ON RESTRICTED SUMSETS IN ABELIAN GROUPS OF ODD ORDER

Guoqing Wang
Institute of Mathematics, Dalian University of Technology, Dalian, 116024, P.R. China
gqwang1979@yahoo.com.cn

Received: 12/28/07, Revised: 1/17/08, Accepted: 4/8/08, Published: 4/17/08

Abstract

Let G be an abelian group of odd order, and let \mathcal{A} be a subset of G. For any integer h such that $2 \leq h \leq|\mathcal{A}|-2$, we prove that $\left|h^{\wedge} \mathcal{A}\right| \geq|\mathcal{A}|$ and equality holds if and only if \mathcal{A} is a coset of some subgroup of G, where $h^{\wedge} \mathcal{A}$ is the set of all sums of h distinct elements of \mathcal{A}.

1. Introduction

Let \mathcal{A} be a subset of an abelian group. For any integer $h \in \mathbb{N}_{0}$, we denote by $h^{\wedge} \mathcal{A}$ the set consisting of all sums of h distinct elements of \mathcal{A}, that is, all sums of the form $a_{1}+\cdots+a_{h}$, where $a_{1}, \ldots, a_{h} \in \mathcal{A}$ and $a_{i} \neq a_{j}$ for $i \neq j$. Throughout this paper, let \mathbb{Z}_{n} be the cyclic group of n elements, and let p be a prime number.

Over 40 years ago, Erdős and Heilbronn conjectured that $\left|2^{\wedge} \mathcal{A}\right| \geq \min \{p, 2|\mathcal{A}|-3\}$, where \mathcal{A} is a subset of the group \mathbb{Z}_{p}. Dias da Silva and Hamidoune [4] proved the generalization of this Erdős-Heilbronn conjecture for h-fold sums: $\left|h^{\wedge} \mathcal{A}\right| \geq \min \left\{p, h|\mathcal{A}|-h^{2}+1\right\}$.

Another proof was given by Alon, Nathanson and Ruzsa [1, 2] by using the polynomial method. L. Gallardo, G. Grekos, L. Habsieger, et al [5] made a study of $2^{\wedge} \mathcal{A}$ and $3^{\wedge} \mathcal{A}$, where \mathcal{A} is a subset of the group \mathbb{Z}_{n}. They obtained that $\left|2^{\wedge} \mathcal{A}\right| \geq n-2$ in the case when $|\mathcal{A}| \geq\lfloor n / 2\rfloor+1$. They also proved that $\left|3^{\wedge} \mathcal{A}\right|=n$ in the case when $|\mathcal{A}| \geq\lfloor n / 2\rfloor+1$ and $n \geq 16$. Hamidoune, Lladó and Serra [6] investigated restricted sumsets for general finite abelian groups. They proved that, for an abelian group G of odd order (respectively, cyclic group), $\left|2^{\wedge} \mathcal{A}\right| \geq \min \{|G|, 3|\mathcal{A}| / 2\}$ holds when \mathcal{A} is a generating set of $G, 0 \in \mathcal{A}$ and $|\mathcal{A}| \geq 21$ (respectively, $|\mathcal{A}| \geq 33$). The structure of a set for which equality holds was also determined.

For general finite abelian groups and an arbitrary positive integer h, very little is known about $\left|h^{\wedge} \mathcal{A}\right|$.

Our main result in this paper is the following.

Theorem 1.1 Let G be an abelian group of odd order, and let \mathcal{A} be a subset of G with $0 \in \mathcal{A}$. Let $2 \leq h \leq|\mathcal{A}|-2$. Then $\left|h^{\wedge} \mathcal{A}\right| \geq|\mathcal{A}|$. Moreover, equality holds if and only if \mathcal{A} is a subgroup of G.

2. Proof of Theorem 1.1

We begin by introducing some notation.
Let G be an abelian group. Let $S=g_{1} \cdot \ldots \cdot g_{l}$ be a sequence of elements in G. We call $|S|=l$ the length of $S ; \sigma(S)=\sum_{i=1}^{l} g_{i}$ the sum of $S ; \operatorname{supp}(S)=\{g: g$ is contained in $S\}$ the support of S; and $\sum_{h}(S)=\left\{\sum_{i \in I}^{i=1} g_{i}: I \subseteq[1, l]\right.$ with $\left.|I|=h\right\}$ the set of h-term subsums of S . Also, for T a subsequence of S, we let $S \cdot T^{-1}$ denote the sequence after removing the elements of T from S.

Let \mathcal{A} be a subset of the group G with $|\mathcal{A}|=l$. If $h>l$, then $h^{\wedge} \mathcal{A}=\emptyset$. We define $0^{\wedge} \mathcal{A}=\{0\}$. Note that $\left|h^{\wedge} \mathcal{A}\right|=\left|(l-h)^{\wedge} \mathcal{A}\right|$ for $h=0,1, \ldots, l$. In particular, $\left|(l-1)^{\wedge} \mathcal{A}\right|=$ $\left|1^{\wedge} \mathcal{A}\right|=|\mathcal{A}|$. Moreover, we have $h^{\wedge}(\mathcal{A}+g)=h^{\wedge} \mathcal{A}+h g$ for any $g \in G$. This means that the function $\left|h^{\wedge} \mathcal{A}\right|$ is invariant under the translation of the set \mathcal{A}.

For groups G and H, we use $H \leq G$ to mean that H is a subgroup of G.

Lemma 2.1 [3] Let $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{h}$ be nonempty subsets of the group \mathbb{Z}_{p}. Then

$$
\left|\mathcal{A}_{1}+\mathcal{A}_{2}+\ldots+\mathcal{A}_{h}\right| \geq \min \left\{p, \sum_{i=1}^{h}\left|\mathcal{A}_{i}\right|-h+1\right\}
$$

Lemma 2.2 [4] Let \mathcal{A} be a nonempty subset of the group \mathbb{Z}_{p}, and let $1 \leq h \leq|\mathcal{A}|$. Then

$$
\left|h^{\wedge} \mathcal{A}\right| \geq \min \{p, h(|\mathcal{A}|-h)+1\}
$$

Lemma 2.3 Let $h \geq 2$, and let \mathcal{A} be a subset of the group \mathbb{Z}_{p} such that $|\mathcal{A}| \geq 2 h$. Then $\left|h^{\wedge} \mathcal{A}\right| \geq|\mathcal{A}|$. Moreover, equality holds if and only if $\mathcal{A}=\mathbb{Z}_{p}$.

Proof. It follows from Lemma 2.2 that $\left|h^{\wedge} \mathcal{A}\right| \geq \min \{p, h(|\mathcal{A}|-h)+1\} \geq|\mathcal{A}|$. Since $h(|\mathcal{A}|-h)+1>|\mathcal{A}|$, it follows that if $\left|h^{\wedge} \mathcal{A}\right|=|\mathcal{A}|$ then $|\mathcal{A}|=p$.

Lemma 2.4 Let G be a finite abelian group, and let X and Y be two subsets of G such that $|X|=|Y| \geq 2$. Then $|X+Y| \geq|X|$. Moreover, equality holds if and only if there exists a subgroup H of G such that, $X=H+g_{x}$ and $Y=H+g_{y}$ where $g_{x} \in X$ and $g_{y} \in Y$.

Proof. $\quad|X+Y| \geq|X|$ holds trivially. Now suppose $|X+Y|=|X|=|Y|$. Choose $g_{x} \in X$ and $g_{y} \in Y$. Put $X^{\prime}=X-g_{x}$ and $Y^{\prime}=Y-g_{y}$. Since $0 \in X^{\prime} \cap Y^{\prime}$, we have $X^{\prime} \cup Y^{\prime} \subseteq X^{\prime}+Y^{\prime}$. Also, we see that $\left|X^{\prime}\right|=|X|,\left|Y^{\prime}\right|=|Y|$ and $\left|X^{\prime}+Y^{\prime}\right|=|X+Y|$. It follows that $\left|X^{\prime}+Y^{\prime}\right|=\left|X^{\prime}\right|=\left|Y^{\prime}\right|$, and so $X^{\prime}=Y^{\prime}=X^{\prime}+Y^{\prime}=X^{\prime}+X^{\prime}$. Therefore, X^{\prime} is a subgroup of G and we are done.

Lemma 2.5 Let G, G^{\prime} be finite abelian groups and φ a homomorphism of G to G^{\prime}. Let \mathcal{A} be a subset of G of cardinality l, and let $1 \leq h \leq l$. Then $\varphi\left(h^{\wedge} \mathcal{A}\right)=\sum_{h}(S)$, where $S=\prod_{g \in \mathcal{A}} \varphi(g)$ is a sequence of elements in G^{\prime}.

Proof. The conclusion follows from the definition of a group homomorphism.

Lemma 2.6 Let $h \geq 1$, and let S be a sequence of elements in the group \mathbb{Z}_{p} with $|S| \geq h+1$. Then $\left|\sum_{h}(S)\right| \geq|\operatorname{supp}(S)|$.

Proof. Let $k=|\operatorname{supp}(S)|$. The lemma is trivial if $h=1$ or $k=1$. Therefore, we may assume that $h \geq 2$ and $k \geq 2$. Let $S=S_{0} \cdot S_{1}$, where $S_{0}=\operatorname{supp}(S)$ and $S_{1}=S \cdot S_{0}^{-1}$. Let $h_{0}=$ $\min \{k-1, h\}$ and $h_{1}=h-h_{0}$. Then $1 \leq h_{0} \leq k-1=\left|S_{0}\right|-1$ and $0 \leq h_{1} \leq\left|S_{1}\right|$. It follows that $\sum_{h_{0}}\left(S_{0}\right)+\sum_{h_{1}}\left(S_{1}\right) \subseteq \sum_{h}(S)$. By Lemma 2.2, we have $\left|\sum_{h_{0}}\left(S_{0}\right)\right| \geq \min \left\{p, h_{0}\left(k-h_{0}\right)+1\right\} \geq k$. It follows from Lemma 2.1 that $\left|\sum_{h}(S)\right| \geq\left|\sum_{h_{0}}\left(S_{0}\right)+\sum_{h_{1}}\left(S_{1}\right)\right| \geq \min \left\{p,\left|\sum_{h_{0}}\left(S_{0}\right)\right|+\left|\sum_{h_{1}}\left(S_{1}\right)\right|-\right.$ $1\} \geq \min \{p, k\}=k$.

Lemma 2.7 Let $h \geq 2$, and let $S=g_{1}^{\alpha_{1}} g_{2}^{\alpha_{2}} \cdot \ldots \cdot g_{r}^{\alpha_{r}}$ be a sequence of elements in the group \mathbb{Z}_{p} with $|S| \geq h+2$, where $r \geq 2$ and $\alpha_{1} \geq \alpha_{2} \geq \cdots \geq \alpha_{r} \geq 1$. If $\alpha_{2} \geq 2$ or $r \geq 4$ then $\left|\sum_{h}(S)\right| \geq \min \{p, r+1\}$.

Proof. Let $S=S_{0} \cdot S_{1}$, where $S_{0}=\operatorname{supp}(S)=\left\{g_{1}, g_{2}, \ldots, g_{r}\right\}$ and $S_{1}=S \cdot S_{0}^{-1}$. If $\alpha_{2} \geq 2$, let $h_{0}=\min \{r-1, h-1\}$ and $h_{1}=h-h_{0}$. Then $1 \leq h_{0} \leq r-1$ and $1 \leq h_{1} \leq\left|S_{1}\right|-1$. By Lemma 2.6, we have $\left|\sum_{h_{0}}\left(S_{0}\right)\right| \geq\left|\operatorname{supp}\left(S_{0}\right)\right|=r$ and $\left|\sum_{h_{1}}\left(S_{1}\right)\right| \geq\left|\operatorname{supp}\left(S_{1}\right)\right| \geq 2$. Note that $\sum_{h_{0}}\left(S_{0}\right)+\sum_{h_{1}}\left(S_{1}\right) \subseteq \sum_{h}(S)$. It follows from Lemma 2.1 that $\left|\sum_{h}(S)\right| \geq\left|\sum_{h_{0}}\left(S_{0}\right)+\sum_{h_{1}}\left(S_{1}\right)\right| \geq$ $\min \left\{p,\left|\sum_{h_{0}}\left(S_{0}\right)\right|+\left|\sum_{h_{1}}\left(S_{1}\right)\right|-1\right\} \geq \min \{p, r+1\}$.

Now assume that $r \geq 4$. Let $h_{0}=\min \{r-2, h\}$ and $h_{1}=h-h_{0}$. Then $2 \leq h_{0} \leq r-2$ and $0 \leq h_{1} \leq\left|S_{1}\right|$. By Lemma 2.2, we have $\left|\sum_{h_{0}}\left(S_{0}\right)\right| \geq \min \left\{p, h_{0}\left(r-h_{0}\right)+1\right\} \geq \min \{p, r+1\}$. Note that $\sum_{h_{0}}\left(S_{0}\right)+\sum_{h_{1}}\left(S_{1}\right) \subseteq \sum_{h}(S)$. It follows from Lemma 2.1 that $\left|\sum_{h}(S)\right| \geq \mid \sum_{h_{0}}\left(S_{0}\right)+$ $\sum_{h_{1}}\left(S_{1}\right) \mid \geq \min \left\{p,\left|\sum_{h_{0}}\left(S_{0}\right)\right|+\left|\sum_{h_{1}}\left(S_{1}\right)\right|-1\right\} \geq \min \{p, r+1\}$.

Proof of Theorem 1.1. Let $\mathcal{A}=\left\{a_{0}, a_{1}, \ldots, a_{l-1}\right\}$, where $a_{0}=0$. Since $\left|h^{\wedge} \mathcal{A}\right|=\left|(l-h)^{\wedge} \mathcal{A}\right|$, we need only to consider the case that $h \leq\lfloor|\mathcal{A}| / 2\rfloor$.

Let m be the number of prime factors of $|G|$ (counted with multiplicity). We proceed by induction on m. If $m=1$, the theorem follows from Lemma 2.3. Now assume $|G|$ is composite. Let p be the smallest prime factor of $|G|$, and let H be a subgroup of G of index p. Let ϕ_{H} be the canonical epimorphism of G onto G / H. Then $\bar{S}=\prod_{i=0}^{l-1} \phi_{H}\left(a_{i}\right)$ is a sequence of elements in G / H. Let $G / H=\{H, H+g, \ldots, H+(p-1) g\}$. For convenience, we also let G / H denote $\{\bar{g}, 2 \bar{g}, \ldots, p \bar{g}\}$. Define $\mathcal{A}_{i}=\mathcal{A} \bigcap(H+i g)$ for $i=0,1, \ldots, p-1$. Then $\mathcal{A}=\bigcup_{i=0}^{p-1} \mathcal{A}_{i}$. Let $M=\max \left\{\left|\mathcal{A}_{i}\right|: 0 \leq i \leq p-1\right\}$. Since $\left|h^{\wedge} \mathcal{A}\right|$ is invariant under the translation of A, we can assume without loss of generality that $M=\left|\mathcal{A}_{0}\right|$. Note that, if $|\mathcal{A}|=4$, then $h=2$, and so $\left|2^{\wedge} \mathcal{A}\right|>|\mathcal{A}|$ follows by straightforward calculations. So, we may assume that $|\mathcal{A}| \geq 5$.

If $M=1$, then \bar{S} is squarefree, that is, \bar{S} is a subset of G / H with $|\bar{S}|=|\mathcal{A}|$. By Lemma 2.3, we have $\left|\sum_{h}(\bar{S})\right| \geq|\bar{S}|$. It follows from Lemma 2.5 that $\left|\phi_{H}\left(h^{\wedge} \mathcal{A}\right)\right|=\left|\sum_{h}(\bar{S})\right|$, and so $\left|h^{\wedge} \mathcal{A}\right| \geq\left|\phi_{H}\left(h^{\wedge} \mathcal{A}\right)\right|=\left|\sum_{h}(\bar{S})\right| \geq|\bar{S}|=|\mathcal{A}|$. Now suppose $\left|h^{\wedge} \mathcal{A}\right|=|\mathcal{A}|$. Then $\left|\sum_{h}(\bar{S})\right|=|\bar{S}|$. It follows from Lemma 2.3 that $\bar{S}=G / H$, and so $\mathcal{A}=\left\{a_{0}, a_{1}, \ldots, a_{p-1}\right\}$, where $\phi_{H}\left(a_{i}\right)=i \bar{g}$ for each $i \in[0, p-1]$. Moreover, since $\phi_{H}\left(h^{\wedge} \mathcal{A}\right)=\sum_{h}(\bar{S})=G / H$, we conclude that $h^{\wedge} \mathcal{A}=\left\{c_{0}, c_{1}, \ldots, c_{p-1}\right\}$, where $\phi_{H}\left(c_{j}\right)=j \bar{g}$ for each $j \in[0, p-1]$.

We denote by $|i|$ the least nonnegative residue of i modulo p . Let $d_{i}=a_{|i+1|}-a_{|i|}$ for $i=0,1, \ldots, p-1$. We shall prove that $d_{i}=d_{0}$ for $i=0,1, \ldots, p-1$. Let i be an arbitrary integer of $[0, p-1]$. Choose a subset U of \mathcal{A} of cardinality h such that $\left\{a_{|i|}, a_{|i+1|}\right\} \subseteq U$ and $\left\{a_{|i-1|}, a_{|i+2|}\right\} \bigcap U=\emptyset$. Let $U^{\prime}=\left(U \backslash\left\{a_{|i|}, a_{|i+1|}\right\}\right) \bigcup\left\{a_{|i-1|}, a_{|i+2|}\right\}$. It follows that $\phi_{H}(\sigma(U))=\sigma\left(\phi_{H}(U)\right)=\sigma\left(\phi_{H}\left(U^{\prime}\right)\right)=\phi_{H}\left(\sigma\left(U^{\prime}\right)\right)=x \bar{g}$ for some $x \in[0, p-1]$, and so $\sigma(U)=c_{x}=\sigma\left(U^{\prime}\right)$. It follows that $d_{|i+1|}=\left(a_{|i+2|}-a_{|i+1|}\right)=\left(a_{|i|}-a_{|i-1|}\right)=d_{|i-1|}$. Since $\operatorname{gcd}(2, p)=1$, it follows that $d_{i}=d_{0}$ for $i=0,1, \ldots, p-1$. Therefore, we have $\mathcal{A}=\left\{a_{0}, a_{0}+d_{0}, a_{0}+2 d_{0}, \ldots, a_{0}+(p-1) d_{0}\right\}=<d_{0}>\leq G$, and we are done.

Now we assume $M \geq 2$. We split the proof into two steps.
Step 1. We shall show $\left|h^{\wedge} \mathcal{A}\right| \geq|\mathcal{A}|$, and find some necessary conditions for $\left|h^{\wedge} \mathcal{A}\right|=|\mathcal{A}|$.
Let $\bar{T}=\prod_{a_{i} \in \mathcal{A} \backslash \mathcal{A}_{0}} \phi_{H}\left(a_{i}\right)$. Then \bar{T} is a subsequence of \bar{S}.
Case 1. $|\operatorname{supp}(\bar{S})|=1$. This implies that $\mathcal{A} \subseteq H$. It follows from the induction hypothesis that $\left|h^{\wedge} \mathcal{A}\right| \geq|\mathcal{A}|$.

Case 2. $|\operatorname{supp}(\bar{S})|=2$. This implies that $\mathcal{A}=\mathcal{A}_{0} \bigcup \mathcal{A}_{i_{1}}$, where $i_{1} \in[1, p-1]$.
Subcase 2.1 $\left|\mathcal{A}_{i_{1}}\right|=1$. We have $\left|\mathcal{A}_{0}\right|=|\mathcal{A}|-1 \geq 2 h-1 \geq h+1$. Let $W_{0}=$
$h^{\wedge} \mathcal{A}_{0}$ and $W_{1}=(h-1)^{\wedge} \mathcal{A}_{0}+\mathcal{A}_{i_{1}}$. Observe $W_{0} \bigcup W_{1} \subseteq h^{\wedge} \mathcal{A}$. Since $\phi_{H}\left(W_{0}\right)=\overline{0}$ and $\phi_{H}\left(W_{1}\right)=i_{1} \bar{g}$, we have $W_{0} \bigcap W_{1}=\emptyset$. By the induction hypothesis, we have $\left|h^{\wedge} \mathcal{A}_{0}\right| \geq\left|\mathcal{A}_{0}\right|$ and $\left|(h-1)^{\wedge} \mathcal{A}_{0}\right| \geq\left|\mathcal{A}_{0}\right|$. Thus, $\left|W_{j}\right| \geq\left|\mathcal{A}_{0}\right|$ for both $j=0$ and $j=1$. Therefore, it follows that $\left|h^{\wedge} \mathcal{A}\right| \geq\left|W_{0} \bigcup W_{1}\right|=\left|W_{0}\right|+\left|W_{1}\right| \geq 2\left|\mathcal{A}_{0}\right|>|\mathcal{A}|$.

Subcase 2.2 $\left|\mathcal{A}_{i_{1}}\right| \geq 2$. Since $|\mathcal{A}| \geq \max \{2 h, 5\}$ and $\left|\mathcal{A}_{0}\right| \geq|\mathcal{A}| / 2$, we have $\left|\mathcal{A}_{0}\right| \geq$ $\max \{h, 3\}$. Let $h_{0}=\min \left\{\left|\mathcal{A}_{0}\right|-1, h\right\}$ and $h_{1}=h-h_{0}$. Then $2 \leq h_{0} \leq\left|\mathcal{A}_{0}\right|-1$, and $h_{1} \in\{0,1\}$ since $h \leq\lfloor|\mathcal{A}| / 2\rfloor \leq\left|\mathcal{A}_{0}\right|$. Moreover, we have $h_{1}+2 \leq\left|\mathcal{A}_{i_{1}}\right|$, since if $\left|\mathcal{A}_{i_{1}}\right|=2$ then $h_{0}=h \leq\lfloor|\mathcal{A}| / 2\rfloor \leq\left|\mathcal{A}_{0}\right|-1$, and since if $\left|\mathcal{A}_{i_{1}}\right|>2$ then it is trivial.

Let $W_{0}=h_{0}^{\wedge} \mathcal{A}_{0}+h_{1}^{\wedge} \mathcal{A}_{i_{1}}, W_{1}=\left(h_{0}-1\right)^{\wedge} \mathcal{A}_{0}+\left(h_{1}+1\right)^{\wedge} \mathcal{A}_{i_{1}}$ and $W_{2}=\left(h_{0}-2\right)^{\wedge} \mathcal{A}_{0}+$ $\left(h_{1}+2\right)^{\wedge} \mathcal{A}_{i_{1}}$. Note that W_{0}, W_{1}, W_{2} are pairwise disjoint nonempty subsets of $h^{\wedge} \mathcal{A}$. By the induction hypothesis, we have that $\left|W_{0}\right| \geq\left|h_{0}^{\wedge} \mathcal{A}_{0}\right| \geq\left|\mathcal{A}_{0}\right|$ and $\left|W_{1}\right| \geq\left|\left(h_{0}-1\right)^{\wedge} \mathcal{A}_{0}\right| \geq\left|\mathcal{A}_{0}\right|$. Therefore, $\left|h^{\wedge} \mathcal{A}\right| \geq\left|W_{0}\right|+\left|W_{1}\right|+\left|W_{2}\right| \geq 2\left|\mathcal{A}_{0}\right|+1>|\mathcal{A}|$.

Case 3. $|\operatorname{supp}(\bar{S})|=r \geq 3$. We rewrite $\mathcal{A}=\bigcup_{j=0}^{r-1} \mathcal{A}_{i_{j}}$, where $i_{0}=0,\left\{i_{1}, \ldots, i_{r-1}\right\} \subseteq$ $[1, p-1]$, and $\left|\mathcal{A}_{0}\right| \geq\left|\mathcal{A}_{i_{1}}\right| \geq \cdots \geq\left|\mathcal{A}_{i_{r-1}}\right|>0$.

If $h=2$, let $W_{j}=\mathcal{A}_{0}+\mathcal{A}_{i_{j}}$ for $j=1, \ldots, r-1$. It follows that $\phi_{H}\left(W_{j}\right)=i_{j} \bar{g}$. Since $r \geq 3$, it follows from Lemma 2.2 that $\left|2^{\wedge} \operatorname{supp}(\bar{S})\right| \geq \min \{p, 2(r-2)+1\} \geq r$, and so there exists a 2-subset $\{x, y\} \subseteq[1, r-1]$ such that $i_{x} \bar{g}+i_{y} \bar{g} \notin\left\{i_{1} \bar{g}, i_{2} \bar{g}, \ldots, i_{r-1} \bar{g}\right\}$. Let $W_{0}=\mathcal{A}_{i_{x}}+\mathcal{A}_{i_{y}}$. Since $\phi_{H}\left(W_{0}\right)=i_{x} \bar{g}+i_{y} \bar{g}$, it follows that $W_{0}, W_{1}, \ldots, W_{r-1}$ are pairwise disjoint. It is easy to see that $\left|W_{0}\right| \geq \max \left\{\left|\mathcal{A}_{i_{x}}\right|,\left|\mathcal{A}_{i_{y}}\right|\right\} \geq\left|\mathcal{A}_{i_{r-2}}\right|$ and $\left|W_{j}\right| \geq\left|\mathcal{A}_{0}\right|$ for $j=1, \ldots, r-1$. Therefore, $\left|2^{\wedge} \mathcal{A}\right| \geq \sum_{j=0}^{r-1}\left|W_{j}\right| \geq\left|\mathcal{A}_{i_{r-2}}\right|+(r-1)\left|\mathcal{A}_{0}\right| \geq\left|\mathcal{A}_{0}\right|+\left|\mathcal{A}_{i_{1}}\right|+\cdots+\left|\mathcal{A}_{i_{r-1}}\right|=|\mathcal{A}|$.

Moreover, if $\left|2^{\wedge} \mathcal{A}\right|=|\mathcal{A}|$, then,

$$
\begin{equation*}
2^{\wedge} \mathcal{A}=\bigcup_{j=0}^{r-1} W_{j}, \text { and }\left|W_{j}\right|=\left|\mathcal{A}_{i_{j}}\right|=\left|\mathcal{A}_{0}\right| \text { for } j=0,1, \ldots, r-1 \tag{2.1}
\end{equation*}
$$

Now we suppose $h \geq 3$ and distinguish several subcases.
Subcase $3.1|\operatorname{supp}(\bar{S})|=3$. This implies that $\mathcal{A}=\mathcal{A}_{0} \cup \mathcal{A}_{i_{1}} \cup \mathcal{A}_{i_{2}}$, where $\left\{i_{1}, i_{2}\right\} \subseteq$ $[1, p-1]$ and $\left|\mathcal{A}_{0}\right| \geq\left|\mathcal{A}_{i_{1}}\right| \geq\left|\mathcal{A}_{i_{2}}\right|>0$.

Subsubcase 3.1.1 $\left|\mathcal{A}_{0}\right| \geq h$. Let $W_{0}=(h-1)^{\wedge} \mathcal{A}_{0}+\mathcal{A}_{i_{1}}, W_{1}=(h-1)^{\wedge} \mathcal{A}_{0}+\mathcal{A}_{i_{2}}$ and $W_{2}=(h-2)^{\wedge} \mathcal{A}_{0}+\mathcal{A}_{i_{1}}+\mathcal{A}_{i_{2}}$. Note that W_{0}, W_{1}, W_{2} are pairwise disjoint subsets of $h^{\wedge} \mathcal{A}$. By the induction hypothesis, we have that $\left|(h-1)^{\wedge} \mathcal{A}_{0}\right| \geq\left|\mathcal{A}_{0}\right|$ and $\left|(h-2)^{\wedge} \mathcal{A}_{0}\right| \geq\left|\mathcal{A}_{0}\right|$. Thus, $\left|W_{j}\right| \geq\left|\mathcal{A}_{0}\right|$ for $j=0,1,2$. It follows that $\left|h^{\wedge} \mathcal{A}\right| \geq\left|W_{0}\right|+\left|W_{1}\right|+\left|W_{2}\right| \geq 3\left|\mathcal{A}_{0}\right| \geq|\mathcal{A}|$.

Moreover, if $\left|h^{\wedge} \mathcal{A}\right|=|\mathcal{A}|$, then

$$
\begin{equation*}
h^{\wedge} \mathcal{A}=\bigcup_{j=0}^{2} W_{j} \text { and }\left|W_{j}\right|=\left|\mathcal{A}_{i_{j}}\right|=\left|\mathcal{A}_{0}\right| \text { for } j=0,1,2 . \tag{2.2}
\end{equation*}
$$

Subsubcase 3.1.2 $\left|\mathcal{A}_{0}\right|<h$. Note that since $h \leq\lfloor|\mathcal{A}| / 2\rfloor$ we have $\left|\mathcal{A}_{i_{j}}\right| \geq 2$ for both $j=1$ and $j=2$. Let $h_{0}=\left|\mathcal{A}_{0}\right|-1$ and $h_{1}=h-h_{0}$. Then $h_{0} \geq 1$, and $2 \leq h_{1} \leq\left|\mathcal{A} \backslash \mathcal{A}_{0}\right|-2$, since $\left|\mathcal{A}_{0}\right|-1 \leq h-2$ and $\left|\mathcal{A} \backslash \mathcal{A}_{0}\right|-h_{1}+\left|\mathcal{A}_{0}\right|-h_{0}=|\mathcal{A}|-h \geq h \geq 3$.

By Lemma 2.5 and Lemma 2.7, we have $\left|\phi_{H}\left(h_{1}^{\wedge}\left(\mathcal{A} \backslash \mathcal{A}_{0}\right)\right)\right|=\left|\sum_{h_{1}}(\bar{T})\right| \geq \min \{p,|\operatorname{supp}(\bar{T})|+$ $1\}=3$, and so there exists a 3 -subset $\left\{c_{0}, c_{1}, c_{2}\right\} \subseteq h_{1}^{\wedge}\left(\mathcal{A} \backslash \mathcal{A}_{0}\right)$ such that $\phi_{H}\left(c_{0}\right), \phi_{H}\left(c_{1}\right)$ and $\phi_{H}\left(c_{2}\right)$ are pairwise distinct.

Let $W_{j}=h_{0}^{\wedge} \mathcal{A}_{0}+c_{j}$ for $j=0,1,2$. Similar to Subsubcase 3.1.1, we have $\left|h^{\wedge} \mathcal{A}\right| \geq$ $\left|W_{0}\right|+\left|W_{1}\right|+\left|W_{2}\right| \geq 3\left|\mathcal{A}_{0}\right| \geq|\mathcal{A}|$.

Moreover, if $\left|h^{\wedge} \mathcal{A}\right|=|\mathcal{A}|$, then

$$
\begin{equation*}
h^{\wedge} \mathcal{A}=\bigcup_{j=0}^{2} W_{j} \text { and }\left|W_{j}\right|=\left|\mathcal{A}_{i_{j}}\right|=\left|\mathcal{A}_{0}\right| \text { for } j=0,1,2 . \tag{2.3}
\end{equation*}
$$

Subcase 3.2 $|\operatorname{supp}(\bar{S})|=4$. This implies that $\mathcal{A}=\mathcal{A}_{0} \cup \mathcal{A}_{i_{1}} \cup \mathcal{A}_{i_{2}} \cup \mathcal{A}_{i_{3}}$, where $\left\{i_{1}, i_{2}, i_{3}\right\} \subseteq[1, p-1]$ and $\left|\mathcal{A}_{0}\right| \geq\left|\mathcal{A}_{i_{1}}\right| \geq\left|\mathcal{A}_{i_{2}}\right| \geq\left|\mathcal{A}_{i_{3}}\right|>0$. Let $h_{0}=\min \left\{\left|\mathcal{A}_{0}\right|-1, h-2\right\}$ and $h_{1}=h-h_{0}$. Note that $1 \leq h_{0} \leq\left|\mathcal{A}_{0}\right|-1$ and $2 \leq h_{1} \leq\left|\mathcal{A} \backslash \mathcal{A}_{0}\right|-1$.

Subsubcase 3.2.1 $\left|\mathcal{A}_{i_{2}}\right|=1$. By Lemma 2.5 and Lemma 2.6, we have $\mid \phi_{H}\left(h_{1}^{\wedge}(\mathcal{A} \backslash\right.$ $\left.\left.\mathcal{A}_{0}\right)\right)\left|=\left|\sum_{h_{1}}(\bar{T})\right| \geq|\operatorname{supp}(\bar{T})|=3\right.$, and so there exists a 3 -subset $\left\{c_{0}, c_{1}, c_{2}\right\} \subseteq h_{1}^{\wedge}\left(\mathcal{A} \backslash \mathcal{A}_{0}\right)$ such that $\phi_{H}\left(c_{0}\right), \phi_{H}\left(c_{1}\right)$ and $\phi_{H}\left(c_{2}\right)$ are pairwise distinct.

Let $W_{j}=h_{0}^{\wedge} \mathcal{A}_{0}+c_{j}$ for $j=0,1,2$. Note that W_{0}, W_{1} and W_{2} are pairwise disjoint subsets of $h^{\wedge} \mathcal{A}$. By the induction hypothesis, we have $\left|W_{j}\right|=\left|h_{0}^{\wedge} \mathcal{A}_{0}\right| \geq\left|\mathcal{A}_{0}\right|$ for $j=0,1,2$. By Lemma 2.5 and Lemma 2.7, we have $\left|\phi_{H}\left(h^{\wedge} \mathcal{A}\right)\right|=\left|\sum_{h}(\bar{S})\right| \geq \min \{p,|\operatorname{supp}(\bar{S})|+1\}=5$, and so there exist at least two distinct elements c_{3}, c_{4} of $\left(h^{\wedge} \mathcal{A}\right) \backslash\left(W_{0} \bigcup W_{1} \bigcup W_{2}\right)$. Therefore, $\left|h^{\wedge} \mathcal{A}\right| \geq\left|W_{0}\right|+\left|W_{1}\right|+\left|W_{2}\right|+\left|\left\{c_{3}, c_{4}\right\}\right| \geq 3\left|\mathcal{A}_{0}\right|+2>|\mathcal{A}|$.

Subsubcase 3.2.2 $\left|\mathcal{A}_{i_{2}}\right| \geq 2$. We have $h_{1} \leq\left|\mathcal{A} \backslash \mathcal{A}_{0}\right|-2$, since it is trivial if $h_{0}=h-2 \leq\left|\mathcal{A}_{0}\right|-1$, and since $\left|\mathcal{A}_{0}\right|-h_{0}+\left|\mathcal{A} \backslash \mathcal{A}_{0}\right|-h_{1}=|\mathcal{A}|-h \geq h \geq 3$ if $h_{0}=\left|\mathcal{A}_{0}\right|-1 \leq h-2$.

By Lemma 2.5 and Lemma 2.7, we have $\left|\phi_{H}\left(h_{1}^{\wedge}\left(\mathcal{A} \backslash \mathcal{A}_{0}\right)\right)\right|=\left|\sum_{h_{1}}(\bar{T})\right| \geq \min \{p,|\operatorname{supp}(\bar{T})|+$ $1\}=4$, and so there exists a 4 -subset $\left\{c_{0}, c_{1}, c_{2}, c_{3}\right\} \subseteq h_{1}^{\wedge}\left(\mathcal{A} \backslash \mathcal{A}_{0}\right)$ such that $\phi_{H}\left(c_{0}\right), \phi_{H}\left(c_{1}\right)$, $\phi_{H}\left(c_{2}\right)$ and $\phi_{H}\left(c_{3}\right)$ are pairwise distinct.

Let $W_{j}=h_{0}^{\wedge} \mathcal{A}_{0}+c_{j}$ for $j=0,1,2,3$. Note that W_{0}, W_{1}, W_{2} and W_{3} are pairwise disjoint subsets of $h^{\wedge} \mathcal{A}$. By Lemma 2.7, we have $\left|\sum_{h}(\bar{S})\right| \geq 5$, and so there exists an element $c_{4} \in\left(h^{\wedge} \mathcal{A}\right) \backslash\left(W_{0} \bigcup W_{1} \bigcup W_{2} \bigcup W_{3}\right)$. Therefore, $\left|h^{\wedge} \mathcal{A}\right| \geq\left|W_{0}\right|+\left|W_{1}\right|+\left|W_{2}\right|+\left|W_{3}\right|+1 \geq$ $4\left|\mathcal{A}_{0}\right|+1>|\mathcal{A}|$.

Subcase 3.3 $|\operatorname{supp}(\bar{S})|=r \geq 5$. Let $h_{0}=\min \left\{\left|\mathcal{A}_{0}\right|-1, h-2\right\}$ and $h_{1}=h-h_{0}$.

Similar to Subsubcase 3.1.2, we have $1 \leq h_{0} \leq\left|\mathcal{A}_{0}\right|-1$ and $2 \leq h_{1} \leq\left|\mathcal{A} \backslash \mathcal{A}_{0}\right|-2$.
By Lemma 2.5 and Lemma 2.7, we have $\left|\phi_{H}\left(h_{1}^{\wedge}\left(\mathcal{A} \backslash \mathcal{A}_{0}\right)\right)\right|=\left|\sum_{h_{1}}(\bar{T})\right| \geq \min \{p,|\operatorname{supp}(\bar{T})|+$ $1\}=|\operatorname{supp}(\bar{T})|+1=r$, and so there exists an r-subset $\left\{c_{0}, c_{1}, \ldots, c_{r-1}\right\} \subseteq h_{1}^{\wedge}\left(\mathcal{A} \backslash \mathcal{A}_{0}\right)$ such that $\phi_{H}\left(c_{0}\right), \phi_{H}\left(c_{1}\right), \ldots, \phi_{H}\left(c_{r-1}\right)$ are pairwise distinct.

Let $W_{j}=h_{0}^{\wedge} \mathcal{A}_{0}+c_{j}$ for $j=0,1, \ldots, r-1$. Note that $W_{0}, W_{1}, \ldots, W_{r-1}$ are pairwise disjoint subsets of $h^{\wedge} \mathcal{A}$. By the induction hypothesis, we have $\left|W_{j}\right|=\left|h_{0}^{\wedge} \mathcal{A}_{0}\right| \geq\left|\mathcal{A}_{0}\right|$ for $j=0,1, \ldots, r-1$. Therefore, we conclude that $\left|h^{\wedge} \mathcal{A}\right| \geq\left|\bigcup_{j=0}^{r-1} W_{j}\right|=\sum_{j=0}^{r-1}\left|W_{j}\right| \geq r\left|\mathcal{A}_{0}\right| \geq$ $\sum_{j=0}^{r-1}\left|\mathcal{A}_{i_{j}}\right|=|\mathcal{A}|$, and moreover, $\left|h^{\wedge} \mathcal{A}\right|=|\mathcal{A}|$ holds if, and only if, $h^{\wedge} \mathcal{A}=\bigcup_{j=0}^{r-1} W_{j},\left|W_{j}\right|=$ $\left|\mathcal{A}_{i_{j}}\right|=\left|\mathcal{A}_{0}\right|$ for $j=0,1, \ldots, r-1$.

Step 2. Suppose $\left|h^{\wedge} \mathcal{A}\right|=|\mathcal{A}|$. We shall prove $\mathcal{A} \leq G$.
If $|\operatorname{supp}(\bar{S})|=1$, by the induction hypothesis, we have $\mathcal{A} \leq G$. Recall that if $|\operatorname{supp}(\bar{S})|=$ 2 , then $\left|h^{\wedge} \mathcal{A}\right|>|\mathcal{A}|$. So it suffices to consider the case when $|\operatorname{supp}(\bar{S})|=r \geq 3$.

From Equations $(2.1),(2.2),(2.3)$ and (2.4), we conclude that $\mathcal{A}=\bigcup_{j=0}^{r-1} \mathcal{A}_{i_{j}}$, where $i_{0}=0$, $\left\{i_{1}, \ldots, i_{r-1}\right\} \subseteq[1, p-1]$, and $\left|\mathcal{A}_{i_{j}}\right|=\left|\mathcal{A}_{0}\right|$ for $j=1, \ldots, r-1$; and that $h^{\wedge} \mathcal{A}=\bigcup_{j=0}^{r-1} W_{j}$, where $\left|W_{0}\right|=\left|W_{1}\right|=\cdots=\left|W_{r-1}\right|=\left|\mathcal{A}_{0}\right|$, and there exist r elements $c_{0}, c_{1}, \ldots, c_{r-1}$ of $h^{\wedge} \mathcal{A}$ such that $\phi_{H}\left(W_{j}\right)=\phi_{H}\left(c_{j}\right)$ are pairwise distinct for $j=0,1, \ldots, r-1$.

Claim. There exists a subgroup K of H such that $\mathcal{A}_{i_{j}}=K+b_{j}$, where $b_{j} \in \mathcal{A}_{i_{j}}$, for $j=0,1, \ldots, r-1$.

Proof. Choose an arbitrary integer j in $\{1, \ldots, r-1\}$. Let $h_{0}=\min \left\{h-1,\left|\mathcal{A}_{0}\right|-1\right\}$, and let $h_{1}=h-h_{0}-1$. Then $1 \leq h_{0} \leq\left|\mathcal{A}_{0}\right|-1$, and $0 \leq h_{1} \leq|\mathcal{A}|-2\left|\mathcal{A}_{0}\right|=\left|\mathcal{A} \backslash\left(\mathcal{A}_{0} \cup \mathcal{A}_{i_{j}}\right)\right|$ since $|\mathcal{A}| \geq 3\left|\mathcal{A}_{0}\right|$ and $h \leq|\mathcal{A}| / 2$. Fix a subset B of $\mathcal{A} \backslash\left(\mathcal{A}_{0} \cup \mathcal{A}_{i_{j}}\right)$ with $|B|=h_{1}$. Then $h_{0}^{\wedge} \mathcal{A}_{i_{j}}+\mathcal{A}_{0}+\sigma(B) \subseteq h^{\wedge} \mathcal{A} \bigcap H+g_{x}$ for some $g_{x} \in G$, and so $h_{0}^{\wedge} \mathcal{A}_{i_{j}}+\mathcal{A}_{0}+\sigma(B) \subseteq W_{t}$ for some $t \in[0, r-1]$. It follows that $\left|h_{0}^{\wedge} \mathcal{A}_{i_{j}}+\mathcal{A}_{0}\right| \leq\left|W_{t}\right|=\left|\mathcal{A}_{0}\right|$. By the induction hypothesis, we have $\left|h_{0}^{\wedge} \mathcal{A}_{i_{j}}\right| \geq\left|\mathcal{A}_{i_{j}}\right|$. It follows from Lemma 2.4 that there exists a subgroup K of G, such that $\mathcal{A}_{0}=K$. Since $\mathcal{A}_{0} \subseteq H$, then K is a subgroup of H. Similarly, by considering $h_{0}^{\wedge} \mathcal{A}_{0}+\mathcal{A}_{i_{j}}+\sigma(B)$, since $h_{0}^{\wedge} \mathcal{A}_{0}=K$, we obtain $\mathcal{A}_{i_{j}}=K+b_{j}$, where $b_{j} \in \mathcal{A}_{i_{j}}$. This proves the claim.

Let φ_{K} be the canonical epimorphism of G onto G / K. Let $|K|=k$. By the claim above, we see that $\mathcal{A}=\bigcup_{j=0}^{r-1} \mathcal{A}_{i_{j}}=\bigcup_{j=0}^{r-1}\left(K+b_{j}\right)$. Note that by the definitions of $W_{0}, W_{1}, \ldots, W_{r-1}$, then $h^{\wedge} \mathcal{A}=\bigcup_{j=0}^{r-1} W_{j}=\bigcup_{j=0}^{r-1}\left(K+c_{j}\right)$, where $\varphi_{K}\left(c_{0}\right), \varphi_{K}\left(c_{1}\right), \ldots, \varphi_{K}\left(c_{r-1}\right)$ are pairwise distinct, since $\phi_{H}\left(c_{0}\right), \phi_{H}\left(c_{1}\right), \ldots, \phi_{H}\left(c_{r-1}\right)$ are pairwise distinct and $K \leq H$. Hence, $\left|\varphi_{K}\left(h^{\wedge} \mathcal{A}\right)\right|=r$.

Let $U=\prod_{i=0}^{l-1} \varphi_{K}\left(a_{i}\right)$. It follows that $U=\overline{0}^{k} \bar{b}_{1}^{k} \cdot \ldots \cdot \bar{b}_{r-1}^{k}$. If $r=3$, we write $U=U_{0} \cdot U_{1}$ where $U_{0}=\overline{0}^{k-2} \bar{b}_{1}^{k-2} \bar{b}_{2}^{k-2}$ and $U_{1}=\overline{0}^{2} \bar{b}_{1}^{2} \bar{b}_{2}^{2}$. Let $h_{0}=h-2$. Since $k \geq 3$, we have $h_{0}=$ $h-2 \leq|U| / 2-2 \leq|U|-6=\left|U_{0}\right|$. Fix a subsequence V of U_{0} with $|V|=h_{0}$. We have $\sum_{2}\left(U_{1}\right)+\sigma(V) \subseteq \sum_{h}(U)$ and $\sum_{2}\left(U_{1}\right)=\operatorname{supp}(U)+\operatorname{supp}(U)$. It follows from Lemma 2.5 that $\left|\varphi_{K}\left(h^{\wedge} \mathcal{A}\right)\right|=\left|\sum_{h}(U)\right| \geq\left|\sum_{2}\left(U_{1}\right)\right|=|\operatorname{supp}(U)+\operatorname{supp}(U)| \geq|\operatorname{supp}(U)|=r$, and so $|\operatorname{supp}(U)+\operatorname{supp}(U)|=|\operatorname{supp}(U)|$. It follows from Lemma 2.4 that $\operatorname{supp}(U) \leq G / K$.

If $r \geq 4$, we write $U=U_{0} \cdot U_{1}$ where $U_{0}=\overline{0}^{k-1} \bar{b}_{1}^{k-1} \cdot \ldots \cdot \bar{b}_{r-1}^{k-1}$ and $U_{1}=\operatorname{supp}(U)=$ $\left\{\overline{0}, \bar{b}_{1}, \ldots, \bar{b}_{r-1}\right\}$. Let $h_{0}=h-2$. Then $h_{0} \leq|U| / 2-2<\left|U_{0}\right|$. Fix a subsequence V of U_{0} with $|V|=h_{0}$. We have $2^{\wedge} U_{1}+\sigma(V) \subseteq \sum_{h}(U)$. It follows from Lemma 2.5 and the induction hypothesis that $\left|\varphi_{K}\left(h^{\wedge} \mathcal{A}\right)\right|=\left|\sum_{h}(U)\right| \geq\left|2^{\wedge} U_{1}\right| \geq\left|U_{1}\right|=r$, and so $\left|2^{\wedge} U_{1}\right|=\left|U_{1}\right|$, which $\operatorname{implies} \operatorname{supp}(U)=U_{1} \leq G / K$.

Therefore, by the group homomorphism theorem, we have $\mathcal{A} \leq G$.

Acknowledgement The author is indebted to Professor W.D. Gao and Professor Y.O. Hamidoune for their helpful suggestions.

References

[1] Noga Alon, Melvyn B. Nathanson and Imre Ruzsa, Adding distinct congruence classes modulo a prime, Am. Math. Monthly, 102 (1995) 250-255.
[2] Noga Alon, Melvyn B. Nathanson and Imre Ruzsa, The polynomial method and restricted sums of congruence classes, Journal of Number Theory, 56 (1996) 404-417.
[3] H. Davenport, On the addition of residue classes, J. London Math. Soc, 10 (1935) 30-32.
[4] J.A. Dias da Silva and Y.O. Hamidoune, Cyclic spaces for Grassmann derivatives and additive theory, Bull. London Math. Soc, 26 (1994) 140-146.
[5] L. Gallardo, G. Grekos, L. Habsieger, F. Hennecart, B. Landreau and A. Plagne, Restricted addition in $\mathbb{Z} / n \mathbb{Z}$ and an application to the Erdős-Ginzburg-Ziv problem, J. London Math. Soc (2) 65 (2002) 513-523.
[6] Y.O. Hamidoune, A.S. Lladó and O. Serra, On restricted sums, Combinatorics. Probalility and Computing, 9 (2000) 513-518.
[7] Melvyn B. Nathanson, Additive number theory: Inverse problems and the geometry of sumsets, Vol. 165 of Graduate Texts in Mathematics, Springer, New York.

