n. Two such sequences (α1, · · · ,αt)

and (α′
1, · · · ,α′

t′) are said to be equivalent if their nonzero terms are the same. A partition
λ of n will then be defined as an equivalence class of such sequences.

A sequence (α1, · · · ,αt) representing λ determines a corresponding β-set, namely β(λ) =
{x1, · · · , xt}, where xi = αi + (i − 1). The equivalence relation on sequences induces an
equivalence relation on β-sets. Two β-sets β(λ) = {x1, · · · , xt} and β(λ)′ = {x′

1, · · · , x′
t′}

are equivalent if t′− t = d ≥ 0 and {x′
1, · · · , x′

t′} = {0, 1, 2, · · · , d− 1}∪ {x1 + d, · · · , xt + d}.

We may write this as β(λ)′ = {0, · · · , d−1}∪{β(λ)+d}. Then fd : (y, x] −→ (y + d, x + d]
is a bijection between β(λ) and β(λ)′. A hook h of λ is a pair of nonnegative integers h = (y, x)
where x ∈ β(ρ), y '∈ β(ρ) and y < x. We say h has length s (t) if x− y = s (x− y = t). A
hook h of length s (t) is also called an s-hook (t-hook). A partition ρ is an s-core (t-core) if
it contains no s-hooks (t-hooks). In particular, fd preserves hook lengths.

Theorem 1.1 Suppose s and t are distinct positive integers and ρ is an s-core. Then the
t-core of ρ is also an s-core.

To prove Theorem 1.1, we must define the s-abacus As(β(ρ)) of ρ. We do so as follows:
create s runners numbered 0, 1, . . . , s−1 running from north to south. In the i-th runner we
place all non-negative integers of residue i modulo s in increasing order, and then underline
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the numbers that occur in β(ρ). These underlined numbers will be referred to as beads while
the numbers that are not underlined will be referred to as spaces.

Suppose ρ = (5, 5, 4, 3), β(ρ) = {3, 5, 7, 8}. Then A3(β(ρ)) is defined to be:

0 1 2
3 4 5
6 7 8.

The subset of beads on the i-th runner will be denoted β(ρ)i. Removing an s-hook from ρ is
equivalent to replacing an x (in some β(ρ)i) with x− s. Notice x− s is the position directly
above x on the i-th runner. This will be described as moving a bead one position north.
Then As(β(ρ)) is the s-abacus of a s-core if for every β(ρ)i there are no available moves one
position north (Theorem 2.7.16, [2]). The replacement x = i + ms on the i-th runner of the
s-abacus with x′ = i′ + m′s where x′ < x, i′ '= i will be described as moving a bead x − x′

positions west. (The reader is referred to Section 2.7, [2] and Sections I.1−I.3, [6] for further
details on partitions, β-sets, hooks, and the s-abacus.)

Proof. When (s, t) = 1 the result is true by [5]. Suppose (s, t) '= 1. Either (1) s divides t
or (2) gcd(s, t) '∈ {1, s}. If s divides t, then any s-core partition is itself a t-core, so we are
done. Suppose s does not divide t and gcd(s, t) > 1. Removing a t-hook from ρ is equivalent
to taking a bead x on the %-th runner (for some % between 0 and s − 1) of As(β(ρ)) and
placing it in empty position to the west in the (%− t)-th runner. (For the remainder of this
note, if t > % we will interpret this difference as % − t (mod s).) Removing another t-hook
starting from a bead on the (%− t)-th runner, we arrive at the (%− 2t)-th runner, and so on,
until eventually for some j > 0 we obtain % − jt ≡ % (mod s). This suggests the following
definition. A t-orbit of the s-abacus is a finite sequence (read from right-to-left) of distinct
runners reached by repeated moves of t-positions west. Then, if k′ = gcd(s, t), each t-orbit of
As(β(ρ)) will have exactly k′ distinct runners. Starting from % = 1, for each value 1, 2, 3 · · ·
we denote by Ot(s− %) a t-orbit of runners which begins at the (s− %)-th runner. Since for
0 ≤ z, z′ ≤ s−1 and z '= z′ either Ot(z)∩Ot(z′) = ∅ or Ot(z) = Ot(z′), there will be exactly
k = s

k′ distinct t-orbits of As(β(ρ)).

Now Ot(s − %) can itself be seen as a k′-abacus of runners plucked from A(s)(β(ρ)) and
re-arranged in such a way that moving a bead one position west is equivalent to removing
a t-hook from ρ. (Note: from the westmost runner removing a t-hook requires placing the
bead one position north on the eastmost runner.) Viewed as a k′-abacus, moving a bead one
position north in Ot(s − %) will still be equivalent to removing a s-hook from ρ, since it is
comprised of runners of As(β(ρ)). This construction is a variation of the (s, t)-abacus of J.
Olsson and D. Stanton (see Section 5, [4]) which they define when s, t are relatively prime.

For all 1 ≤ % ≤ k the runners in Ot(s− %) ⊂ As(β(ρ)) will be labeled

Ot(s− 1) = (β(ρ)s−1−(k′−1)t, · · · ,β(ρ)s−1)
...

Ot(s− k) = (β(ρ)s−k−(k′−1)t, · · · ,β(ρ)s−k).
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For a fixed % we obtain the t-core of Ot(s − %) by moving all available beads one position
west on Ot(s− %) until we obtain a k′-abacus with no available westward moves. We denote
this k′-abacus by Ôt(s− %). It can be obtained systematically from Ot(s− %).

Algorithm for finding Ôt(s − %). Let i ∈ {1, · · · , k′} and bi = |β(ρ)(s−!)−(i−1)t| be the
number of beads in the runner i positions west on Ot(s− %). Then B(1, 2) = b1 − b2 is the
difference between the number of beads in the eastmost or (s− %)-th runner and the runner
immediately to the west of it, the (s− %− t)-th runner. If B(1, 2) is negative or zero, move
no beads. If B(1, 2) = 2f , place f of the southmost beads from the (s− %)-th runner in the
northmost empty spaces of the (s− %− t)-th runner, so that the number of beads in the two
runners now become equal. If B(1, 2) = 2f +1, place the f +1 of the southmost beads from
the (s − %)-th runner in the northmost empty spaces of (s − % − t)-th runner, so that the
runner to the west now has one more bead than the eastmost runner. For i = 2, 3, · · · etc.
follow the same procedure for B(i, i + 1), except when B = (k′, 1) = 2f + 1. In this case,
place only f beads from the westmost runner in the northmost available empty spaces on
the eastmost or (s− %)-th runner. Repeating this procedure a finite number of times results
in the modified subsequence Ôt(s− %) = (β̂(ρ)s−!−(k′−1)t, · · · , β̂(ρ)s−!) which when viewed as
a k′-abacus has no available westward moves.

Finding the t-core of ρ. For each %, obtain Ôt(s − %) from Ot(s − %) as above. Then
As(β̂(ρ)) = (β̂(ρ)0, · · · , β̂(ρ)s−1) will be the s-abacus for the t-core of ρ. This follows by
construction, since using the runners of the modified t-orbits Ôt(s− %) implies there are no
available moves t positions west. However As(β̂(ρ)) still has no available moves one position
north (by our algorithm) and hence remains an s-abacus of an s-core.

2. Examples

Example 2.1. Let s = 6 and t = 3. Consider the following 6-abacus A6(β(ρ)) of a 6-core ρ:

β(ρ)0 β(ρ)1 β(ρ)2 β(ρ)3 β(ρ)4 β(ρ)5

0 1 2 3 4 5
6 7 8 9 10 11
12 13 14 15 16 17
18 19 20 21 22 23.

Since gcd(6,3)=3, we have k = 3 and k′ = 6
3 = 2. Hence we have three 3-orbits Ot(s − %)

(each with k′ = 2 runners) and their corresponding 3-cores Ôt(s− %):

O3(1) =

β(ρ)2 β(ρ)5

2 5
8 11
14 17
20 23

Ô3(1) =

β̂(ρ)2 β̂(ρ)5

2 5
8 11
14 17
20 23
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O3(2) =

β(ρ)1 β(ρ)4

1 4
7 10
13 16
19 22

Ô3(2) =

β̂(ρ)1 β̂(ρ)4

1 4
7 10
13 16
19 22

O3(3) =

β(ρ)0 β(ρ)3

0 3
6 9
12 15
18 21

Ô3(3) =

β̂(ρ)0 β̂(ρ)3

0 3
6 9
12 15
18 21.

Finally we obtain the 6-abacus A6(β̂(ρ)) of ρ̂ the 3-core of ρ:

β̂(ρ)0 β̂(ρ)1 β̂(ρ)2 β̂(ρ)3 β̂(ρ)4 β̂(ρ)5

0 1 2 3 4 5
6 7 8 9 10 11
12 13 14 15 16 17.

Example 2.2. Let s = 12 and t = 8. Consider the following 12-abacus A12(β(ρ)) of a
12-core ρ:

β(ρ)0 β(ρ)1 β(ρ)2 β(ρ)3 β(ρ)4 β(ρ)5 β(ρ)6 β(ρ)7 β(ρ)8 β(ρ)9 β(ρ)10 β(ρ)11
0 1 2 3 4 5 6 7 8 9 10 11
12 13 14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31 32 33 34 35
36 37 38 39 40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55 56 57 58 59
60 61 62 63 64 65 66 67 68 69 70 71.

Since gcd(12,8)=4, we have k = 4 and k′ = 12
4 = 3. Hence we have four 8-orbits O8(s − %)

(each with k′ = 3 runners) and their corresponding 8-cores Ô8(s− %):

O8(1) =

β(ρ)7 β(ρ)3 β(ρ)11

7 3 11
19 15 23
31 27 35
43 39 47
55 51 59
67 63 71

Ô8(1) =

β̂(ρ)7 β̂(ρ)3 β̂(ρ)11

7 3 11
19 15 23
31 27 35
43 39 47
55 51 59
67 63 71

O8(2) =

β(ρ)6 β(ρ)2 β(ρ)10

6 2 10
18 14 22
30 26 34
42 38 46
54 50 58
66 62 70

Ô8(2) =

β̂(ρ)6 β̂(ρ)2 β̂(ρ)10

6 2 10
18 14 22
30 26 34
42 38 46
54 50 58
66 62 70
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O8(3) =

β(ρ)5 β(ρ)1 β(ρ)9

5 1 9
17 13 21
29 25 33
41 37 45
53 49 57
65 61 69

Ô8(3) =

β̂(ρ)5 β̂(ρ)1 β̂(ρ)9

5 1 9
17 13 21
29 25 33
41 37 45
53 49 57
65 61 69

O8(4) =

β(ρ)4 β(ρ)0 β(ρ)8

4 0 8
16 12 20
28 24 32
40 36 44
52 48 56
64 60 68

Ô8(4) =

β̂(ρ)4 β̂(ρ)0 β̂(ρ)8

4 0 8
16 12 20
28 24 32
40 36 44
52 48 56
64 60 68.

Finally we obtain the 12-abacus A12(β̂(ρ)) of ρ̂ the 8-core of ρ:

β̂(ρ)1 β̂(ρ)2 β̂(ρ)3 β̂(ρ)4 β̂(ρ)4 β̂(ρ)5 β̂(ρ)6 β̂(ρ)7 β̂(ρ)8 β̂(ρ)9 β̂(ρ)10 β̂(ρ)11
0 1 2 3 4 5 6 7 8 9 10 11
12 13 14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31 32 33 34 35
36 37 38 39 40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55 56 57 58 59
60 61 62 63 64 65 66 67 68 69 70 71.

For other results on partitions that are simultaneously s-cores and t-cores see [1], [3], [7].
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