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Abstract

We present a slightly more general version of Boole’s additive formula for factorials as a
simple consequence of Lagrange’s Interpolating Polynomial theorem.

1. Introduction

In the first chapter of [3], Boole defines, for all real-valued functions of one real variable f(x),
the first difference of f(x) (with respect to the increment 1) as ∆f(x) = f(x+1)−f(x). He
then defines, for all integers n ≥ 2, the n-th difference by the recursive formula ∆nf(x) =
∆∆n−1f(x). This enables him to prove by induction (see [3], p. 5, (2)) that, for all positive
integers n, ∆nxn = n!. Later on, with the help of this formula, he derives the following
identity, known nowadays as the Boole additive formula for factorials (see [3], p. 20, (6)):

n∑

k=1

(−1)n−k

(
n

k

)
kn = n!

In [1], R. Anglani and M. Barile present two proofs of this identity, one completely
analytical, and the other by making use of an ingenuous combinatorial argument. Here, we
will give an immediate proof of a more general version of this identity by making use of
Lagrange’s Interpolating Polynomial theorem (see, for example, [2]).

2. Main Result

Proposition. Consider p(x) = a0xn + a1xn−1 + . . . an−1x + an, an arbitrary polynomial of
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degree n with real coefficients. For any real numbers a, b, with b #= 0,

n∑

k=0

(−1)n−k

(
n

k

)
p(a + kb) = a0 · bn · n!.

Proof. Since p has degree at most n, according to the Lagrange Interpolating Polynomial
theorem,

p(x) =
n∑

k=0

p(a + kb)
∏

0≤j #=k≤n

x− a− jb

(k − j)b
.

By identifying the leading coeficients on both sides of the above equality,

a0 =
n∑

k=0

p(a + kb)
∏

0≤j #=k≤n

1

(k − j)b
=

1

bn

n∑

k=0

(−1)n−kp(a + kb)

k!(n− k)!

=
1

n!bn

n∑

k=0

(−1)n−k

(
n

k

)
p(a + kb).

Therefore,
n∑

k=0

(−1)n−k

(
n

k

)
p(a + kb) = a0 · bn · n!.

!

Obviously, for a = 0, b = 1, and p(x) = xn, Proposition 1 is equivalent to Boole’s formula.
Moreover, it yields the well-known identity

n∑

k=1

(−1)n−k

(
n

k

)
km = 0,

which holds for m = 0, 1, . . . , n− 1.
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