A MULTIPLICITY PROBLEM RELATED TO SCHUR NUMBERS

Daniel Schaal
Department of Mathematics and Statistics, South Dakota State University, Brookings, SD 57007, USA
daniel.schaal@sdstate.edu
Hunter Snevily
Department of Mathematics, University of Idaho, Moscow, ID 43844, USA
snevily@uidaho.edu

Received: 9/18/06, Revised: 6/5/08, Accepted: 6/6/08, Published: 6/30/08

Abstract

For each natural number n, let C_{n} represent the set of all 2-colorings of the set $\{1,2, \ldots, n\}$. Given a natural number n and a coloring $\Delta \in C_{n}$, let $S(\Delta)$ represent the set $$
S(\Delta)=\left\{x_{3} \mid \exists x_{1}, x_{2} \text { s.t. } x_{1}+x_{2}=x_{3} \text { and } \Delta\left(x_{1}\right)=\Delta\left(x_{2}\right)=\Delta\left(x_{3}\right)\right\} .
$$

Given a natural number n, let

$$
f(n)=\min _{\Delta \in C_{n}} S(\Delta)
$$

For all natural numbers n and r where $\frac{n}{2} \leq r \leq n$, let $C_{n, r}$ represent the set of all 2-colorings of the set $\{1,2, \ldots, n\}$ where $\max \left\{\left|\Delta^{-1}(0)\right|,\left|\Delta^{-1}(1)\right|\right\}=r$. Given natural numbers n and r where $\frac{n}{2} \leq r \leq n$, let

$$
f(n, r)=\min _{\Delta \in C_{n, r}} S(\Delta)
$$

In this paper it is determined that for all natural numbers n,

$$
f(n)= \begin{cases}0 & 1 \leq n \leq 4 \\ \left\lfloor\frac{n-3}{2}\right\rfloor & n \geq 5\end{cases}
$$

and for all natural numbers n and r where $n \geq 5$ and $\frac{n}{2} \leq r \leq n$,

$$
f(n, r)= \begin{cases}r-2 & r<n \\ r-1 & r=n\end{cases}
$$

1. Introduction

Let \mathbb{N} represent the set of natural numbers and let $[a, b]$ denote the set $\{n \in \mathbb{N} \mid a \leq n \leq b\}$. A function $\Delta:[1, n] \rightarrow[0, t-1]$ is referred to as a t-coloring of the set $[1, n]$ or as a t-coloring
of length n. For every natural number n, let C_{n} represent the set of all 2-colorings of length n. For a given natural number n^{\prime} where $n^{\prime}<n$, a coloring Δ restricted to the set $\left[1, n^{\prime}\right]$ will be denoted by $\left.\Delta\right|_{n^{\prime}}$. Given a t-coloring Δ and a linear equation L in m variables, a solution $\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ to L is monochromatic if and only if $\Delta\left(x_{1}\right)=\Delta\left(x_{2}\right)=\cdots=\Delta\left(x_{m}\right)$.

In 1916, I. Schur [21] proved that for every $t \geq 2$, there exists a least integer $n=\operatorname{Schur}(t)$ such that for every t-coloring of length n, there exists a monochromatic solution to

$$
\begin{equation*}
x_{1}+x_{2}=x_{3} . \tag{1}
\end{equation*}
$$

Note that the integers x_{1} and x_{2} need not be distinct. The integers $S c h u r(t)$ are called Schur numbers. It is known that $\operatorname{Schur}(2)=5, \operatorname{Schur}(3)=14$ and $\operatorname{Schur}(4)=45$, but no other Schur numbers are known [22]. A monochromatic solution to equation (1) is called a monochromatic Schur triple. In 1933, R. Rado found necessary and sufficient conditions to determine if an arbitrary system of linear equations admits a monochromatic solution for every coloring of the natural numbers with a finite number of colors $[5,15,16,17]$.

Recently, several other problems related to Schur numbers have been considered [1, 2, $3,4,7,8,9,10,11,12,13,14]$. In 1996, R. Graham, V. Rödl and A. Rucinski proposed the following problem [6]. Find (asymptotically) the least number of monochromatic Schur triples that must occur in an arbitrary 2-coloring of length n. A problem of this nature where the number of monochromatic solutions is to be determined is referred to as a multiplicity problem. This problem was solved independently by A. Robertson and D. Zeilberger [19] and by T. Schoen [20] and was found to be $\frac{1}{22} n^{2}+O(n)$.

In this paper we modify the problem of Graham, Rödl and Rucinski by asking the following question. In an arbitrary 2-coloring of length n, how many integers must there be that are the third integer (i.e. x_{3}) in at least one monochromatic Schur triple? For convenience in this paper, we shall refer to the third integer in any monochromatic Schur triple as special, formally defined below.

Definition 1. For every 2 -coloring $\Delta:[1, n] \rightarrow[0,1]$, an integer $s \in[1, n]$ is special if and only if there exist integers $x_{1}, x_{2} \in[1, n]$, such that $x_{1}+x_{2}=s$ and $\Delta\left(x_{1}\right)=\Delta\left(x_{2}\right)=\Delta(s)$. The set of all special integers for a 2-coloring Δ is denoted by $S(\Delta)$.

Definition 2. For every natural number n, let

$$
f(n)=\min _{\Delta \in C_{n}} S(\Delta)
$$

In this paper it is determined that

$$
f(n)= \begin{cases}0 & 1 \leq n \leq 4 \\ \left\lfloor\frac{n-3}{2}\right\rfloor & n \geq 5\end{cases}
$$

More importantly, and perhaps more surprisingly, it is found that the number of special integers in a 2 -coloring Δ is more directly related to the number of monochromatic integers
in Δ, rather than the length of Δ. For instance, the number of special integers that must occur in an arbitrary 2 -coloring of length seventy with fourty integers colored 0 is the same as the number that must occur in an arbitrary 2-coloring of length sixty with fourty integers colored 0 or an arbitrary 2 -coloring of length fifty with fourty integers colored 0 . We say that a coloring Δ has r monochromatic integers if $\max \left\{\left|\Delta^{-1}(0)\right|,\left|\Delta^{-1}(1)\right|\right\}=r$. For all natural numbers n and r where $\frac{n}{2} \leq r \leq n$, let $C_{n, r}$ represent the set of all 2-colorings of length n with r monochromatic integers.

Definition 3. For all integers n and r where $n \geq 5$ and $\frac{n}{2} \leq r \leq n$, let

$$
f(n, r)=\min _{\Delta \in C_{n, r}} S(\Delta) .
$$

In this paper it is determined that

$$
f(n, r)= \begin{cases}r-2 & r<n \\ r-1 & r=n\end{cases}
$$

The above formula for $f(n)$ follows immediately from this result.

2. Main Results

Theorem 1. If n and r are natural numbers such that $n \geq 5$ and $\frac{n}{2} \leq r \leq n$, then

$$
f(n, r)= \begin{cases}r-2 & \text { if } r<n \\ r-1 & \text { if } r=n .\end{cases}
$$

Proof. First we shall prove the case where $r=n$. Let a natural number $n \geq 5$ be given, let $r=n$ and let $\Delta:[1, n] \rightarrow[0,1]$ be a coloring with r monochromatic integers. Clearly $S(\Delta)=[2, n]$, so $f(n, r)=r-1$.

We shall now consider the case where $r<n$. First we shall show that $f(n, r) \leq r-2$. Let integers n and r be given such that $n \geq 5$ and $\frac{n}{2} \leq r<n$. We shall exhibit a coloring $\Delta:[1, n] \rightarrow[0,1]$ where $\left|\Delta^{-1}(0)\right|=r$ and $|S(\Delta)|=r-2$. If $r=n-1$ let Δ be defined by

$$
\Delta(x)= \begin{cases}1 & x=1 \\ 0 & 2 \leq x \leq n\end{cases}
$$

It is clear that $S(\Delta)=[4, n]$ and that $|S(\Delta)|=n-3=r-2$. If $r \leq n-2$, let Δ be defined by

$$
\Delta(x)= \begin{cases}1 & 1 \leq x \leq n-r-1 \\ 0 & n-r \leq x \leq n-1 \\ 1 & x=n\end{cases}
$$

If $r=n-2$, then $\Delta(S)=[4, n-1]$; if $r=\frac{n}{2}$, then $\Delta(S)=[2, n-r-1]$; and if $\frac{n}{2}<r<n-2$, then $\Delta(S)=[2, n-r-1] \cup[2 n-2 r, n-1]$. Since in each case $|S(\Delta)|=r-2$, it follows that $f(n, r) \leq r-2$.

Next we shall show that $f(n, r) \geq r-2$ for all integers n and r where $n \geq 5$ and $\frac{n}{2} \leq r<n$. We will use induction on the integer n. When $n=5$ we must consider the two cases of $r=3$ and $r=4$. Since the 2-color Schur number is 5 , every 2-coloring of the set $[1,5]$ with 3 monochromatic integers has at least 1 special integer, so $f(5,3) \geq 1$. It is easy to check that every 2 -coloring of the set $[1,5]$ with 4 monochromatic integers has as least 2 special integers, so $f(5,4) \geq 2$. In both cases $f(5, r) \geq r-2$, so the basis step is complete. Now, let an integer $n_{0} \geq 6$ be given. We may assume that

$$
\begin{equation*}
f(n, r) \geq r-2 \text { for every } n \in\left[5, n_{0}-1\right] \text { and for every } r \text { such that } \frac{n}{2} \leq r<n \tag{2}
\end{equation*}
$$

We must show that $f\left(n_{0}, r\right) \geq r-2$ for all integers r such that $\frac{n_{0}}{2} \leq r<n_{0}$. Let an integer r such that $\frac{n_{0}}{2} \leq r<n_{0}$ be given and let a coloring $\Delta:\left[1, n_{0}\right] \rightarrow[0,1]$ with r monochromatic integers be given. We must show that $|S(\Delta)| \geq r-2$.

Without loss of generality, we may assume that Δ has r integers colored 0 . If $\Delta\left(n_{0}\right)=1$, then the coloring $\left.\Delta\right|_{n_{0}-1}$ has r integers colored 0 . If $r \leq n_{0}-2$, then by (2) it follows that $\left.\Delta\right|_{n_{0}-1}$ has at least $r-2$ special integers, so Δ does as well. If $r=n_{0}-1$ it has been previously shown that $\left.\Delta\right|_{n_{0}-1}$ has $r-1$ special integers. In each case $|S(\Delta)| \geq r-2$, so we may assume that $\Delta\left(n_{0}\right)=0$.

We shall consider three cases.
Case 1: Assume that $r>\frac{n_{0}+1}{2}$.
Since Δ has r integers colored 0 and $\Delta\left(n_{0}\right)=0$, it follows that $\left.\Delta\right|_{n_{0}-1}$ has $r-1$ integers colored 0 . Hence, from (2) we have that

$$
\left|S\left(\left.\Delta\right|_{n_{0}-1}\right)\right| \geq r-3,
$$

so it suffices to show that n_{0} is special. We shall consider the two subcases where n_{0} is even and where n_{0} is odd.
(i) Assume that n_{0} is even. It follows that $r>\frac{n_{0}}{2}$.

If $\Delta\left(\frac{n_{0}}{2}\right)=0$, then since $\Delta\left(n_{0}\right)=0$ and $\frac{n_{0}}{2}+\frac{n_{0}}{2}=n_{0}$, it follows that n_{0} is special. In this case we are done, so we may assume that $\Delta\left(\frac{n_{0}}{2}\right)=1$.

Let $A=\left[1, \frac{n_{0}}{2}-1\right] \cup\left[\frac{n_{0}}{2}+1, n_{0}-1\right]$. Since there are $r-1$ integers colored 0 in the set A and $r>\frac{n_{0}}{2}$, there are at least $\frac{n_{0}}{2}$ integers in the set A colored 0 . For every $i \in\left[1, \frac{n_{0}}{2}-1\right]$ let $A_{i}=\left\{i, n_{0}-i\right\}$. Hence the set $\left\{A_{1}, A_{2}, \ldots, A_{\frac{n_{0}}{2}-1}\right\}$ is a partition of the set A into $\frac{n_{0}}{2}-1$ subsets and there exists an $i \in\left[1, \frac{n_{0}}{2}-1\right]$ such that $\Delta(i)=\Delta\left(n_{0}-i\right)=0$. Then $\left(i, n_{0}-1, n_{0}\right)$ is a monochromatic Schur triple, so n_{0} is special.
(ii) Assume that n_{0} is odd.

This subcase is very similar to the n_{0} even subcase. Let $A=\left[1, n_{0}-1\right]$ and for every $i \in\left[1, \frac{n_{0}-1}{2}\right]$, let $A_{i}=\left\{i, n_{0}-i\right\}$. Since the set A has $r-1$ integers colored 0 and $r-1 \geq \frac{n_{0}+1}{2}$,
there exists an $i \in\left[1, \frac{n_{0}-1}{2}\right]$ such that $\left(i, n_{0}-i, n_{0}\right)$ is a monochromatic Schur triple, so n_{0} is special.

Since in both subcases n_{0} is special and it was previously shown that $\left|S\left(\left.\Delta\right|_{n_{0}-1}\right)\right| \geq r-3$, we have that $|S(\Delta)| \geq r-2$.

Case 2: Assume that n_{0} is even and $r=\frac{n_{0}}{2}$.
It follows that $\left.\Delta\right|_{n_{0}-1}$ has $r-1$ integers colored 0 and r integers colored 1. From (2) it follows that $\left.\Delta\right|_{n_{0}-1}$ has at least $r-2$ special integers, so Δ does as well and $|S(\Delta)| \geq r-2$.

Case 3: Assume that n_{0} is odd and $r=\frac{n_{0}+1}{2}$.
Since $n_{0}-2$ is odd, it follows that $\left.\Delta\right|_{n_{0}-2}$ has $\frac{n_{0}-1}{2}=r-1$ monochromatic integers. From (2) it follows that $\left.\Delta\right|_{n_{0}-2}$ has at least $r-3$ special integers, so it will be sufficient to show that $S(\Delta) \cap\left\{n_{0}-1, n_{0}\right\} \neq \emptyset$.

Recall that Δ has $r=\frac{n_{0}+1}{2}$ integers colored 0 and $\Delta\left(n_{0}\right)=0$. Hence, exactly $\frac{n_{0}-1}{2}$ integers in the set $\left[1, n_{0}-1\right]$ are colored 0 . Let $A=\left[1, n_{0}-1\right]$ and for every $i \in\left[1, \frac{n_{0}-1}{2}\right]$ let $A_{i}=\left\{i, n_{0}-i\right\}$. Hence the set $\left\{A_{1}, A_{2}, \ldots, A_{\frac{n_{0}-1}{2}}\right\}$ is a partition of the set A into $\frac{n_{0}-1}{2}$ subsets. If, for any $i \in\left[1, \frac{n_{0}-1}{2}\right]$, the set A_{i} is monochromatic in 0 , then $\left(i, n_{0}-i, n_{0}\right)$ is a monochromatic Schur triple and n_{0} is special. In this case we are done, so we may assume that, for every $i \in\left[1, \frac{n_{0}-1}{2}\right], A_{i}$ contains one integer colored 0 and one integer colored 1.

Now we will prove the following claim.
Claim. Let $\Delta\left(n_{0}-1\right)=a$ and let $b=1-a$. If $S(\Delta) \cap\left\{n_{0}-1, n_{0}\right\}=\emptyset$, then $\Delta(x)=b$ for every $x \in\left[1, \frac{n_{0}-1}{2}\right]$.

Proof. Assume that the hypothesis of the claim is satisfied and note that $\{a, b\}=\{0,1\}$. We shall show that $\Delta\left(\frac{n_{0}+1}{2}-i\right)=b$ for every $i \in\left[1, \frac{n_{0}-1}{2}\right]$ by using induction on i. First we shall show that

$$
\Delta\left(\frac{n_{0}+1}{2}-1\right)=b .
$$

If $\Delta\left(\frac{n_{0}+1}{2}-1\right)=a$, then $\left(\frac{n_{0}+1}{2}-1, \frac{n_{0}+1}{2}-1, n_{0}-1\right)$ is a monochromatic Schur triple and $n_{0}-1 \in S(\Delta)$, which is a contradiction. Hence, we may assume that $\Delta\left(\frac{n_{0}+1}{2}-1\right)=b$.

Now, let $i_{0} \in\left[2, \frac{n_{0}-1}{2}\right]$ be given and assume that $\Delta\left(\frac{n_{0}+1}{2}-\left(i_{0}-1\right)\right)=b$. We will show that

$$
\Delta\left(\frac{n_{0}+1}{2}-i_{0}\right)=b .
$$

Now, $A_{\frac{n_{0}+3}{2}-i_{0}}=\left\{\frac{n_{0}+1}{2}-\left(i_{0}-1\right), \frac{n_{0}-3}{2}+i_{0}\right\}$. Since $A_{\frac{n_{0}+3}{2}-i_{0}}$ contains an integer colored a, it follows that

$$
\Delta\left(\frac{n_{0}-3}{2}+i_{0}\right)=a .
$$

If $\Delta\left(\frac{n_{0}+1}{2}-i_{0}\right)=a$, then $\left(\frac{n_{0}-3}{2}+i_{0}, \frac{n_{0}+1}{2}-i_{0}, n_{0}-1\right)$ is a monochromatic Schur triple and $n_{0}-1 \in S_{3}(\Delta)$, which is a contradiction. Hence, we may assume that $\Delta\left(\frac{n_{0}+1}{2}-i_{0}\right)=b$ and the proof of the claim is complete.

Now, as noted above, if $S(\Delta) \cap\left\{n_{0}-1, n_{0}\right\} \neq \emptyset$, then $|S(\Delta)| \geq r-2$. If $S(\Delta) \cap$ $\left\{n_{0}-1, n_{0}\right\}=\emptyset$, then from the claim we have that $\Delta(x)=b$ for every $x \in\left[1, \frac{n_{0}-1}{2}\right]$. This implies that $\left[2, \frac{n_{0}-1}{2}\right] \subseteq S(\Delta)$ and that $|S(\Delta)| \geq \frac{n_{0}-3}{2}=r-2$. In either case we have that $|S(\Delta)| \geq r-2$, so we are done with Case 3 .

Since in all three cases we showed that $|S(\Delta)| \geq r-2$, the proof of Theorem 1 is complete.

We are now ready to state and prove Theorem 2. The theorem follows directly from previous results.

Theorem 2. For every natural number n,

$$
f(n)= \begin{cases}0 & 1 \leq n \leq 4 \\ \left\lfloor\frac{n-3}{2}\right\rfloor & n \geq 5\end{cases}
$$

Proof. The case where $1 \leq n \leq 4$ follows directly from the fact that the 2-color Schur number is 5 . If $n \geq 5$, then every coloring of the set $[1, n]$ contains at least $\left\lfloor\frac{n+1}{2}\right\rfloor$ monochromatic integers. From Theorem 1 it follows that every coloring of the set $[1, n]$ contains at least $\left\lfloor\frac{n+1}{2}\right\rfloor-2=\left\lfloor\frac{n-3}{2}\right\rfloor$ special integers.

Acknowledgments

This material is based upon work supported by a South Dakota Governor's 2010 Individual Research Seed Grant.

References

[1] A. Beutelspacher, W. Brestovansky, Generalized Schur numbers, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 969 (1982), 30-38.
[2] A. Bialostocki, G. Bialostocki, D. Schaal, A zero-sum theorem, Journal of Combinatorial Theory Series A, 101 (2003), no. 1, 147-152.
[3] A. Bialostocki, H. Lefmann, T. Meerdink, On the degree of regularity of some equations. Selected papers in honour of Paul Erdös on the occasion of his 80th birthday (Keszthely, 1993), Discrete Mathematics, 150 (1996), no. 1-3, 49-60.
[4] A. Bialostocki, D. Schaal, On a Variation of Schur Numbers, Graphs and Combinatorics, vol. 16 (2000), 139-147.
[5] W. Deuber, Developments Based on Rado's Dissertation "Studien zur Kombinatorik," Survey in Combinatorics (1989), 52-74, Cambridge University Press.
[6] R. Graham, V. Rödl, A. Rucinski, On Schur properties of random subsets of integers. Journal of Number Theory, 61 (1996), no. 2, 388-408.
[7] H. Harborth, S. Maasberg, Rado numbers for Fibonacci sequences and a problem of S. Rabinowitz, in: G. E. Bergum at al., eds., Applications of Fibonacci Numbers, Vol. 6 (Cluwer Acad. Publ.) 143-153.
[8] H. Harborth, S. Maasberg, Rado numbers for homogeneous second order linear recurrences - degree of partition regularity, Congressus Numerantium, Vol. 108 (1995) 109-118.
[9] H. Harborth, S. Maasberg, Rado numbers for $a(x+y)=b z$, Journal of Combinatorial Theory Series A, Vol. 80, num. 2 (1997) 356-363.
[10] H. Harborth, S. Maasberg, All two-color Rado numbers for $a(x+y)=b z$, Discrete Mathematics, 197/198 (1999), 397-407.
[11] B. Hopkins, D. Schaal, On Rado numbers for $\sum_{i=1}^{m-1} a_{i} x_{i}=x_{m}$, Advances in Applied Mathematics, 35 (2005), no. 4, 433-441.
[12] B. Johnson, D. Schaal, Disjunctive Rado numbers, Journal of Combinatorial Theory Series A, 112 (2005), no. 2, 263-276.
[13] S. Jones, D. Schaal, A class of two-color Rado numbers, Discrete Mathematics, 289 (2004) no. 1-3, 63-69.
[14] W. Kosek, D. Schaal, Rado Numbers for the equation $\sum_{i=1}^{m-1} x_{i}+c=x_{m}$ for negative values of c, Advances in Applied Mathematics, vol. 27 (2001) 805-815.
[15] R. Rado, Verallgemeinerung eines Satzes von van der Waerden mit Anwendungen auf ein Problem der Zahlentheorie, Sonderausg. Sitzungsber. Preuss. Akad. Wiss. Phys.- Math. Klasse, 17 (1933) 1-10.
[16] R. Rado, Studien zur Kombinatorik, Math. Z. 36 (1933), 242-280.
[17] R. Rado, Note on Combinatorial Analysis, Proc. London Math. Soc. 48 (1936) 122-160.
[18] A. Robertson, D. Schaal, Off-Diagonal Generalized Schur Numbers, Advances in Applied Mathematics, vol. 26 (2001) 252-257.
[19] A. Robertson, D. Zeilberger, A 2-coloring of $[1, N]$ can have $(1 / 22) N^{2}+O(N)$ monochromatic Schur triples, but not less, Electronic Journal of Combinatorics, 5 (1998), R19, 4 pp.
[20] T. Schoen, The number of monochromatic Schur triples. European Journal of Combinatorics, 20 (1999), no. 8, 855-866.
[21] I. Schur, Über die Kongruenz $x^{m}+y^{m} \equiv z^{m}(\bmod p)$. Jahresber. Deutsch. Math. Verein. 25 (1916), 114-117.
[22] W. Wallis, A. Street, J. Wallis, Combinatorics: Room Squares, Sum-free Sets, Hadamard Matrices, Lecture Notes in Math., vol. 292, Springer-Verlag, Berlin and New York, 1972.

