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TILING PROOFS OF SOME FIBONACCI-LUCAS RELATIONS
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Abstract

We provide tiling proofs for some relations between Fibonacci and Lucas numbers, as re-
quested by Benjamin and Quinn in their text, Proofs that Really Count. Extending our
arguments yields Gibonacci generalizations of these identities.

1. Introduction

Let Fn and Ln denote the Fibonacci and Lucas numbers defined, respectively, by F0 = 0,
F1 = 1 with Fn = Fn−1 + Fn−2 if n ! 2 and by L0 = 2, L1 = 1 with Ln = Ln−1 + Ln−2 if
n ! 2. The following four relations can be shown using the Binet formulas for Fn and Ln

and occur as (V85)–(V88) in Vajda [2]:

F(2k+3)t = Ft

[
(−1)(k+1)t +

k∑

i=0

(−1)itL(2k+2−2i)t

]
, (1.1)

F(2k+2)t = Ft

k∑

i=0

(−1)itL(2k+1−2i)t , (1.2)

L(2k+3)t = Lt

[
(−1)(k+1)(t+1) +

k∑

i=0

(−1)i(t+1)L(2k+2−2i)t

]
, (1.3)

and

F(2k+2)t = Lt

k∑

i=0

(−1)i(t+1)F(2k+1−2i)t , (1.4)

where k and t are nonnegative integers. Benjamin and Quinn request combinatorial proofs
of (1.1)–(1.4) on page 145 of their text, Proofs that Really Count [1]. In this note, we provide
tiling proofs for (1.1)–(1.4) as well as for a couple of closely related identities. The arguments
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can be extended to yield generalizations involving Gibonacci numbers. The tiling proofs we
give will also supply a combinatorial insight into the various divisibility relations implicit in
(1.1)–(1.4) within/between the Fibonacci and Lucas sequences.

The Fibonacci number Fn+1 counts tilings of a board of length n with cells labeled 1, 2,
..., n using squares and dominos (termed n-tilings). The Lucas number Ln is given by the
simple relation

Ln = Fn+1 + Fn−1, n ! 2 . (1.5)

From (1.5), we see that Ln counts n-tilings in which one may circle a domino covering cells
n− 1 and n, which we’ll term Lucas n-tilings. (There are Fn−1 Lucas n-tilings which end in
a circled domino and Fn+1 Lucas n-tilings which do not.)

We’ll say that a tiling is breakable at m (as in [1, p. 3]) if cell m is covered by a square
or by a second segment of a domino. The 5-tiling below is breakable at 0 (vacuously), 1, 3,
and 5.

For m ! 0, let Fm and Lm denote the sets consisting of m-tilings and of Lucas m-tilings,
respectively.

2. Tiling Proofs

We first provide a combinatorial interpretation for (1.2) when t ! 2 is even. By (1.5), we’re
to show

F(2k+2)t =
k∑

i=0

(
FtF(2k+1−2i)t+1 + FtF(2k+1−2i)t−1

)
. (2.1)

Given i, 0 " i " k, let Fi ⊆ F(2k+2)t−1 comprise those tilings starting with it consecutive
dominos, but not with (i + 1)t consecutive dominos. There are clearly FtF(2k+1−2i)t−1 mem-
bers of Fi that are not breakable at (2i + 1)t, as such tilings can be decomposed as ditδ1dδ2,
where δ1 and δ2 are tilings of length t − 1 and (2k + 1 − 2i)t − 2, respectively. So we need
to show that there are FtF(2k+1−2i)t+1 members of Fi that are breakable at (2i + 1)t.

Suppose λ ∈ Fi is breakable at (2i + 1)t. Let α be the t-tiling obtained by taking all the
pieces in λ covering cells 2it + 1 through (2i + 1)t and β be the [(2k + 1 − 2i)t − 1]-tiling
obtained by taking all the pieces in λ past cell (2i + 1)t. We place α above β, offsetting the
tilings by shifting β to the right by one cell. (Tiling α covers cells 1 through t and β covers
cells 2 through (2k + 1− 2i)t.)

Look for the first fault line passing through α and β. (A fault line occurs at cell j if
both α and β are breakable at cell j.) Exchange all the pieces in α past the first fault line
with all the pieces in β past it (i.e., swap tails as shown) to obtain (A,B) ∈ F(2k+1−2i)t×Ft−1.
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Figure 1: Swapping tails past cell 8 converts (α,β) into (A,B).

Note that λ ∈ Fi implies that tails can always be swapped as it cannot be the case that α
consists of and β starts with t

2 dominos. (If i = k, there is a single case in which tails of
length zero are swapped.) Since t− 1 is odd, there is always at least one square in a tiling of
length t− 1. Thus, the inverse on F(2k+1−2i)t × Ft−1 can always be defined, which completes
the even case.

Now suppose t ! 1 is odd. With the Fi as above, let

Fi
> :=

k⋃

j=i+1

Fj, 0 " i " k ; (2.2)

note that |Fi
>| = F(2k−2i)t, as members of Fi

> must start with at least (i + 1)t consecutive
dominos. There are FtF(2k+1−2i)t−1 members of F(2k+2)t−1 starting with it dominos that
aren’t breakable at (2i + 1)t. These tilings consist of the F(2k−2i)t members of Fi

> (they
aren’t breakable at (2i+1)t since t is odd) as well as the members of Fi that aren’t breakable
at (2i + 1)t. Upon subtraction, there are then FtF(2k+1−2i)t−1 − F(2k−2i)t members of Fi that
aren’t breakable at (2i + 1)t.

If λ ∈ Fi is breakable at (2i + 1)t, then use the correspondence above with F(2k+1−2i)t ×
Ft−1, noting that now the F(2k−2i)t ordered pairs whose first component starts with t+1

2

dominos and whose second component consists of t−1
2 dominos are missed. Thus, there

are FtF(2k+1−2i)t+1 − F(2k−2i)t members of Fi that are breakable at (2i + 1)t. Upon adding
the FtF(2k+1−2i)t−1 − F(2k−2i)t members of Fi that aren’t breakable at (2i + 1)t, we see that
there are (FtF(2k+1−2i)t+1−F(2k−2i)t)+(FtF(2k+1−2i)t−1−F(2k−2i)t) = FtL(2k+1−2i)t−2F(2k−2i)t

members of Fi altogether, which implies |Fi| + 2|Fi
>| = FtL(2k+1−2i)t. Therefore,

Ft

k∑

i=0

(−1)iL(2k+1−2i)t =
k∑

i=0

(−1)i
[
|Fi| + 2|Fi

>|
]

=
k∑

i=0

|Fi| = |F(2k+2)t−1| = F(2k+2)t ,
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where the second equality follows from a simple characteristic function argument: If 0 "
j " k and λ ∈ Fj, then both the second and third sums count λ one time, the second

since (−1)j +
j−1∑

i=0

2 · (−1)i = 1. This completes the odd case and the proof of (1.2). A slight

modification of the preceding argument gives (1.1) as well.

We now turn to identity (1.3), first assuming t ! 1 is odd. A similar proof will apply to
(1.4). By (1.5), we’re to show

L(2k+3)t = Lt +
k∑

i=0

(Ft+1 + Ft−1)L(2k+2−2i)t . (2.3)

Given i, 0 " i " k + 1, let Li ⊆ L(2k+3)t comprise those tilings starting with it consecutive
dominos, but not with (i + 1)t consecutive dominos. Clearly, |Lk+1| = Lt. If 0 " i " k, then
there are Ft+1L(2k+2−2i)t members of Li that are breakable at (2i + 1)t as well, since such
tilings can be decomposed as ditδ1δ2, where δ1 is a regular tiling of length t and δ2 is a Lucas
tiling of length (2k + 2− 2i)t. So we need to show that there are Ft−1L(2k+2−2i)t members of
Li that are not breakable at (2i + 1)t.

Suppose λ ∈ Li is not breakable at (2i + 1)t. Let α be the (t − 1)-tiling obtained by
taking all the pieces in λ covering cells 2it + 1 through (2i + 1)t − 1 and β be the Lucas
[(2k + 2− 2i)t− 1]-tiling obtained by taking all the pieces in λ past cell (2i + 1)t + 1. Set α
above β, shifting β to the right by one cell, and exchange pieces past the first fault line to
obtain (A,B) ∈ L(2k+2−2i)t × Ft−2. Note that this operation can always be performed since
λ ∈ Li and can always be reversed since t− 2 is odd.

If t ! 2 is even, then let

Li
> :=

k+1⋃

j=i+1

Lj, 0 " i " k , (2.4)

where the Li are as above. Note that |Li
>| = L(2k+1−2i)t, since members of Li

> must start
with at least (i + 1)t consecutive dominos. If 0 " i " k, then there are Ft+1L(2k+2−2i)t

members of L(2k+3)t which start with it consecutive dominos and are breakable at (2i + 1)t.
Since t is even, there are among these the L(2k+1−2i)t members of Li

>. By subtraction, we
get Ft+1L(2k+2−2i)t − L(2k+1−2i)t members of Li that are breakable at (2i + 1)t if 0 " i " k.

If λ ∈ Li is not breakable at (2i+1)t, then use the correspondence above with L(2k+2−2i)t×
Ft−2, noting that now the ordered pairs whose second component consists of t

2−1 dominos and
whose first component starts with t

2 dominos are missed. Thus, there are Ft−1L(2k+2−2i)t −
L(2k+1−2i)t members of Li that aren’t breakable at (2i+1)t and (Ft+1L(2k+2−2i)t−L(2k+1−2i)t)+
(Ft−1L(2k+2−2i)t−L(2k+1−2i)t) = LtL(2k+2−2i)t− 2L(2k+1−2i)t members of Li in all. The rest of
the proof goes much like the odd case of (1.2) above.

Two further identities can also be obtained from the arguments above. On page 146 of
their text, Benjamin and Quinn request combinatorial proofs for Identities V93 and V94,
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which may be written as

F(2k+3)t = (−1)(k+1)tFt

[
(2k + 3) + 5

k+1∑

i=1

(−1)itF 2
it

]
(2.5)

and

F(2k+3)t = (−1)(k+1)tFt

[
−(2k + 1) +

k+1∑

i=1

(−1)itL2
it

]
. (2.6)

Replacing i by k + 1− i in (1.1) gives

F(2k+3)t = (−1)(k+1)tFt

[
1 +

k+1∑

i=1

(−1)itL2it

]
, (2.7)

and substituting

L2it = 5F 2
it + 2 · (−1)it (2.8)

and

L2it = L2
it − 2 · (−1)it (2.9)

into (2.7) yields (2.5) and (2.6), respectively. The preceding argument for (1.1) and hence
(2.7) can then be easily combined with the arguments for (2.8) and (2.9), which are known
and involve tailswapping (see, e.g., Identities 36, 45, and 53 of [1]), to obtain combinatorial
interpretations for (2.5) and (2.6), as desired.

3. Generalizations

Let (Gn)n!0 be the sequence given by Gn = Gn−1 + Gn−2 if n ! 2, where G0 and G1 are
nonnegative integers (termed Gibonacci numbers [1, p. 17] as shorthand for generalized
Fibonacci numbers). The Gn are seen to enumerate n-tilings in which a terminal square is
assigned one of G1 possible phases and a terminal domino is assigned one of G0 possible
phases (termed phased n-tilings). Note that Gn reduces to Fn+1 when G0 = G1 = 1 and to
Ln when G0 = 2, G1 = 1.

Reasoning as in the prior section with phased tilings instead of regular tilings yields the
following (reindexed) generalizations of (1.1)–(1.4):

G(2k+3)t−1 = (−1)kt

[
(−1)tGt−1 + Ft

k∑

i=0

(−1)it(G(2i+2)t + G(2i+2)t−2)

]
, (3.1)
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G(2k+2)t−1 = (−1)kt

[
(−1)t(G1 −G0) + Ft

k∑

i=0

(−1)it(G(2i+1)t + G(2i+1)t−2)

]
, (3.2)

G(2k+3)t = (−1)k(t+1)

[
(−1)t+1Gt + Lt

k∑

i=0

(−1)i(t+1)G(2i+2)t

]
, (3.3)

and

G(2k+2)t−1 = (−1)k(t+1)

[
(−1)t+1(G1 −G0) + Lt

k∑

i=0

(−1)i(t+1)G(2i+1)t−1

]
. (3.4)

Identities (3.1), (3.2), and (3.4) reduce to (1.1), (1.2), and (1.4), respectively, when Gn =
Fn+1, and (3.3) reduces to (1.3) when Gn = Ln.

We outline the proof of (3.2), and leave the others as exercises for the interested reader.
We adjust the argument above for (1.2), first assuming t is even. Let Gm denote the set
consisting of phased tilings of length m and let Gi ⊆ G(2k+2)t−1 comprise those tilings starting
with it consecutive dominos, but not with (i+1)t consecutive dominos, 0 " i " k. There are
then FtG(2i+1)t−2 members of Gk−i that are not breakable at (2k− 2i + 1)t if 0 " i " k and,
upon tailswapping as above, FtG(2i+1)t members of Gk−i that are breakable at (2k− 2i + 1)t
if 0 < i " k.

If i = 0, we omit the G1 cases in which λ ∈ Gk ends in a phased square preceded by
t − 1 dominos, since here tailswapping doesn’t actually move any tiles (i.e., the first and
only fault occurs directly after cell t) and hence the phased square ending λ fails to be
moved. Similarly, we must omit from consideration the G0 members of Gt × Ft−1 whose
first coordinate is a phased tiling which contains no squares and whose second coordinate is
a regular tiling which contains only a single square occurring at the end. Thus, there are
FtGt + (G1−G0) members of Gk that are breakable at (2k + 1)t. Adding together all of the
cases gives (3.2) when t is even. Similar adjustments apply when t is odd.
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