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Abstract

Let G be an abelian group of odd order, and let A be a subset of G. For any integer h such
that 2 ≤ h ≤ |A| − 2, we prove that |h∧A| ≥ |A| and equality holds if and only if A is a
coset of some subgroup of G, where h∧A is the set of all sums of h distinct elements of A.

1. Introduction

Let A be a subset of an abelian group. For any integer h ∈ N0, we denote by h∧A the set
consisting of all sums of h distinct elements of A, that is, all sums of the form a1 + · · ·+ ah,
where a1, . . . , ah ∈ A and ai %= aj for i %= j. Throughout this paper, let Zn be the cyclic
group of n elements, and let p be a prime number.

Over 40 years ago, Erdős and Heilbronn conjectured that |2∧A| ≥ min{p, 2|A|−3}, where
A is a subset of the group Zp. Dias da Silva and Hamidoune [4] proved the generalization
of this Erdős-Heilbronn conjecture for h-fold sums: |h∧A| ≥ min{p, h|A|− h2 + 1}.

Another proof was given by Alon, Nathanson and Ruzsa [1, 2] by using the polynomial
method. L. Gallardo, G. Grekos, L. Habsieger, et al [5] made a study of 2∧A and 3∧A,
where A is a subset of the group Zn. They obtained that |2∧A| ≥ n − 2 in the case when
|A| ≥ &n/2' + 1. They also proved that |3∧A| = n in the case when |A| ≥ &n/2' + 1 and
n ≥ 16. Hamidoune, Lladó and Serra [6] investigated restricted sumsets for general finite
abelian groups. They proved that, for an abelian group G of odd order (respectively, cyclic
group), |2∧A| ≥ min{|G|, 3|A|/2} holds when A is a generating set of G, 0 ∈ A and |A| ≥ 21
(respectively, |A| ≥ 33). The structure of a set for which equality holds was also determined.

For general finite abelian groups and an arbitrary positive integer h, very little is known
about |h∧A|.

Our main result in this paper is the following.
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Theorem 1.1 Let G be an abelian group of odd order, and let A be a subset of G with
0 ∈ A. Let 2 ≤ h ≤ |A|− 2. Then |h∧A| ≥ |A|. Moreover, equality holds if and only if A is
a subgroup of G.

2. Proof of Theorem 1.1

We begin by introducing some notation.

Let G be an abelian group. Let S = g1 · . . . · gl be a sequence of elements in G. We call

|S| = l the length of S; σ(S) =
l∑

i=1
gi the sum of S; supp(S) = {g : g is contained in S}

the support of S; and
∑
h

(S) = {
∑
i∈I

gi : I ⊆ [1, l] with |I| = h} the set of h-term subsums

of S. Also, for T a subsequence of S, we let S · T−1 denote the sequence after removing the
elements of T from S.

Let A be a subset of the group G with |A| = l. If h > l, then h∧A = ∅. We define
0∧A = {0}. Note that |h∧A| = |(l − h)∧A| for h = 0, 1, . . . , l. In particular, |(l − 1)∧A| =
|1∧A| = |A|. Moreover, we have h∧(A+ g) = h∧A+ hg for any g ∈ G. This means that the
function |h∧A| is invariant under the translation of the set A.

For groups G and H, we use H ≤ G to mean that H is a subgroup of G.

Lemma 2.1 [3] Let A1,A2, . . . ,Ah be nonempty subsets of the group Zp. Then

|A1 + A2 + . . . + Ah| ≥ min
{
p,

h∑
i=1

|Ai|− h + 1
}
.

Lemma 2.2 [4] Let A be a nonempty subset of the group Zp, and let 1 ≤ h ≤ |A|. Then

|h∧A| ≥ min{p, h(|A|− h) + 1}.

Lemma 2.3 Let h ≥ 2, and let A be a subset of the group Zp such that |A| ≥ 2h. Then
|h∧A| ≥ |A|. Moreover, equality holds if and only if A = Zp.

Proof. It follows from Lemma 2.2 that |h∧A| ≥ min{p, h(|A| − h) + 1} ≥ |A|. Since
h(|A|− h) + 1 > |A|, it follows that if |h∧A| = |A| then |A| = p. !

Lemma 2.4 Let G be a finite abelian group, and let X and Y be two subsets of G such that
|X| = |Y | ≥ 2. Then |X + Y | ≥ |X|. Moreover, equality holds if and only if there exists a
subgroup H of G such that, X = H + gx and Y = H + gy where gx ∈ X and gy ∈ Y .
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Proof. |X + Y | ≥ |X| holds trivially. Now suppose |X + Y | = |X| = |Y |. Choose
gx ∈ X and gy ∈ Y . Put X ′ = X − gx and Y ′ = Y − gy. Since 0 ∈ X ′ ⋂Y ′, we have
X ′ ∪ Y ′ ⊆ X ′ + Y ′. Also, we see that |X ′| = |X|, |Y ′| = |Y | and |X ′ + Y ′| = |X + Y |. It
follows that |X ′ + Y ′| = |X ′| = |Y ′|, and so X ′ = Y ′ = X ′ + Y ′ = X ′ + X ′. Therefore, X ′ is
a subgroup of G and we are done. !

Lemma 2.5 Let G, G
′
be finite abelian groups and ϕ a homomorphism of G to G

′
. Let A be

a subset of G of cardinality l, and let 1 ≤ h ≤ l. Then ϕ(h∧A) =
∑
h

(S), where S =
∏

g∈A
ϕ(g)

is a sequence of elements in G
′
.

Proof. The conclusion follows from the definition of a group homomorphism. !

Lemma 2.6 Let h ≥ 1, and let S be a sequence of elements in the group Zp with |S| ≥ h+1.
Then |

∑
h

(S)| ≥ |supp(S)|.

Proof. Let k = |supp(S)|. The lemma is trivial if h = 1 or k = 1. Therefore, we may assume
that h ≥ 2 and k ≥ 2. Let S = S0 · S1, where S0 = supp(S) and S1 = S · S−1

0 . Let h0 =
min{k− 1, h} and h1 = h−h0. Then 1 ≤ h0 ≤ k− 1 = |S0|− 1 and 0 ≤ h1 ≤ |S1|. It follows
that

∑
h0

(S0)+
∑
h1

(S1) ⊆
∑
h

(S). By Lemma 2.2, we have |
∑
h0

(S0)| ≥ min{p, h0(k−h0)+1} ≥ k.

It follows from Lemma 2.1 that |
∑
h

(S)| ≥ |
∑
h0

(S0) +
∑
h1

(S1)| ≥ min{p, |
∑
h0

(S0)|+ |
∑
h1

(S1)|−

1} ≥ min{p, k} = k. !

Lemma 2.7 Let h ≥ 2, and let S = gα1
1 gα2

2 · . . . · gαr
r be a sequence of elements in the group

Zp with |S| ≥ h + 2, where r ≥ 2 and α1 ≥ α2 ≥ · · · ≥ αr ≥ 1. If α2 ≥ 2 or r ≥ 4 then
|
∑
h

(S)| ≥ min{p, r + 1}.

Proof. Let S = S0 · S1, where S0 = supp(S) = {g1, g2, . . . , gr} and S1 = S · S−1
0 . If α2 ≥ 2,

let h0 = min{r− 1, h− 1} and h1 = h− h0. Then 1 ≤ h0 ≤ r− 1 and 1 ≤ h1 ≤ |S1|− 1. By
Lemma 2.6, we have |

∑
h0

(S0)| ≥ |supp(S0)| = r and |
∑
h1

(S1)| ≥ |supp(S1)| ≥ 2. Note that
∑
h0

(S0) +
∑
h1

(S1) ⊆
∑
h

(S). It follows from Lemma 2.1 that |
∑
h

(S)| ≥ |
∑
h0

(S0) +
∑
h1

(S1)| ≥

min{p, |
∑
h0

(S0)| + |
∑
h1

(S1)|− 1} ≥ min{p, r + 1}.

Now assume that r ≥ 4. Let h0 = min{r−2, h} and h1 = h−h0. Then 2 ≤ h0 ≤ r−2 and
0 ≤ h1 ≤ |S1|. By Lemma 2.2, we have |

∑
h0

(S0)| ≥ min{p, h0(r − h0) + 1} ≥ min{p, r + 1}.

Note that
∑
h0

(S0) +
∑
h1

(S1) ⊆
∑
h

(S). It follows from Lemma 2.1 that |
∑
h

(S)| ≥ |
∑
h0

(S0) +
∑
h1

(S1)| ≥ min{p, |
∑
h0

(S0)| + |
∑
h1

(S1)|− 1} ≥ min{p, r + 1}. !
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Proof of Theorem 1.1. Let A = {a0, a1, . . . , al−1}, where a0 = 0. Since |h∧A| = |(l − h)∧A|,
we need only to consider the case that h ≤ &|A|/2'.

Let m be the number of prime factors of |G| (counted with multiplicity). We proceed
by induction on m. If m = 1, the theorem follows from Lemma 2.3. Now assume |G| is
composite. Let p be the smallest prime factor of |G|, and let H be a subgroup of G of

index p. Let φH be the canonical epimorphism of G onto G!H. Then S̄ =
l−1∏
i=0

φH(ai) is a

sequence of elements in G!H. Let G!H = {H,H + g, . . . , H + (p− 1)g}. For convenience,
we also let G!H denote {ḡ, 2ḡ, . . . , pḡ}. Define Ai = A

⋂
(H + ig) for i = 0, 1, . . . , p − 1.

Then A =
p−1⋃
i=0

Ai. Let M = max{|Ai| : 0 ≤ i ≤ p − 1}. Since |h∧A| is invariant under

the translation of A, we can assume without loss of generality that M = |A0|. Note that, if
|A| = 4, then h = 2, and so |2∧A| > |A| follows by straightforward calculations. So, we may
assume that |A| ≥ 5.

If M = 1, then S̄ is squarefree, that is, S̄ is a subset of G!H with |S̄| = |A|. By
Lemma 2.3, we have |

∑
h

(S̄)| ≥ |S̄|. It follows from Lemma 2.5 that |φH(h∧A)| = |
∑
h

(S̄)|,

and so |h∧A| ≥ |φH(h∧A)| = |
∑
h

(S̄)| ≥ |S̄| = |A|. Now suppose |h∧A| = |A|. Then

|
∑
h

(S̄)| = |S̄|. It follows from Lemma 2.3 that S̄ = G!H, and so A = {a0, a1, . . . , ap−1},

where φH(ai) = iḡ for each i ∈ [0, p − 1]. Moreover, since φH(h∧A) =
∑
h

(S̄) = G!H, we

conclude that h∧A = {c0, c1, . . . , cp−1}, where φH(cj) = jḡ for each j ∈ [0, p− 1].

We denote by |i| the least nonnegative residue of i modulo p. Let di = a|i+1| − a|i| for
i = 0, 1, . . . , p− 1. We shall prove that di = d0 for i = 0, 1, . . . , p− 1. Let i be an arbitrary
integer of [0, p − 1]. Choose a subset U of A of cardinality h such that {a|i|, a|i+1|} ⊆ U
and {a|i−1|, a|i+2|}

⋂
U = ∅. Let U

′
= (U \ {a|i|, a|i+1|})

⋃
{a|i−1|, a|i+2|}. It follows that

φH(σ(U)) = σ(φH(U)) = σ(φH(U
′
)) = φH(σ(U

′
)) = xḡ for some x ∈ [0, p − 1], and so

σ(U) = cx = σ(U
′
). It follows that d|i+1| = (a|i+2| − a|i+1|) = (a|i| − a|i−1|) = d|i−1|.

Since gcd(2, p) = 1, it follows that di = d0 for i = 0, 1, . . . , p − 1. Therefore, we have
A = {a0, a0 + d0, a0 + 2d0, . . . , a0 + (p− 1)d0} =< d0 >≤ G, and we are done.

Now we assume M ≥ 2. We split the proof into two steps.

Step 1. We shall show |h∧A| ≥ |A|, and find some necessary conditions for |h∧A| = |A|.

Let T̄ =
∏

ai∈A\A0

φH(ai). Then T̄ is a subsequence of S̄.

Case 1. |supp(S̄)| = 1. This implies that A ⊆ H. It follows from the induction
hypothesis that |h∧A| ≥ |A|.

Case 2. |supp(S̄)| = 2. This implies that A = A0

⋃
Ai1 , where i1 ∈ [1, p− 1].

Subcase 2.1 |Ai1| = 1. We have |A0| = |A| − 1 ≥ 2h − 1 ≥ h + 1. Let W0 =
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h∧A0 and W1 = (h − 1)∧A0 + Ai1 . Observe W0

⋃
W1 ⊆ h∧A. Since φH(W0) = 0̄ and

φH(W1) = i1ḡ, we have W0

⋂
W1 = ∅. By the induction hypothesis, we have |h∧A0| ≥ |A0|

and |(h− 1)∧A0| ≥ |A0|. Thus, |Wj| ≥ |A0| for both j = 0 and j = 1. Therefore, it follows
that |h∧A| ≥ |W0

⋃
W1| = |W0| + |W1| ≥ 2|A0| > |A|.

Subcase 2.2 |Ai1| ≥ 2. Since |A| ≥ max{2h, 5} and |A0| ≥ |A|/2, we have |A0| ≥
max{h, 3}. Let h0 = min{|A0| − 1, h} and h1 = h − h0. Then 2 ≤ h0 ≤ |A0| − 1, and
h1 ∈ {0, 1} since h ≤ &|A|/2' ≤ |A0|. Moreover, we have h1 + 2 ≤ |Ai1|, since if |Ai1| = 2
then h0 = h ≤ &|A|/2' ≤ |A0|− 1, and since if |Ai1| > 2 then it is trivial.

Let W0 = h∧0A0 + h∧1Ai1 , W1 = (h0 − 1)∧A0 + (h1 + 1)∧Ai1 and W2 = (h0 − 2)∧A0 +
(h1 + 2)∧Ai1 . Note that W0,W1,W2 are pairwise disjoint nonempty subsets of h∧A. By the
induction hypothesis, we have that |W0| ≥ |h∧0A0| ≥ |A0| and |W1| ≥ |(h0 − 1)∧A0| ≥ |A0|.
Therefore, |h∧A| ≥ |W0| + |W1| + |W2| ≥ 2|A0| + 1 > |A|.

Case 3. |supp(S̄)| = r ≥ 3. We rewrite A =
r−1⋃
j=0

Aij , where i0 = 0, {i1, . . . , ir−1} ⊆

[1, p− 1], and |A0| ≥ |Ai1| ≥ · · · ≥ |Air−1| > 0.

If h = 2, let Wj = A0+Aij for j = 1, . . . , r−1. It follows that φH(Wj) = ij ḡ. Since r ≥ 3,
it follows from Lemma 2.2 that |2∧supp(S̄)| ≥ min{p, 2(r − 2) + 1} ≥ r, and so there exists
a 2-subset {x, y} ⊆ [1, r− 1] such that ixḡ + iyḡ /∈ {i1ḡ, i2ḡ, . . . , ir−1ḡ}. Let W0 = Aix +Aiy .
Since φH(W0) = ixḡ+iyḡ, it follows that W0,W1, . . . ,Wr−1 are pairwise disjoint. It is easy to
see that |W0| ≥ max{|Aix|, |Aiy |} ≥ |Air−2| and |Wj| ≥ |A0| for j = 1, . . . , r − 1. Therefore,

|2∧A| ≥
r−1∑
j=0

|Wj| ≥ |Air−2| + (r − 1)|A0| ≥ |A0| + |Ai1| + · · · + |Air−1| = |A|.

Moreover, if |2∧A| = |A|, then,

2∧A =
r−1⋃
j=0

Wj, and |Wj| = |Aij | = |A0| for j = 0, 1, . . . , r − 1. (2.1)

Now we suppose h ≥ 3 and distinguish several subcases.

Subcase 3.1 |supp(S̄)| = 3. This implies that A = A0

⋃
Ai1

⋃
Ai2 , where {i1, i2} ⊆

[1, p− 1] and |A0| ≥ |Ai1| ≥ |Ai2| > 0.

Subsubcase 3.1.1 |A0| ≥ h. Let W0 = (h− 1)∧A0 +Ai1 , W1 = (h− 1)∧A0 +Ai2

and W2 = (h − 2)∧A0 + Ai1 + Ai2 . Note that W0, W1, W2 are pairwise disjoint subsets of
h∧A. By the induction hypothesis, we have that |(h−1)∧A0| ≥ |A0| and |(h−2)∧A0| ≥ |A0|.
Thus, |Wj| ≥ |A0| for j = 0, 1, 2. It follows that |h∧A| ≥ |W0| + |W1| + |W2| ≥ 3|A0| ≥ |A|.

Moreover, if |h∧A| = |A|, then

h∧A =
2⋃

j=0
Wj and |Wj| = |Aij | = |A0| for j = 0, 1, 2. (2.2)
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Subsubcase 3.1.2 |A0| < h. Note that since h ≤ &|A|/2' we have |Aij | ≥ 2
for both j = 1 and j = 2. Let h0 = |A0| − 1 and h1 = h − h0. Then h0 ≥ 1, and
2 ≤ h1 ≤ |A\A0|−2, since |A0|−1 ≤ h−2 and |A\A0|−h1 + |A0|−h0 = |A|−h ≥ h ≥ 3.

By Lemma 2.5 and Lemma 2.7, we have |φH(h∧1 (A\A0))| = |
∑
h1

(T̄ )| ≥ min{p, |supp(T̄ )|+

1} = 3, and so there exists a 3-subset {c0, c1, c2} ⊆ h∧1 (A\A0) such that φH(c0), φH(c1) and
φH(c2) are pairwise distinct.

Let Wj = h∧0A0 + cj for j = 0, 1, 2. Similar to Subsubcase 3.1.1, we have |h∧A| ≥
|W0| + |W1| + |W2| ≥ 3|A0| ≥ |A|.

Moreover, if |h∧A| = |A|, then

h∧A =
2⋃

j=0
Wj and |Wj| = |Aij | = |A0| for j = 0, 1, 2. (2.3)

Subcase 3.2 |supp(S̄)| = 4. This implies that A = A0

⋃
Ai1

⋃
Ai2

⋃
Ai3 , where

{i1, i2, i3} ⊆ [1, p − 1] and |A0| ≥ |Ai1| ≥ |Ai2| ≥ |Ai3| > 0. Let h0 = min{|A0| − 1, h − 2}
and h1 = h− h0. Note that 1 ≤ h0 ≤ |A0|− 1 and 2 ≤ h1 ≤ |A \ A0|− 1.

Subsubcase 3.2.1 |Ai2| = 1. By Lemma 2.5 and Lemma 2.6, we have |φH(h∧1 (A\
A0))| = |

∑
h1

(T̄ )| ≥ |supp(T̄ )| = 3, and so there exists a 3-subset {c0, c1, c2} ⊆ h∧1 (A \ A0)

such that φH(c0), φH(c1) and φH(c2) are pairwise distinct.

Let Wj = h∧0A0 + cj for j = 0, 1, 2. Note that W0, W1 and W2 are pairwise disjoint
subsets of h∧A. By the induction hypothesis, we have |Wj| = |h∧0A0| ≥ |A0| for j = 0, 1, 2.
By Lemma 2.5 and Lemma 2.7, we have |φH(h∧A)| = |

∑
h

(S̄)| ≥ min{p, |supp(S̄)| + 1} = 5,

and so there exist at least two distinct elements c3, c4 of (h∧A)\(W0

⋃
W1

⋃
W2). Therefore,

|h∧A| ≥ |W0| + |W1| + |W2| + |{c3, c4}| ≥ 3|A0| + 2 > |A|.

Subsubcase 3.2.2 |Ai2| ≥ 2. We have h1 ≤ |A \ A0| − 2, since it is trivial
if h0 = h − 2 ≤ |A0| − 1, and since |A0| − h0 + |A \ A0| − h1 = |A| − h ≥ h ≥ 3 if
h0 = |A0|− 1 ≤ h− 2.

By Lemma 2.5 and Lemma 2.7, we have |φH(h∧1 (A\A0))| = |
∑
h1

(T̄ )| ≥ min{p, |supp(T̄ )|+

1} = 4, and so there exists a 4-subset {c0, c1, c2, c3} ⊆ h∧1 (A \A0) such that φH(c0), φH(c1),
φH(c2) and φH(c3)are pairwise distinct.

Let Wj = h∧0A0 + cj for j = 0, 1, 2, 3. Note that W0, W1, W2 and W3 are pairwise
disjoint subsets of h∧A. By Lemma 2.7, we have |

∑
h

(S̄)| ≥ 5, and so there exists an element

c4 ∈ (h∧A) \ (W0

⋃
W1

⋃
W2

⋃
W3). Therefore, |h∧A| ≥ |W0| + |W1| + |W2| + |W3| + 1 ≥

4|A0| + 1 > |A|.

Subcase 3.3 |supp(S̄)| = r ≥ 5. Let h0 = min{|A0| − 1, h − 2} and h1 = h − h0.
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Similar to Subsubcase 3.1.2, we have 1 ≤ h0 ≤ |A0|− 1 and 2 ≤ h1 ≤ |A \ A0|− 2.

By Lemma 2.5 and Lemma 2.7, we have |φH(h∧1 (A\A0))| = |
∑
h1

(T̄ )| ≥ min{p, |supp(T̄ )|+

1} = |supp(T̄ )| + 1 = r, and so there exists an r-subset {c0, c1, . . . , cr−1} ⊆ h∧1 (A \ A0) such
that φH(c0),φH(c1), . . . ,φH(cr−1) are pairwise distinct.

Let Wj = h∧0A0 + cj for j = 0, 1, . . . , r − 1. Note that W0,W1, . . . ,Wr−1 are pairwise
disjoint subsets of h∧A. By the induction hypothesis, we have |Wj| = |h∧0A0| ≥ |A0| for

j = 0, 1, . . . , r − 1. Therefore, we conclude that |h∧A| ≥ |
r−1⋃
j=0

Wj| =
r−1∑
j=0

|Wj| ≥ r|A0| ≥
r−1∑
j=0

|Aij | = |A|, and moreover, |h∧A| = |A| holds if, and only if, h∧A =
r−1⋃
j=0

Wj, |Wj| =

|Aij | = |A0| for j = 0, 1, . . . , r − 1. (2.4)

Step 2. Suppose |h∧A| = |A|. We shall prove A ≤ G.

If |supp(S̄)| = 1, by the induction hypothesis, we have A ≤ G. Recall that if |supp(S̄)| =
2, then |h∧A| > |A|. So it suffices to consider the case when |supp(S̄)| = r ≥ 3.

From Equations (2.1), (2.2), (2.3) and (2.4), we conclude that A =
r−1⋃
j=0

Aij , where i0 = 0,

{i1, . . . , ir−1} ⊆ [1, p − 1], and |Aij | = |A0| for j = 1, . . . , r − 1; and that h∧A =
r−1⋃
j=0

Wj,

where |W0| = |W1| = · · · = |Wr−1| = |A0|, and there exist r elements c0, c1, . . . , cr−1 of h∧A
such that φH(Wj) = φH(cj) are pairwise distinct for j = 0, 1, . . . , r − 1.

Claim. There exists a subgroup K of H such that Aij = K + bj, where bj ∈ Aij , for
j = 0, 1, . . . , r − 1.

Proof. Choose an arbitrary integer j in {1, . . . , r − 1}. Let h0 = min{h− 1, |A0| − 1}, and
let h1 = h− h0 − 1. Then 1 ≤ h0 ≤ |A0|− 1, and 0 ≤ h1 ≤ |A|− 2|A0| = |A \ (A0

⋃
Aij)|

since |A| ≥ 3|A0| and h ≤ |A|/2. Fix a subset B of A \ (A0

⋃
Aij) with |B| = h1. Then

h∧0Aij + A0 + σ(B) ⊆ h∧A
⋂

H + gx for some gx ∈ G, and so h∧0Aij + A0 + σ(B) ⊆ Wt for
some t ∈ [0, r− 1]. It follows that |h∧0Aij +A0| ≤ |Wt| = |A0|. By the induction hypothesis,
we have |h∧0Aij | ≥ |Aij |. It follows from Lemma 2.4 that there exists a subgroup K of G,
such that A0 = K. Since A0 ⊆ H, then K is a subgroup of H. Similarly, by considering
h∧0A0 + Aij + σ(B), since h∧0A0 = K, we obtain Aij = K + bj, where bj ∈ Aij . This proves
the claim. !

Let ϕK be the canonical epimorphism of G onto G!K. Let |K| = k. By the claim above,

we see that A =
r−1⋃
j=0

Aij =
r−1⋃
j=0

(K + bj). Note that by the definitions of W0,W1, . . . ,Wr−1,

then h∧A =
r−1⋃
j=0

Wj =
r−1⋃
j=0

(K + cj), where ϕK(c0), ϕK(c1), . . . , ϕK(cr−1) are pairwise distinct,

since φH(c0),φH(c1), . . . ,φH(cr−1) are pairwise distinct and K ≤ H. Hence, |ϕK(h∧A)| = r.
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Let U =
l−1∏
i=0

ϕK(ai). It follows that U = 0̄kb̄k
1 · . . . · b̄k

r−1. If r = 3, we write U = U0 · U1

where U0 = 0̄k−2b̄k−2
1 b̄k−2

2 and U1 = 0̄2b̄2
1b̄

2
2. Let h0 = h − 2. Since k ≥ 3, we have h0 =

h − 2 ≤ |U |/2 − 2 ≤ |U | − 6 = |U0|. Fix a subsequence V of U0 with |V | = h0. We
have

∑
2

(U1) + σ(V ) ⊆
∑
h

(U) and
∑
2

(U1) = supp(U) + supp(U). It follows from Lemma

2.5 that |ϕK(h∧A)| = |
∑
h

(U)| ≥ |
∑
2

(U1)| = |supp(U) + supp(U)| ≥ |supp(U)| = r, and so

|supp(U) + supp(U)| = |supp(U)|. It follows from Lemma 2.4 that supp(U) ≤ G!K.

If r ≥ 4, we write U = U0 · U1 where U0 = 0̄k−1b̄k−1
1 · . . . · b̄k−1

r−1 and U1 = supp(U) =
{0̄, b̄1, . . . , b̄r−1}. Let h0 = h − 2. Then h0 ≤ |U |/2 − 2 < |U0|. Fix a subsequence V of U0

with |V | = h0. We have 2∧U1 +σ(V ) ⊆
∑
h

(U). It follows from Lemma 2.5 and the induction

hypothesis that |ϕK(h∧A)| = |
∑
h

(U)| ≥ |2∧U1| ≥ |U1| = r, and so |2∧U1| = |U1|, which

implies supp(U) = U1 ≤ G!K.

Therefore, by the group homomorphism theorem, we have A ≤ G. !
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