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Abstract

We show that the number of (0, 1)-matrices with n rows and k columns uniquely recon-

structable from their row and column sums is the poly-Bernoulli number B(−k)
n . Combina-

torial proofs for both the sieve and closed formulas are presented. In addition, we prove an
analogue of Fermat’s Little Theorem: For a positive integer n and prime number p we have
B(−p)

n ≡ 2n (mod p). Also, an analogue to Fermat’s Last Theorem is presented: For all posi-

tive integers {x, y, z} and n > 1 there exist no solution to the equation B(−n)
x +B(−n)

y = B(−n)
z .

1. Introduction

Our work concerns the set of binary matrices that can be described uniquely by their row
and column sums. In this section we proceed with a historical overview. In section two we
present additional terminology, and in the third we present our original work. Before we
begin it will be beneficial to use the following terminology throughout the paper.

Definition 1 (Lonesum Matrix). A Lonesum matrix is a binary matrix that can be
uniquely reconstructed from its row and column sums.

The modern foundations of binary matrix reconstruction can be traced to Ryser [14],
Fulkerson ([6], [7], [8], [9]), and Brualdi [4]. Ryser gives the following excellent classification.
Before mentioning it let us define a key aspect separately.

Definition 2 (Interchange Operation). An interchange operation is one of the following:
replacing the sub-matrix

(
01
10

)
with

(
10
01

)
, or replacing the sub-matrix

(
10
01

)
with

(
01
10

)
. Note that

row and column sum vectors stay unchanged after interchange operations are performed.
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Theorem 1 (Ryser 1957[14]). Any (0,1)-matrix with row sum vector R and column sum
vector S can be transformed into any other (0,1)-matrix with row sum vector R and column
sum vector S via interchange operations.

This gives rise to the notion of a Ryser class [15]:

Definition 3 (Ryser Class). A Ryser Class is the set of (0,1)-matrices with the same row
sum vector, and the same column sum vector.

Example 1 (Ryser Class). The Ryser Class of
(
011
100

)
is

{(
011
100

)
,
(
101
010

)
,
(
110
001

)}
.

For this work we will be interested in Ryser classes of size one, our Lonesum matrices.
By Theorem 1 we can deduce that a (0,1)-matrix will be uniquely determined by its row
and column sums if and only if no interchange operation can be performed on the matrix.
To ensure that a matrix can be uniquely reconstructable from its row and column sums we
need to forbid certain substructure:

Definition 4 (Forbidden Minor). A forbidden minor is a sub-matrix of the form
(
01
10

)
or(

10
01

)
.

Engineering applications of Lonesum matrices are discussed in [5] and [11]. Also, data
compression and recognition algorithms for Lonesum matrices can be found in [18].

2. The Stirling, Bernoulli, and Poly-Bernoulli Numbers

In this section we will define additional terminology needed.

Definition 5 (Stirling Numbers of the Second Kind). The Stirling numbers of the
second kind are the number of ways to partition n elements into k non-empty subsets.

We denote the Stirling Numbers of the Second Kind by

{
n

k

}
=

(−1)k

k!

k∑

l=0

(−1)l

(
k

l

)
ln.

Definition 6 (Bernoulli Numbers). The Bernoulli numbers have the formula

Bn =
n∑

m=0

(−1)m+n m!
{

n
m

}

m + 1
.
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{1, 2, 3}
⋃
{4} {1, 2, 4}

⋃
{3}

{1, 3, 4}
⋃
{2} {2, 3, 4}

⋃
{1}

{1, 2}
⋃
{3, 4} {1, 3}

⋃
{2, 4}

{1, 4}
⋃
{2, 3}

Table 1:
{

4
2

}
= 7

B0 = 1 ∅
B1 = 1

2
|{a}|

2

B2 = 1
6 − |{aa}|

2 + |{ab,ba}|
3

B3 = 0 |{aaa}|
2 − |{aab,aba,baa,bab,bba}|

3 + |{abc,acb,bac,bca,cab,cba}|
4

Table 2: Combinatorial interpretation of the Bernoulli numbers

Combinatorially the Bernoulli numbers are an inclusion exclusion, where the sum is taken
over all words of length n with k distinct letters, and normalized by k + 1.

We are interested in an extension to the Bernoulli numbers defined by Kaneko [2], [12],
[13]. They are in terms of infinite series, and although we will not use this form it is presented
for historical context. Kaneko begins with an alternate definition of the Bernoulli numbers
as the coefficients Bn in the formula

xex

ex − 1
=

∞∑

n=0

Bn
xn

n!
,

and then modifies the equation to form the poly-Bernoulli numbers.

Definition 7 (Poly-Bernoulli Numbers of Index k). The poly-Bernoulli numbers of

index k, B(k)
n , are defined as

Lik(1− e−x)

1− e−x
=

∞∑

n=0

B(k)
n

xn

n!
,

where Lik(z) denotes the formal power series
∞∑

m=1

zm

mk
.

Kaneko notes that when k is set equal to one it results in the Bernoulli numbers

xex

ex − 1
=

∞∑

n=0

B(1)
n

xn

n!
.

Kaneko also proves two combinatorial formulas.
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Kaneko’s Results 1 (Poly-Bernoulli Numbers). The poly-Bernoulli numbers of nega-
tive index satisfy two equivalent formulas:

B(−k)
n =

n∑

m=0

(−1)n+mm!

{
n

m

}
(m + 1)k (1)

B(−k)
n =

min(n,k)∑

j=0

(j!)2

{
n + 1

j + 1

}{
k + 1

j + 1

}
. (2)

We shall use (1) to prove our combinatorial interpretation of the poly-Bernoulli numbers,
and deduce (2) from this interpretation.

3. Original Work

In this section we give two combinatorial bijections between Lonesum matrices and the
poly-Bernoulli numbers. In addition we prove two Fermat analogues of the poly-Bernoulli
numbers.

3.1. The Sieve Formula

Theorem 2 (Sieve Formula). The number of distinct n× k Lonesum matrices is

B(−k)
n =

n∑

m=0

(−1)n+mm!

{
n

m

}
(m + 1)k.

To simplify the proof we will turn it into a word counting problem.

Definition 8 (Column Alphabet). A column alphabet is a legal set of columns that can
co-exist in a Lonesum (0,1)-matrix.

Definition 9 (Forbidden Word). A forbidden word is an ordered list of {0,1} columns
that when concatenated contains a forbidden minor.

For example, the three symbol word
(
010
110

)
is allowed while the three symbol word

(
011
110

)
is

forbidden because it contains the forbidden minor
(
01
10

)
.

Definition 10 (Symbol Weight). Symbol weight is the number of 1’s in a {0,1} column,
which is the column sum.
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Lemma 1 (Symbol Weight). No two distinct symbols of the same weight occur in an
allowable word of our language.

Proof. If two distinct symbols occur in a given word, then exchanging these columns with
each other would not change the row or column sums, which would violate the Lonesum
definition.

By a similar argument, we have the following:

Corollary 1 (Row Weight). No two distinct rows can have the same weight in an allowable
word.

Lemma 2 (Swap). Permuting rows or columns does not change membership in the class
of Lonesum matrices.

Proof. Note that the forbidden minors are mirror images. Swapping either the rows or
columns of one forbidden minor will give you the other. Thus, any permutation of rows or
columns will still yield the same number of forbidden minors.

Proof of Theorem 2. By Lemma 1 every column alphabet must consist of distinct symbols
with a given weight. For convenience we will throw out the all zero and all 1 symbol until
later. If we order the symbols of a size m − 1 alphabet in decreasing order of their weight
and view the alphabet as a word every row will sum to an integer between zero and m.
Thus, we have m distinct equivalence classes on the row weights. Partitioning the rows into
m distinct equivalence classes, and assigning equivalence classes values of a permutation of
the integers 0 to m, the number of alphabets is (m)!

{
n
m

}
.

Alphabets containing m − 1 symbols will be a subset of the alphabets containing m
symbols so we must do an inclusion exclusion to avoid over-counting.

Thus, summing over all size m− 1 alphabets not containing the all 1’s symbol or the all
zeros symbol, writing all possible length k words over these alphabets along with the all 1’s
symbol and all zeros symbol, and doing inclusion exclusion to avoid over counting yields the
formula

n∑

m=1

(−1)n+mm!

{
n

m

}
(m + 1)k.

3.2. The Closed Formula

Recent work has gone into finding simplified proofs for a closed equation of the poly-Bernoulli
numbers [16], [17]. Here we present a combinatorial proof involving Lonesum matrices.
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Theorem 3 (Closed Equation).

B(−k)
n =

Min(n,k)∑

m=1

m!

{
n + 1

m + 1

}
m!

{
k + 1

m + 1

}
,

and more specifically the number of Lonesum n × k (0,1)-matrices with exactly m distinct
nonzero rows is m!

{
n+1
m+1

}
m!

{
k+1
m+1

}
.

We want to show that the number of Lonesum n× k (0,1)-matrices is given by the right
side of the equation, where m is the number of distinct nonzero rows.

Lemma 3 (Distinct Row Placements). The number of n-row matrices with r given
distinct rows is r!

{
n
r

}
.

Proof. For each row, select one of the given rows for that position. This is equivalent to giving
a mapping from an n-set onto an r-set, and we have seen that this number is r!

{
n
r

}
.

Corollary 2. The number of n-row matrices with a given set of m distinct nonzero rows
and possibly at least one zero row is m!

{
n+1
m+1

}
.

Proof. By the preceding lemma, the number with no zero row is m!
{

n
m

}
, while the number

with at least one zero row is (m+1)!
{

n
m+1

}
, giving a total count of m!

{
n
m

}
+(m+1)!

{
n

m+1

}
=

m!(
{

n
m

}
+ (m + 1)

{
n

m+1

}
). Since

{
n
m

}
+ (m + 1)!

{
n

m+1

}
=

{
n+1
m+1

}
is a fundamental identity

for the Stirling numbers, the result is established.

Lemma 4 (Legal Distinct m-Row Sets). Given k columns, the number of legal distinct
nonzero m-row sets is m!

{
k+1
m+1

}
.

Proof. By Corollary 1 we know that rows have to obey a linear order, with row i less than
row j when all 1 entries of row i are also contained in row j and row j has more 1 entries
than row i. Use this ordering to sort our nonzero row sets from highest weight to lowest
weight. Notice that we have m rows and each of them is nonzero. From the existence of
a linear order at least one column must have m 1’s. Instead of writing out the whole row
set we could represent it as a string of k numbers from zero to m representing column sums
where at least one of the column sums is m. For example:

1 1 1
1 1 0
1 0 0

could be written as {3, 2, 1}.

Thus, all row sets can be written as either an onto function from the k-set of columns
to the set of integers 1 to m, or as an onto function from the k-set of columns to the set of
integers 0 to m in the case we get an all zero column:
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1 1 0
1 0 0

Thus, m!
{

k
m

}
will count the sets without a zero column, and (m + 1)!

{
k

m+1

}
will count row

sets with at least one zero column. Thus, the number of legal distinct nonzero m row sets
with k columns is m!

{
k
m

}
+ (m + 1)!

{
k

m+1

}
= m!

{
k+1
m+1

}
.

Proof of Theorem 3. By the previous two results, the number of Lonesum n × k matrices
with m distinct nonzero rows, with repetitions and zero rows allowed, is m!

{
n+1
m+1

}
m!

{
k+1
m+1

}
.

Since the number of set partitions where the number of partitions is bigger than the set
is zero we only need to sum m up to min(n, k). For the set of all n × k Lonesum matrices
we then get

B(−k)
n =

min(n,k)∑

m=1

m!

{
n + 1

m + 1

}
m!

{
k + 1

m + 1

}
.

3.3. An Analogue of Fermat’s Little Theorem

We can derive a poly-Bernoulli cohort to Fermat’s Little Theorem, which states that for any
positive integer a and prime number p,

ap ≡ a (mod p).

We will start with the main lemma of [1].

Lemma 5 (ABR 2005). Let S be a finite set, let p be a prime number, let f(x) : S → S be
a function that has the property fp(x) = x for any x in S, and let F be the number of fixed
points. Then

|S| ≡ |F | (mod p).

One could view the function f as a directed graph on elements in S consisting of disjoint
length p cycles and loops.

Theorem 4 (Row Ordered Fermat’s Little Theorem). Given a prime number p, and
a positive integer n,

B(−p)
n ≡ 2n (mod p). (3)

Proof. Let S be the set of n× p Lonesum (0,1)-matrices. Let f be the function that rotates
the columns of a matrix once to the left. The matrices that are fixed points in this function
are those consisting of all one and all zero rows. There are 2n such matrices, so let F = 2n.
From the above lemma |S| ≡ |F | (mod p). Substituting for S and F we get B(−p)

n ≡ 2n

(mod p).
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3.4. An Analogue of Fermat’s Last Theorem

Ernst Kummer in the 1800’s attempted to attack Fermat’s Last Theorem with the Bernoulli
numbers. His approach showed that for a prime number p, if p does not divide B(1)

p−2, ..., B
(1)
2

then p is an exponent satisfying Fermat’s last theorem.

There is also a related open problem [10]:

Open Problem 1 (Regular Primes). A prime p is called regular if it does not divide any

of B(1)
p−2, . . . , B

(1)
2 . Prove that there are an infinite number of regular primes.

The following lemma will be useful in proving our last theorem.

Lemma 6 (Applications).

(i) B(−1)
x = 2x.

(ii) If x < z, then B(−n)
x < B(−n)

z .

(iii) If x < z and y < z and n > 1, then B(−n)
x + B(−n)

y < B(−n)
z .

Proof. Clearly all column vectors are Lonesum (since a column vector is the column of its
row sums), and the number of binary x-tuples is 2x, which proves (i).

To prove (ii), we can embed the Lonesum x×n matrices in the z×n matrices by padding
with zero rows or one rows at the bottom. This gives disjoint embeddings.

To prove (iii), embed the x × n Lonesum matrices in the z × n Lonesum matrices by
padding with zero rows at the bottom, and embed the y× n Lonesum matrices in the z × n
Lonesum matrices by padding with one rows at the bottom. These embeddings are disjoint,
and for any n-tuple not all one or zero, the matrix with this row vector repeated z times is
a Lonesum z × n matrix in neither of the x× n or y × n embeddings.

We can deduce the following theorem.

Theorem 5 (Row Ordered Fermat’s Last Theorem).

(i) If n > 1, there are no positive integer solutions to B(−n)
x + B(−n)

y = B(−n)
z .

(ii) If n = 1, the positive integer solutions to B(−n)
x +B(−n)

y = B(−n)
z are given by x = y = z−1.

Proof. Since there are Lonesum matrices of any size, e.g., the zero and one matrices, part
(i) follows immediately from parts (ii) and (iii) of the preceding lemma.

If n = 1, part (ii) follows immediately from part (i) of the preceding lemma and the fact
that if z > x + 1 or z > y + 1 then there are z× 1 column vectors whose last two entries are
0 and 1, and these will be in neither of the x × 1 or y × 1 embeddings, while if y = x and
z = x + 1, then z-tuples are obtained from the x-tuples or y-tuples by padding with a 0 or
a 1.
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