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Abstract

This paper is a continuation of the work started by the second author in a series of papers.
We extend to the general case the characterization previously found for those equilateral
triangles in R3 whose vertices have integer coordinates. In this earlier work, we made use
of the hypothesis that (a, b, c) is a non-degenerate primitive solution of a2 +b2 +c2 = 3d2.
This condition is now eliminated. Although degenerate solutions present less interest
as a result, we state a conjecture which gives a characterization for the existence of
such solutions. An approximate extrapolation formula for the sequence ET (n) of all
equilateral triangles with vertices in {0, 1, 2, ..., n}3 is given and the asymptotic behavior
of this sequence is analyzed.

1. Introduction

It turns out that equilateral triangles in Z3 exist and there are unexpectedly many. Just
to give an example, if we restrict our attention only to the cube {0, 1, 2, ..., 2007}3 we
have 52,783,138,012,302,384 of them. In [1] it was shown the first part of the following
theorem and the second part about the converse was only proven under the hypothesis
that gcd(d, a) = 1 or gcd(d, b) = 1 or gcd(d, c) = 1. The main result of this paper is to
show that one can drop this condition.
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Figure 1: Plane Pa,b,c and a few triangles given by parametrization (1) and (2)

Theorem 1. Let a, b, c, d be odd positive integers such that a2 + b2 + c2 = 3d2 and
gcd(a, b, c) = 1. Then the points P (u, v, w) and Q(x, y, z) whose coordinates given by






u = mum− nun,

v = mvm− nvn,

w = mwm− nwn,

and






x = mxm− nxn,

y = mym− nyn,

z = mzm− nzn,

m, n ∈ Z, (1)

with 




mx = −1
2 [db(3r + s) + ac(r − s)]/q, nx = −(rac + dbs)/q

my = 1
2 [da(3r + s)− bc(r − s)]/q, ny = (das− bcr)/q

mz = (r − s)/2, nz = r
and





mu = −(rac + dbs)/q, nu = −1
2 [db(s− 3r) + ac(r + s)]/q

mv = (das− rbc)/q, nv = 1
2 [da(s− 3r)− bc(r + s)]/q

mw = r, nw = (r + s)/2

(2)

where q = a2 + b2 and (r, s) is a suitable solution of 2q = s2 + 3r2 which makes all the
numbers in (2) integers, together with the origin (O(0,0,0)) forms an equilateral triangle
in Z3 contained in the plane Pa,b,c := {(α,β, γ)|aα+bβ+cγ = 0} and having sides-lengths
equal to d

√
2(m2 −mn + n2).

Conversely, there exists a choice of the integers r and s such that given an arbitrary
equilateral triangle in R3 with one of its vertices the origin, and the other two having
integer coordinates contained in the plane Pa,b,c, then these two vertices must be of the
form (1) and (2) for some integer values m and n.

The conditions

gcd(a, b, c) = 1, min(gcd(d, a), gcd(d, b), gcd(d, c)) > 1 (3)

define (a, b, c) as a degenerate solution of the Diophantine equation

a2 + b2 + c2 = 3d2. (4)
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Equation (4) has, for every odd number d, at least one nontrivial decomposition (i.e.,
those for which gcd(a, b, c) = 1). However, the first d that admits degenerate decomposi-
tions is 1105 which by coincidence is the second Carmichael number. There are exactly
seven degenerate decompositions of d = 1105:

(a, b, c) ∈ {(731, 1183, 1315), (475, 1309, 1313), (299, 493, 1825),
(1027, 1139, 1145), (187, 415, 1859), (265, 533, 1819), (493, 1001, 1555)}.

The connection with Carmichael numbers goes a little further. Carmichael numbers have
at least three prime factors and numerical evidence suggests that the following conjecture
is true:

Conjecture: The Diophantine equation (4) has degenerate solutions if and only if d has
at least three distinct prime factors of the form 4k + 1, k ∈ N.

One can easily prove the necessity part of this conjecture. Fortunately, we did not have
to go into details of the study of degenerate solutions of (4) because, as we mentioned,
this condition was not necessary for our result to hold true in general.

Our study started with the intent of computing the sequence ET (n) of all equilateral
triangles with vertices in {0, 1, 2, ..., n}. These values were calculated by the first author
for n ≤ 3315 using an improved version of the code published in [2] and translated into
Mathematica (see A102698 in The On-Line Encyclopedia of Integer Sequences, [4]).

One of the parametrizations like in (1) and (2), in the case a = 731, b = 1183 and
c = 1315, is shown below:

P = (901m− 1428n,−1157m + 221n, 540m + 595n),
Q = (−527m− 901n,−936m + 1157n, 1135m− 540n), m, n ∈ Z.

Observe that for this example, gcd(a, d) = 17, gcd(b, d) = 13, and gcd(c, d) = 5.
There is something special about these numbers and the above parametrization: the first
coordinates of P and Q are multiples of 17, the second coordinates are divisible by 13
and the last components are multiples of 5. This is a fact that we will show in general.

Although for various solutions of r and s we may get formally different parametriza-
tions, they are all equivalent in the sense that one can be obtained from another by
changing the variables in the expected ways:

(m,n)→ (−m,−n), (m,n)→ (m− n,m), (m,n)→ (n−m,n),

(m,n)→ (m− n,−n), and (m,n)→ (n−m,−m).
(5)

These changes of variables leave invariant the quadratic form involved in the side-
length formula of these triangles given in Theorem 1. The various points given by (1)
and (2) define a lattice of points or the vertices of a regular tessellation of the plane Pa,b,c

with triangles as illustrated in Figure 1.
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2. Proof of Theorem 1

The first part of the Theorem 1 follows from [1]. For the second part we are going to
reconstitute some of the details started in the proof of the particular case: gcd(d, c) = 1.

Let us start with a triangle in Pa,b,c say %OP ′Q′ with P ′(u0, v0, w0) and Q′(x0, y0, z0)
having integer coordinates. By Theorem 4 in [1] we have






x0 =
u0

2
± cv0 − bw0

2d
y0 =

v0

2
± aw0 − cu0

2d

z0 =
w0

2
± bu0 − av0

2d
,

(6)

for some choice of the signs. This means that d must divide cv0 − bw0, aw0 − cu0 and
bu0 − aw0. So, we need to look at the following system of linear equations in m and n:






mum− nun = u0,

mvm− nvn = v0,

mwm− nwn = w0.

(7)

By the Kronecker-Capelli theorem this linear system of equations has a solution if and
only the rank of the main matrix is the same as the rank of the extended matrix. Since
mvnw −mwnv = ad, mwnu −munw = bd and munv −mvnu = cd (one can check these
calculations based on the definitions in (2)) then the rank of the main matrix is two and
the rank of the extended matrix is also two because its determinant is u0ad+v0bd+w0dc =
0. This implies that (7) has a unique real (in fact rational) solution in m and n.

We want to show that this solution is in fact an integer solution. Solving for n from
each pair of equations in (7) we get

n =
v0mw − w0mv

ad
=

w0mu − u0mw

bd
=

u0mv − v0mu

cd
. (8)

Because gcd(a, b, c) = 1, there exist integers a′, b′, c′ such that aa′ + bb′ + cc′ = 1.
Then one can see that

n =
a′(v0mw − w0mv) + b′(w0mu − u0mw) + c′(u0mv − v0mu)

d
(9)

Next, from (9) we observe that in order for n to be an integer it is enough to prove
that d divides v0mw − w0mv, w0mu − u0mw and u0mv − v0mu. Hence we calculate for
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example v0mw − w0mv in more detail:

v0mw − w0mv = v0r −
das− rbc

q
w0 =

v0qr − (das− rbc)w0

q
=

−dasw0 + v0(3d2 − c2)r + rbcw0

q
=

c(bw0 − v0c)r + 3rv0d2 − dasw0

q
.

From (6) we see that bw0 − v0c = ±d(2x0 − u0). Hence,

v0mw − w0mv =
d[±c(2x0 − u0)r + 3rv0d− asw0]

q
. (10)

Assuming that gcd(d, c) = ζ we can write d = ζd1 and c = ζc1 with gcd(d1, c1) = 1.
Also we see that ζ2 must divide q = 3d2 − c2 so let us write q = ζ2q1. If p is a prime
dividing ζ, it must be an odd prime and if it is of the form 4k + 3 it must divide a and b
which is contradicting the assumption that gcd(a, b, c) = 1. Therefore it must be a prime
of the form 4k + 1. Hence q1 is still a sum of two squares.

In the proof of Theorem 13 in [1] one can choose r and s with the extra condition
that r and s are divisible by ζ. Indeed, Lemma 14 in [1] is applied to (ac)2 + 3(db)2 =
ζ2[(ac1)2 + 3(d1b)2] and to q = ζ2q1 but instead one can apply it to (ac1)2 + 3(d1b)2 and
to q1 giving, let us, say r1 and s1. Then we put r = ζr1 and s = ζs1 and then all the
arguments there go as stated. Then from (10) we see that

v0mw − w0mv =
d[±c(2x0 − u0)r + 3rv0d− asw0]

q

=
ζd1[±ζc1(2x0 − u0)ζr1 + 3ζr1v0ζd1 − aζs1w0]

ζ2q1

=
ζ2d1[±c1(2x0 − u0)r1ζ + 3r1v0d1ζ − as1w0]

ζ2q1
=

d1ξ

q1
,

(11)

where ξ = ±c1(2x0 − u0)r1ζ + 3r1v0d1ζ − as1w0. This implies that d1 must divide
v0mw − w0mv since gcd(d1, q1) = 1. In a similar way we can show that d1 divides
w0mu − u0mw and u0mv − v0mu. Hence, from (9) we see that n is a rational with
denominator ζ. Similar arguments will give us that m is of the same form.

The triangle having the coordinates as in (1) and (2) with these m and n (even if
they are rational) will have same formula for the side-lengths:

l2 = 2d2(m2 −mn + n2).

This whole construction can be repeated for a or b instead of c and we obtain that

l2 = 2d2(m2
1 −m1n1 + n2

1),
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for some rational numbers m1, n1 with denominator η = gcd(d, b). Since gcd(ζ, η) = 1
we see that m2 −mn + n2 = m2

1 −m1n1 + n2
1 must be an integer. Therefore,

l2 = 2d2(α2 − αβ + β2), for some α,β ∈ Z. (12)

On the other hand if u2
0 + v2

0 + w2
0 = l2 and ζ divides d we can see that

u2
0 + v2

0 + w2
0 ≡ 0 (mod ζ2). (13)

We also know that au0 + bv0 + cw0 = 0 and hence a2u2
0 = b2v2

0 + 2bcv0w0 + c2w2
0 .

This implies a2u2
0 ≡ b2v2

0 + 2bcv0w0 (mod ζ2). But a2 + b2 = 3d2 − c2 ≡ 0 (mod ζ2) too
and then a2(u2

0 + v2
0) ≡ 2bcv0w0 (mod ζ2) which combined with (13) gives

a2w2
0 + 2bcv0w0 ≡ 0 (mod ζ2). (14)

Because we must have gcd(a, ζ) = 1, (14) implies that ζ divides w0. Indeed, if p is
a prime that has exponent one in the decomposition of ζ then (14) gives in particular
w2

0 ≡ 0 (mod p) and so p must divide w0. If the exponent of p in ζ is two, then (14) in
particular implies that w0 is divisible by p but then aw2

0 ≡ 0 (mod p3) which implies p2

divides w0. Inductively if the exponent of p in ζ is k then this must be true for w0 too.
Hence we must have ζ a divisor of w0 so w0 = ζw′

0.

Now we can go back to (11) and observe that we can rewrite it as

v0r − w0mv =
ζd1ξ′

q1
, (15)

where ξ′ = ±c1(2x0−u0)r1 +3r1v0d1− as1w′
0. Now we observe that the left hand side of

(15) is a multiple of ζ since r and w0 are. After simplification with ζ this will show that
q1 must divide in fact ξ′ and so d divides v0mw − w0mv. Similar arguments can be used
to show that d divides w0mu− u0mw. Finally, for the term u0mv − v0mu that appears in
(9), we obtain a similar expression

u0mv − v0mu =
ζd1[−c1w0s1 ∓ 2r1c1(2z0 − w0)]

q1
=

ζd1ξ′′

q1
, (16)

which shows as before that d1 divides u0mv− v0mu. On the other hand since au0 + bv0 +
cw0 = 0 and amu + bmv + cmw = 0, we obtain that a(u0mv − v0mu) = ζc1(rv0 −w0mv).
This last relation, together with the fact that gcd(ζ, a) = 1 gives that ζ must divide
u0mv − v0mu. Again, (16) can be simplified by ζ and that implies that q1 must divide
ξ′′. Therefore d divides u0mv − v0mu too.

Using (9), n must be an integer and so should be m. Changing the variables as in
(5), one of the corresponding triangles given by (1) is going to match with the triangle
OP ′Q′.
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Figure 2: The graph of g extrapolating f over the interval [100, 10000]

Remark: One can see that the condition on r and s to be divisible by ζ is implied by
asking only that the numbers in (2) be integers. Indeed, given a choice of r and s as
required in Theorem 1, they will define by (1), in which m = 1 and n = 0, an equilateral
triangle with integer coordinates. According to the above proof of Theorem 1, w = r and
z = (r−s)/2 must be divisible by ζ. This implies that r and s must be multiples of ζ. As
a corollary any parametrization as in the Theorem 1 is unique up to the transformations
(5).

3. Behavior of the Sequence ET (n)

The calculations of the ET (n) for all n ≤ 3315 = (3)(5)(13)(17) gave us enough data to

be able to extrapolate the graph of n
f→ ln(ET (n))

ln(n+1) as shown in Figure 2. The function

we used to extrapolate is of the form g(x) = a + b√
x+c having clearly a as limit at

infinity. Then we made it agree with f on three points. That gave us a := 5.079282921,
b := −0.7091588389, and c := −0.8403164433. Numerically then we discovered that the
average of |f(k)− g(k)| over all values of k = 100, ..., 3315 is approximately 0.000250721.

One conjecture that we would like to make here is that f(n) is a strictly increasing
sequence and then as result it is convergent to a constant C ≈ 5.08.

The graph of the “derivative” of ET (n) (Figure 3) is almost like the graph of h(x) =
C(x + 1)k where k := 4.151431798 and C := 2.660972140. The third difference of ET (n)
as represented in Figure 4 seems to bring a chaotic flavor to this sequence and it is saying
in a certain sense that no simple formula for ET (n) can exist.
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Figure 3: The graph of n→ ET (n + 1)− ET (n), n = 100 . . . 6000
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Figure 4: ∆3ET (n)
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