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Abstract

For n ∈ N, let [n] denote the integer set {0, 1, . . . , n − 1}. For any subset V ⊂ Z2, let
Hom(V ) = {cV + b : c ∈ N,b ∈ Z2}. For k ∈ N, let Rk(V ) denote the least integer N0

such that for any N ≥ N0 and for any k-coloring of [N ]2, there is a monochromatic subset
U ∈ Hom(V ). The argument of Gallai ensures that Rk(V ) is finite whenever V is. We
investigate bounds on Rk(V ) when V is a three or four-point configuration in general position.
In particular, we prove that R2(S) ≤ V W (8), where V W is the classical van der Waerden
number for arithmetic progressions and S is a square S = {(0, 0), (0, 1), (1, 0), (1, 1)}.

1. Introduction

Let, for a positive integer n, [n] = {0, 1, . . . , n − 1}. The classical Theorem of van der
Waerden [16] claims that for any n, k ∈ N, there is N0 ∈ N such that for all N ≥ N0 and
any k-coloring χ : [N ] → [k], there is a monochromatic arithmetic progression of length
n (n-AP). Define V W (k, n) to be the least such integer guaranteed by van der Waerden’s
Theorem. The number V W (n) = V W (2, n) is usually referred to as the classical van der
Waerden number. The best known bounds are

(n− 1)2n−1 ≤ V W (n) ≤ 2222
2n+9

,

with the lower bound valid for values of n− 1 which are prime. Here, the upper and lower
bounds are due to Gowers [5], and Berlekamp [2], respectively; see also [6]. The only known
exact values for V W are V W (3) = 9, V W (4) = 35, and V W (5) = 178; the first two are
due to Chvátal [3], while the third is due to Stevens and Shantaram [14]. Kouril proved in
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[10] that V W (6) ≥ 1132, and conjectured that equality holds; his proof of this conjecture is
featured in a paper which is unavailable at the time of this writing.

The density version of van der Waerden’s Theorem (see the celebrated result of Szemerédi
[15]) asserts that an arithmetic progression of a fixed length is always present in dense subsets
of integers, thus implying the classical van der Waerden Theorem. For the improved bounds,
see the results of Gowers [5] and Shkredov [13].

In search for better bounds and better understanding of van der Waerden numbers,
some connections between higher-dimensional problems and the original problem have been
established by Graham and Solymosi [8]. In this note, we continue this effort by studying a
problem of independent interest when instead of arithmetic progressions in [n], configurations
in [n]2 are being considered.

We will often refer to Z2 as the grid. For a set V ⊆ Z2 and b ∈ Z2, define V +b = {v+b :
v ∈ V }. We say that a subset U of the grid is homothetic to a set V in the grid if U = cV +b,
for some constants c ∈ R, c (= 0, and b ∈ Z2. In particular, we consider the set of all squares
with sides parallel to the axes, i.e., sets homothetic to S = {(0, 0), (0, 1), (1, 0), (1, 1)}, and
the set of L-sets homothetic to L = {(0, 0), (0, 1), (1, 0)}. We shall refer to the former as
simply squares. In this note we consider a stronger notion, when the coefficient c above is a
natural number. Let

Hom(V ) = {cV + b : c ∈ N,b ∈ Z2}.

Given k ∈ N, let

Rk(V ) = min{n : any k-coloring of [n]2 contains a monochromatic set from Hom(V )}.

The argument of Gallai, see for example [7], implies that Rk(V ) exists for finite V .
Gallai’s Theorem together with results of Shelah found in [12] immediately give the upper
bound in terms of Hales-Jewett numbers, HJ ,

R2(S) ≤ 222··
·2

;

where the height of the tower is 25, see Appendix A for details. Here, we improve this bound
to R2(S) ≤ min{V W (8), 5 · 2240}. One of the results we use is the bound by Graham and
Solymosi [8]:

Rk(L) ≤ 22k
. (1)

Note that the density results of Shkredov [13] give an upper bound on Rk(L) of 22k73

.

Recall that a collection of points in the plane in general position means that no three
of them are collinear. Note than an immediate lower bound on Rk(V ) for any V in general
position with |V | ≥ 3 is Rk(V ) ≥ k; this can be seen by coloring the ith row of [k]2 with
color i. Since each row has its own color and no three points of any X ∈ Hom(V ) can lie
on one row, we avoid a monochromatic homothetic copy of V .
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In this manuscript, we study mostly R2(V ), when V is a 3 or 4-element set in general
position. Theorem 1 is proved using forbidden configuration for squares. Theorem 2 provides
bounds for arbitrary 3- and 4-element sets in a general position in terms of Rk(L); the proof
involves a reduction argument (independent of Theorem 1) treating a smaller grid but using
more colors (see also presentations of Bill Gasarch [4] on the topic).

Theorem 1 13 ≤ R2(S) ≤ V W (8).

For a set A ⊆ [n]2, let the square-size of A be sA = min{" : " ∈ N,∃X ⊆ ["]2 such that X ∈
Hom(A)}; i.e., the size of the smallest square containing A.

Theorem 2 Let T and Q be sets of three and four points of Z2 in general position, respec-
tively. Then Rk(T ) ≤ 2sTRk(L) and R2(Q) ≤ 40s2

QR40(L).

Note that (1) and Theorem 2 imply that R2(Q) ≤ 40s2
Q2240

. We can also reduce the

bound slightly in the case of the square S to R2(S) ≤ 5 · 2240
. We prove these two Theorems

in the next sections, leaving the routine case analysis for Appendix B. In the last section we
compare our results with the best known density results.

2. Proof of Theorem 1

When we consider 2-colorings of the grid, we assume that the codomain is the set {◦, •}.
Under an arbitrary 2-coloring χ, if χ((x, y)) = ◦ we say that (x, y) is colored white, and if
χ((x, y)) = •, we say that (x, y) is colored black.

Upper bound. Let n ≥ V W (8). Let χ : [n]2 → {◦, •} be a coloring of [n]2 in two colors. By
van der Waerden’s Theorem, every row of [n]2 contains a monochromatic 8-AP; in particular,
the middle row contains an 8-AP P = {X,X + d, . . . , X + 7d}. Without loss of generality,
we may assume d = 1 and χ(P ) = ◦. Let P = P + (0, 1), P = P + (0,−1), and ∗ ∈ {◦, •}.
We consider cases according to whether either P or P have four consecutive black vertices,
three consecutive black vertices in the center, two consecutive black vertices in the center,
or none of the above. We show that there is a monochromatic square in each of these cases.

In the case analysis (details in appendix B), we use facts about four configurations in the
grid, see Figure 5.

Case 1: P or P contains 4 consecutive black vertices. Figure 6 deals with the case when
there are three vertices to one side of these 4 consecutive vertices. Figure 7 deals with the
case when these 4 consecutive vertices are in the center.

Case 2: Case 1 does not hold and there are three consecutive black vertices in P or in P
with at least two vertices on both sides. Figure 8 deals with this case.
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Case 3: Cases 1 and 2 do not hold and there are two consecutive black vertices in the center
of P or in the center of P . Figure 9 deals with this case.

Case 4: Cases 1, 2, 3 do not hold. This case implies that the two central positions above
and below P are occupied by white and black vertices. Since it is impossible to have a white
vertex x right above P and a white vertex exactly below x and P (see Figure 5 (2)), this
case (up to reflection) gives the folowing colorings of P and P : ∗∗∗•◦•∗∗ and ∗∗•◦•∗∗∗.
Figure 10 displays two grey diamonds marked 1. Figures 10, 11, and 12 deal with the case
that these both have color ◦. (Symmetry reduces four cases to three.) Figures 13, 14, and
15 deal with the case that these both have color •. Lastly, Figures 16 and 17 deal with the
case when these vertices have different colors, completing the proof of the upper bound.

Lower bound. Let n = ,(V W (k, 4) − 1)/3-. We construct a k-coloring χ′ of [n]2 which
contains no monochromatic square. Let χ : {0, 1, . . . , V W (k, 4) − 2} → {1, 2, . . . , k} be a
coloring which admits no 4-AP. Define a k-coloring χ′ on [n]2 by χ′(x, y) = χ(x + 2y). If
χ′ admits a monochromatic square, then there exist (x, y) and d ∈ N such that χ′(x, y) =
χ′(x + d, y) = χ′(x, y + d) = χ′(x + d, y + d). But the definition of χ′ gives that χ(x + 2y) =
χ(x + 2y + d) = χ(x + 2y + 2d) = χ(x + 2y + 3d), a 4-AP. This is a contradiction, so
Rk(S) ≥ ,(V W (k, 4) − 1)/3-, as desired. Using a 2-coloring of [34] with no 4-AP due to
Chvátal [3], we can construct a specific 2-coloring of [12]2 which contains no monochromatic
square, and hence R2(S) ≥ 13; see Figure 1.

Figure 1: A 2-coloring of [12]2 with no monochromatic square.

Using the best known lower bounds for W (k, 4) due to Rabung [11] and Herwig, et al.
[9], we have that R3(S) > 97, R4(S) > 349, R5(S) > 751, and R6(S) > 3259.
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3. Proof of Theorem 2

Again, we assume that the codomain for any 2-coloring χ is {◦, •}, and say (x, y) is colored
white for χ((x, y)) = ◦, and (x, y) is colored black for χ((x, y)) = •. Define the diagonal Dn

of [n]2 to be Dn := {(x, y) : x + y = n − 1}, and the lower triangle Tn = {(x, y) : (x, y) ∈
[n]2, x + y ≤ n − 1}. Throughout this section we shall be using a map which allows us to
deal with arbitrary three point configurations as L-sets. We say that a subset {u1,u2,u3}
of three distinct elements in the grid forms a 3-AP, if, up to reordering, there is a vector u
such that u3 = u2 + u, u2 = u1 + u. Given X ⊆ Z2 and m, k ∈ N, we say that a collection
of subsets X ⊆ [m]2 ∩Hom(X) is a forcing set (with respect to parameters X, m, and k)
if in any k-coloring of [m]2 there is a monochromatic set from X . Let forc(X,m, k) denote
the cardinality of the smallest such collection X . In the next two Lemmas we find bounds
for Rk(T ), where T is a three point configuration and we prove that that for any such T and
k = 2, there is a forcing set with 20 sets in it.

Lemma 1 R2(L) = 5. Furthermore, forc(L, 5, 2) ≤ 20.

Proof. To see that R2(L) ≥ 5, consider the coloring of [4]2 with no monochromatic L-set
shown in Figure 2. Consider a 2-coloring of [5]2. At least 3 elements on the diagonal, D5, are
of the same color, say black. If D5 has a 3-AP, then we immediately have a monochromatic
L-set contained in the lower triangle. If D5 has at least 4 black vertices, then either there
is a 3-AP in it, or, there are exactly four black vertices on this diagonal and the central
vertex is white. Then one of {(0, 0), (0, 4), (4, 0)}, {(0, 4), (0, 3), (1, 3)}, {(3, 1), (3, 0), (4, 0)},
or {(0, 3), (0, 0), (3, 0)} will be a monochromatic L-set. Therefore there are exactly three
black vertices on the diagonal, and they do not form a 3-AP. The possible colorings (up to
symmetries) of the diagonal in this case are shown in Figure 3. In each of these cases, it is
easy to conclude that there is a monochromatic L-set in the lower triangle. Hence, R2(L) ≤ 5
and thus R2(L) = 5. Since the number of L-sets in T5 is 20, forc(L, 5, 2) ≤ 20. !

Figure 2: A 2-coloring of [4]2 with no monochromatic L-set.

For a given three point subset T of Z2 in general position, define the parallelogram size pT

to be the square size of the parallelogram defined by T . Recall that the square size of a set
X is the size of the smallest square containing X. For example, when T = L, pT = 1; when
T = {(0, 0), (1, 2), (−1, 3)}, pT = 4. Note that pT ≤ 2sT . By choosing an appropriate linear
transform, we find a bound on Rk(T ) in terms of Rk(L).
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Figure 3: Colorings of D5 with three black points not forming 3-AP.

Lemma 2 If T ⊆ Z2 is in general position with |T | = 3 then Rk(T ) ≤ pTRk(L) ≤ 2sTRk(L).
Furthermore, R2(T ) ≤ 5pT ≤ 10sT and forc(T, 5pT , 2) ≤ 20.

Proof. Let T = {t1, t2, t3} ⊂ Z2 be a set in general position with two sides corresponding to
vectors u = t2 − t1 and v = t3 − t1, let k ≥ 2 be an integer and let q = Rk(L). Let n = pT q
and Q be the parallelogram defined by T . Then qQ is contained in an n × n square grid.
Formally, let x ∈ Z2 such that qQ + x ⊆ [n]2.

Let X = [n]2 ∩ {ku + lv + x : k, l ∈ N ∪ {0}}. Define φ : X → [n/pT ]2 by φ(ku +
lv + x) = (k, l). Let χ be a k-coloring of [n]2. This induces a k-coloring χ′ of [n/pT ]2 by
χ′(k, l) = χ(ku + lv + x). As q = Rk(L), there is a monochromatic L-set under χ′, say
{(l, l′), (l + d, l′), (l, l′ + d)}. By definition of φ, this corresponds to a monochromatic set
{lu + l′v + x, (l + d)u + l′v + x, lu + (l′ + d)v + x} that is a triangle with sides du, dv, a
homothetic image of T . Since there is a forcing set X with parameters L, 5, 2 and |X| ≤ 20,
we may take φ−1(X) to be a forcing set for T in [pTR2(L)]2 = [5pT ]2 to see that there exists
a forcing set with respect to parameters T , 5pT , and 2 of cardinality at most 20. !

Note that for any four point subset Q of Z2, there is a three point subset T ⊆ Q such that
sT = sQ. This is easily seen by taking T to be two points of Q with maximal Euclidean
distance together with any third point of Q. This leads us to our next Lemma. First, for n
an even positive integer and d any positive integer less than n, we define the middle square
of width d of [n]2 to be the d× d subgrid {n

2 − 1d
22,

n
2 − 1d

22+ 1, . . . , n
2 − 1d

22+ d− 1}2.

Lemma 3 Let Q be a set of four points of Z2 in general position and let T ⊆ Q, |T | = 3
such that sT = sQ. Then R2(Q) ≤ 40sQR40(T ), and R2(S) ≤ 5R40(L).

Proof. Let q = 10sT = 10sQ, n = 4qR40(T ), and χ : [n]2 → {•, ◦}. We shall construct
another coloring χ′ : [n/q]2 → {1, 2, . . . , 40} generated by χ. We shall first show that χ′

has a monochromatic homothetic image T ′ of T in [n/q]2. Using this T ′, we shall find a
monochromatic homothetic image of Q in the original coloring.

By Lemma 2, we have that R2(T ) ≤ q and forc(T, q, 2) ≤ 20. Let {X1, . . . , X20} be a
forcing set with respect to parameters T , q, and 2, and let
(Y1, . . . , Y40) = ((X1, ◦), (X2, ◦), . . . , (X20, ◦), (X1, •), (X2, •), . . . , (X20, •)). Any 2-coloring of
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the q × q grid has some set Xi colored in ◦ or • which corresponds to either Yi or Y20+i,
respectively, 1 ≤ i ≤ 20.

Split [n]2 into q × q grids A(x,y) = {(a, b) : qx ≤ a < q(x + 1), qy ≤ b < q(y + 1), 0 ≤
x, y ≤ n/q − 1}. Let χ′((x, y)) = min{i : A(x,y) has a colored set Yi under χ}. Note that χ′

is a coloring of [n/q]2 in at most 40 colors.

To allow for us to later choose additional points which belong to the grid, we con-
sider the middle square M , of [n/q]2 of width 1

4
n
q = R40(T ). Then M contains, under

χ′, a monochromatic set T ′ = {x1,x2,x3}, T ′ ∈ Hom(T ). Let x4 be the point such that
{x1,x2,x3,x4} ∈ Hom(Q).

Since χ′(x1) = χ′(x2) = χ′(x3), the corresponding subgrids Ax1 , Ax2 , and Ax3 have a
three element set from Hom(T ) in the same position and of the same color. I.e., T ′′ =
{t1, t2, t3} ∈ Hom(T ), T ′′ ⊆ [q]2, so that T1 = T ′′ + qx1 ∈ Ax1 , T2 = T ′′ + qx2 ∈ Ax2 and
T3 = T ′′ + qx3 ∈ Ax3 are all monochromatic, say black (see Figure 4 (1)). Let t4 be the
grid vertex such that {t1, t2, t3, t4} ∈ Hom(Q) and let T4 = T ′′ + qx4. Since T1, T2, T3 are
monochromatic, we may assume T4 is monochromatic (white); otherwise if one of its points,
say t1 + qx4 is black under χ, then {t1 + qx1, t1 + qx2, t1 + qx3, t1 + qx4} ∈ Hom(Q), a
monochromatic set. Similarly, we may assume χ(t4 + qx1) = χ(t4 + qx2) = χ(t4 + qx3) = ◦,
and χ(t4 + qx4) = •. Let Q′ = {qx1 + t1, qx2 + t2, qx3 + t3, qx4 + t4}. (See Figure 4 (2) for
a pictorial representation.)

Claim Q′ ∈ Hom(Q) and Q′ is monochromatic under χ. Let Q = {q1,q2,q3,q4}. Then
xi = aqi + b and ti = a′qi + b′, i = 1, 2, 3, 4 for some a, a′ ∈ N, b,b′ ∈ Z2. So, we have that
qxi + ti = q(aqi + b) + (a′qi + b′) = (qa + a′)qi + (qb + b′). This concludes the proof of the
claim.

What remains for us to check is that indeed all the selected points tj +qxi, i, j = 1, 2, 3, 4
belong to the grid [n]2. Note that qx1, qx2, qx3 are in the middle grid M ′′ of [n]2 of width
n/4. Since sT = sQ, all four points qxi, i = 1, 2, 3, 4 are contained in a square of size at most
n/4, so qx4 is in the middle square of [n]2 of width 3n/4. Since tj ∈ [q]2 for j = 1, 2, 3, and
sT = sQ, we have that tj is in a 3q×3q grid for j = 1, 2, 3, 4. Hence, tj +qxi are in the middle
square of [n]2 of width 3n/4 + 6q for i, j = 1, 2, 3, 4. Since n = 4qR40(T ) ≥ 4q · 40 ≥ 4q · 6,
we have 6q ≤ n/4 and hence tj + qxi belong to [n]2 for i, j = 1, 2, 3, 4.

Remark When Q = S, we can take n = qR40(L), instead of 4qR40(T ) because in the proof,
the point x4 will be in the square determined by xi, i = 1, 2, 3; similarly qxi +t4, i = 1, 2, 3, 4
will be in the squares determined by corresponding qxi + tj, i = 1, 2, 3, 4, j = 1, 2, 3. !

Proof. (Proof of Theorem 2) Let Q ⊆ Z2 be a set in general position with |Q| = 4. By
Lemmas 2 and 3 together with inequality (1), we have immediately that R2(Q) ≤ 20sQ ·
2sQR40(L) ≤ 40s2

Q2240
. !
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(1) (2)

t2+qx1
t1+qx1

t3+qx1 t4+qx1

t2+qx3
t1+qx3

t3+qx3 t4+qx3 t3+qx4

t1+qx4
t2+qx4

t4+qx4

t4+qx2t3+qx2

t1+qx2
t2+qx2

Figure 4: An example of the configuration Lemma 3 is describing. In this example, the
points tj + qxi are elements of shaded subgrids Axi .
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5. Appendix A

Let N be the Hales-Jewett number N = HJ(2, 4), which is the smallest positive inte-
ger such that any 2-coloring of SN = {(0, 0), (0, 1), (1, 0), (1, 1)}N admits a monochromatic
combinatorial line (for definitions, refer to [7]). The mapping f : SN → [2N ]2 defined by

f(x0, x1, . . . , xN−1) =
N−1∑

j=0

2jxj is injective, hence a 2-coloring of [2N ]2 gives a 2-coloring of

SN which has a monochromatic combinatorial line. This line in turn gives a monochromatic
homothetic copy of S in [2N ]2, and hence R2(S) ≤ 2N . The recursive bound on N = HJ(2, 4)

gives HJ(2, 4) ≤ 222··
·2

, where the tower has height 24; see for example [1].
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6. Appendix B

(2)(1) (3) (4)

Figure 5: The configurations used in the case analysis. Trivially, the diamond in (1) must
have color ◦. We refer to the Figure above labeled (2) as the cross; note that if the diamond
in (2) has color •, we can no longer avoid a monochromatic square. We refer to (3) as stacked
rows and (4) as staggered rows. In each, the diamond must have color ◦.

5

3
4

(2)

(1)

1 1

2 2

Figure 6: Both diamonds marked 1 must have color ◦, while both diamonds marked 2 must
have color •, else we have a monochromatic square. (1) examines the case where the diamond
marked 3 has color •; here, the diamond marked 4 cannot be colored. (2) examines the case
where the diamond marked 3 has color ◦; here, the diamond marked 5 cannot be colored.

1 1

2 2

3

Figure 7: Both diamonds marked 1 must have color ◦, and both diamonds marked 2 must
have color •. This immediately shows that the diamond marked 3 cannot be colored, con-
cluding the proof of case 1.
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3 3

1

2

Figure 8: The diamond marked 1 must have color ◦, and the diamond marked 2 must have
color •. However, the diamonds marked 3 cannot be colored. This concludes the proof of
case 2.

3

4

6

5

(2)

(1)

3

12

Figure 9: The diamonds marked 1 and 2 cannot both have color ◦. Without loss of generality
(due to symmetry), we color the diamond marked 1 ◦. Since the diamonds marked 3 cannot
both have color ◦, we examine the cases where both have color • and where one has color
• and the other has color ◦. Similarly, either the diamond marked 4 or the vertex above
the upper diamond marked 3 must have color •, so by symmetry we say that the diamond
marked 4 has color •. (1) examines the case where both diamonds marked 3 have color •;
here, the diamond marked 5 cannot be colored. (2) examines the case where one diamond
marked 3 has color ◦ and the other has color •; here, the diamond marked 6 cannot be
colored. This concludes the proof of case 3.

1

1

2

3

4

Figure 10: Under the hypothesis that the diamonds marked 1, 2, and 3 all have color ◦, the
diamond marked 4 cannot be colored.
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1

1

2

3

4

4

55

Figure 11: Under the hypothesis that the diamonds marked 1 have color ◦, and the diamonds
marked 2 and 3 have color •, the diamond marked 4 must have color ◦ (staggered rows).
The diamonds marked 5 cannot be colored.

1

1

2

3

4 5

Figure 12: Under the hypothesis that the diamonds marked 1 have color ◦, the diamond
marked 2 has color •, and the diamond marked 3 has color ◦, the diamond marked 4 must
have color ◦ (staggered rows). The diamond marked 5 cannot be colored.

1

13

2

4

4

5

Figure 13: Under the hypothesis that the diamonds marked 1, 2, and 3 all have color •, the
diamonds marked 4 must have color ◦ (stacked rows). The diamond marked 5 cannot be
colored.
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5

1

13

2

4

Figure 14: Under the hypothesis that both diamonds marked 1 have color •, the diamond
marked 2 has color •, and the diamond marked 3 has color ◦, the diamond marked 4 must
have color ◦ (stacked rows). This shows that the diamond marked 5 cannot be colored. (We
need not consider the case where the diamond marked 2 has color ◦ and the diamond marked
3 has color •; we use symmetry to take care of this.)

4

4

5

1

13

2

Figure 15: Under the hypothesis that both diamonds marked 1 have color • and both
diamonds marked 2 and 3 have color ◦, the diamonds marked 4 must have color ◦ (stacked
rows). This shows that the diamond marked 5 cannot be colored.



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (2008), #A21 13

4

1

12

3

Figure 16: Under the hypothesis that one of the diamonds marked 1 has color ◦ and the
other has color • and that the diamond marked 2 has color •, the diamond marked 3 must
have color ◦ (stacked rows). The diamond marked 4 cannot be colored.

3

4

1

12

Figure 17: Under the hypothesis that one of the diamonds marked 1 has color ◦ and the
other has color • and that the diamond marked 2 has color ◦, the diamond marked 3 must
have color ◦ (stacked rows). The diamond marked 4 cannot be colored. This concludes the
proof of case 4.
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