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Abstract

The inverse problem for representation functions takes as input a triple (X, f,L), where X is
a countable semigroup, f : X → N0 ∪ {∞} a function, L : a1x1 + · · ·+ ahxh an X-linear form
and asks for a subset A ⊆ X such that there are f(x) solutions (counted appropriately) to
L(x1, . . . , xh) = x for every x ∈ X, or a proof that no such subset exists.

This paper represents the first systematic study of this problem for arbitrary linear forms
when X = Z, the setting which in many respects is the most natural one. Having first settled
on the ‘right’ way to count representations, we prove that every primitive form has a unique
representation basis, i.e.: a set A which represents the function f ≡ 1. We also prove that
a partition regular form (i.e.: one for which no non-empty subset of the coefficients sums to
zero) represents any function f for which {f−1(0)} has zero asymptotic density. These two
results answer questions recently posed by Nathanson.

The inverse problem for partition irregular forms seems to be more complicated. The
simplest example of such a form is x1−x2, and for this form we provide some partial results.
Several remaining open problems are discussed.

1. Introduction and Definitions

A fundamental notion in additive number theory is that of basis. Given a positive integer h,
a subset A ⊆ N0 for which 0 ∈ A is said to be a basis for N0 of order h if, for every n ∈ N0

the equation
x1 + x2 + · · ·+ xh = n (1.1)

has at least one solution in A. The requirement that 0 ∈ A means that, in words, A is a
basis of order h if every positive integer can be written as the sum of at most h positive
integers from A.



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (2008), #A16 2

In classical number theory, we encounter questions of the type: is the following set A a
basis for N0 and, if so, of what order? Famous examples include the cases when A is the
set Nk

0 of perfect k:th powers, for some fixed k (Waring’s Problem), or the set P0,1 of primes
together with 0 and 1 (Goldbach’s Problem). In both these cases, it is in fact more natural
to consider a slightly weaker notion, namely that of asymptotic basis. A subset A ⊆ N0

is said to be an asymptotic basis of order h if (1.1) has a solution for every n ( 0. For
example, in Waring’s Problem, if g(k) and G(k) denote the order, resp. asymptotic order, of
the set Nk

0, then it is known that G(k) is considerably less than g(k) for large k. Regarding
the primes, Vinogradov’s Theorem says that P0,1 is an asymptotic basis of order 4, while it
remains open as to whether it is actually a basis of even that order. Goldbach’s conjecture
would imply the much stronger result that P0,1 is a basis of order 3. In this regard, it is
well-known that the subset of the positive even integers representable as the sum of two
primes has asymptotic density one (see, for example, [9] Theorem 3.7). This motivates a
further fairly natural weakening of the notion of basis. In the terminology of [7], we say that
A ⊆ N0 is a basis of order h for almost all N0 if the set of n ∈ N0 for which (1.1) has a
solution in A has asymptotic density one.

In the terminology commonly used by practitioners of the subject, the above classical
problems are illustrations of a direct problem, where we are in essence seeking a description
of the h-fold sumset of a specified set A. The corresponding inverse problem is to construct
a set A with a specified so-called (unordered) representation function of a certain order. Let
f : N0 → N0 be any function, h ∈ N and A ⊆ N0. We say that f is the (unordered)
representation function of A of order h if, for every n ∈ N0,

f(n) = #{(x1, . . . , xh) ∈ Ah : x1 ≤ x2 ≤ · · · ≤ xh and (1.1) holds}. (1.2)

If (1.2) holds then we write f = fA,h. The relationship between bases and representations
functions is thus that

- A is a basis of order h if and only if f−1
A,h(0) is empty,

- A is an asymptotic basis of order h if and only if f−1
A,h(0) is finite,

- A is a basis of order h for almost all N0 if and only if d[f−1
A,h(0)] = 0.

The inverse problem for bases/representation functions in N0 is, in general, very hard.
Probably the single most famous illustration of this is the long-standing question of Erdős
and Turán [3] as to whether there exists an asymptotic basis of any order h whose represen-
tation function is bounded. Not much is known beyond the facts that, on the one hand, fA,2

cannot be ultimately constant [1] while, on the other, there exist for every h so-called thin
bases Ah satisfying fAh,h(n) = Θ(log n) [2].

In seeking a more tractable inverse problem, a natural starting point are the follow-
ing two observations :

First, the various notions of basis make sense in any additive semigroup, not just N0.
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Second, it is easy to see intuitively why the inverse problem is hard in N0. Namely, when
trying to construct a set A with a given representation function f of a given order h, we can-
not use negative numbers to help ‘fill in gaps’. More precisely, suppose we try to construct
our set A one element at a time and at some point have constructed a finite set A′ such that

fA′,h(n) ≤ f(n) for every n ∈ N0. (1.3)

Assuming f−1(0) is finite, say, there will be a smallest n = n1 for which we have strict
inequality in (1.3). We would now like to add some more elements to A′ which create a new
solution to (1.1) for n = n1 while not violating (1.3). If we could use negative numbers then,
as long as f−1(0) is finite, a natural way to do this would be to add to A′ exactly h new
elements which (a) don’t all have the same sign (b) are all much larger in absolute value
than anything currently in A′ (c) almost cancel each other out in exactly one way, in which
case they add up to n1.

These observations led Nathanson to consider the inverse problem for representation
functions in Z or, more generally, in countable abelian groups. The fundamental result
showing that we have a much more tractable problem in this setting is the following :

Theorem 1.1 [5] Let f : Z → N0 ∪ {∞} be any function for which f−1(0) is a finite
set. Then for every h ∈ N≥2 there exists a subset A ⊆ Z such that fA,h = f .

In particular, the Erdős-Turán question has a positive answer in Z : we can even con-
struct a set A such that fA,h(n) = 1 for every n, a so-called unique representation basis of
order h for Z. Nathanson’s proof of Theorem 1.1 follows the idea in the second observation
above.

Now that we have a more tractable problem, we can look to push our investigations
deeper. One line of enquiry which seems natural is to extend the basic notion of basis fur-
ther by replacing the left-hand side of (1.1) by an arbitrary linear form a1x1 + · · · + ahxh.
If the ai are assumed to be integers, then this idea makes sense in any additive semigroup,
otherwise one should work in a commutative ring. For the remainder of this paper, though,
we shall always be working in Z, but the interested reader is invited to extend the discussion
to a more general setting. Note that the various notions of basis are only meaningful if the
linear form is primitive, i.e.: if the coefficients are relatively prime. This will be assumed
throughout.

We now start with a couple of formal definitions.

Definition 1.2 Let a1, . . . , ah be relatively prime non-zero integers and let L = La1,...,ah

denote the linear form a1x1 + · · · + ahxh. A subset A ⊆ Z is said to be an L-basis if the
equation

a1x1 + · · ·+ ahxh = n (1.4)

has at least one solution for every n ∈ Z.
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Similarly, we say that A is an asymptotic L-basis if (1.4) has a solution for all but
finitely many n, and that A is an L-basis for almost all Z if those n for which (1.4) has no
solution form a set of asymptotic density zero.

Remark 1.3 Recall that a subset S ⊆ Z is said to have asymptotic density zero if

lim
n→+∞

|S ∩ [−n, n]|
2n + 1

= 0. (1.5)

To generalize the notion of unordered representation function to arbitrary linear forms
requires a bit more care. The definition we give below is, we think, the natural one. First
we need some terminology. A solution (x1, . . . , xh) of (1.4) is said to be a representation of
n by the form L = La1,...,ah

. We say that two representations (x1, . . . , xh) and (y1, . . . , yh) of
the same integer n are equivalent if, for every ξ ∈ Z,

∑

xi=ξ

ai =
∑

yi=ξ

ai. (1.6)

For example, for the form L1,−1, any two representations (x, x) and (y, y) of zero are equiv-
alent. As another example, for the form L2,−3,5, the representations (x, y, y) and (y, x, x) of
2x + 2y are equivalent.

We now define the (unordered) L-representation function fA,L of a subset A ⊆ Z as

fA,L(n) = #{equivalence classes of representations of n by L}. (1.7)

There are a few existing results on the inverse problem for bases for general linear forms.
Indeed in [8] the problem was already raised in the much more difficult setting of N0, in
which case one may assume that the coefficients ai in (1.4) are positive. No results were
proven in that paper, and none of the specific problems the authors posed have, to the best
of our knowledge, been settled since. They do make the intriguing observation, though,
that for some forms one can construct a unique representation basis for N0, for example the
form x1 + ax2 for any a > 1. Further examples are given in Theorem 3 of [6]. It would
be fascinating to have a full classification of the forms for which this is possible. The one
result of note we are aware of is Vu’s extension [10] of the Erdős-Tetali result on thin bases
to general linear forms.

In the setting of Z, one is first and foremost interested in generalizing Theorem 1.1.
There are some recent results of Nathanson [6] on binary forms, and in [7] he poses some
problems for general forms. Our results answer some of his questions and supersede those
in [5].

It should be noted here that in all the papers referenced above, only the ordered repre-
sentation function is considered, meaning that one distinguishes between equivalent repre-
sentations of the same number. For Vu’s result, this distinction is not important (since his is



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (2008), #A16 5

a Θ-result), but the results we shall prove here have a much more elegant formulation when
one works with unordered representations.

We close this section by briefly summarizing the results to follow. In Section 2 we prove
that for any primitive form L there exists a unique representation basis. This generalizes the
main result of [4] and answers Problem 16 of [7]. Our method is founded on observation II
on page 2 and is thus basically the same as that employed in these earlier papers. However,
we believe our presentation is much more streamlined, especially when specialized to the
forms x1 + · · ·+ xh.

In Section 3 we seek a generalization of Theorem 1.1. We introduce the notion of an
automorphism of a linear form and show that a form has no non-trivial automorphisms (we
will say what ‘non-trivial’ means) if and only if it is partition regular in the sense of Rado,
i.e.: no non-empty subset of the coefficients sums to zero. Our main result in this section is
that, if L is partition regular then, for any f : Z → N0 ∪ {∞} such that the set f−1(0) has
density zero, there exists A ⊆ Z for which fA,L = f . Since any form all of whose coefficients
have the same sign is partition regular, this result generalizes Theorem 1.1. But it also
extends that theorem, since we only require f−1(0) to have density zero, and not necessarily
be finite. It thus answers Problem 13 and partly resolves Problem 17 in [7].

Irregular forms seem to be harder to deal with. The simplest such form is L1,−1 : x1−x2.
In Section 4 we study this form but our results are weaker than those in Section 3. Open
problems remain and these are discussed in Section 5.

Finally, note that the methods of proof in Sections 3 and 4 are in essence no differ-
ent from those in Section 2. The main point here is in identifying the ‘right’ theorems, but
once this is done no really new ideas are needed to carry out the proofs.

2. Unique Representation Bases

Before stating and proving the main result of this section, we introduce some more notation
and terminology similar to that in (1.6) above. Let L : a1x1+ · · ·+ahxh be a linear form. Let
m, p be positive integers, (r1, . . . , rm) any m-tuple and (s1, . . . , sp) any p-tuple of integers,
and

π1 : {1, . . . ,m}→ {1, . . . , h}, π2 : {1, . . . , p}→ {1, . . . , h}, (2.1)

any functions. We say that the sums
∑m

i=1 aπ1(i)ri and
∑p

i=1 aπ2(i)si are equivalent w.r.t. L,
and write

m∑

i=1

aπ1(i)ri ≡L
p∑

i=1

aπ2(i)si (2.2)
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if, for every ξ ∈ Z, ∑

ri=ξ

aπ1(i) =
∑

si=ξ

aπ2(i). (2.3)

Note that this generalizes the notion of equivalent representations in Section 1 since the
latter corresponds to the special case m = p = h, π1 = π2 = id.

The remainder of this section is devoted to the proof of the following result.

Theorem 2.1 (i) Let L be a linear form. Then there exists a unique representation L-
basis if and only if L is primitive.
(ii) Let L = La1,...,ah

. The following are equivalent :
(a) L is primitive and not all ai have the same sign,
(b) for every n ∈ Z, there exists a unique representation L-basis A(n) ⊆ [n,+∞).

Proof. We concentrate on proving part (i) : the proof of part (ii) will then be an im-
mediate consequence of our approach. Clearly there can be no L-basis if L is imprimitive,
so suppose L is primitive. The result is trivial if L = L±1, so we may assume that L is a
function of at least two variables. We find it convenient to use the slightly unusual notation
L = La1,...,ah+1

, where h ≥ 1. Henceforth, we deal with a fixed form L, so h and the coeffi-
cients ai are fixed. Our task is to construct a unique representation basis A for L. Let d0 be
any non-zero integer and put A0 := {d0}. We will construct the set A step-by-step as

A =
∞⊔

k=0

Ak, (2.4)

where, for each k > 0, the set Ak will consist of h + 1 suitably chosen integers, which we
denote as

Ak = {dk,1, . . . , dk,h, ek}. (2.5)

We adopt the following ordering of the integers :

0, 1,−1, 2,−2, 3,−3, . . . , (2.6)

and denote the ordering by O. For each k > 0 the elements of Ak will be chosen so that

(I) Ak represents the least integer tk in the ordering O not already represented by Bk−1 :=
,k−1

j=0Aj,
(II) no integer is represented more than once by Bk.

Since the set B0 = A0 clearly already satisfies property (II), it is clear that if both
(I) and (II) are satisfied for every k > 0, then the set A given by (2.5) will be a unique
representation basis.

Since L is primitive, it represents 1. Fix a choice (s1, . . . , sh+1) of a representation of 1.
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Let M be a fixed, very large positive real number (how large M needs to be will become
clear in what follows).

Fix k > 0. Suppose A0, . . . , Ak−1 have already been chosen in order to satisfy (I) and
(II). Let tk be the least integer in the ordering O not represented by Bk−1. First choose any
h positive numbers δk,1, . . . , δk,h such that

δk,1

dk−1,h
> M,

δk,i+1

δk,i
> M, for i = 1, . . . , h− 1, (2.7)

and put

εk := −
⌊

1

ah+1

(
h∑

i=1

aiδk,i

)⌋
. (2.8)

Let
h∑

i=1

aiδk,i + ah+1εk := uk ∈ [0, ah+1], (2.9)

and choose the elements of Ak as

(dk,1, . . . , dk,h, ek) := (δk,1, . . . , δk,h, εk) + (tk − uk) · (s1, . . . , sh+1). (2.10)

Our choice immediately guarantees that (I) is satisfied. The remainder of the proof is con-
cerned with showing that (II) still holds provided the integer M is sufficiently large. This
is done by establishing the following two claims :

Claim 1 : Let (x1, . . . , xh+1), (y1, . . . , yh+1) be any two (h + 1)-tuples of integers in Bk.
Then exactly one of the following holds :

(i) ∑

xi∈Ak

aixi ≡L
∑

yi∈Ak

aiyi, (2.11)

(ii) the difference
h+1∑

i=1

aixi −
h+1∑

i=1

aiyi (2.12)

is much larger in absolute value than any integer represented by Bk−1,

(iii)
∑

xi∈Ak

aixi −
∑

yi∈Ak

aiyi ≡L ±
(

h∑

i=1

aidk,i + ah+1ek

)
. (2.13)

Claim 2 : Suppose (iii) holds in Claim 1. Then

∑

yi '∈Ak

aiyi −
∑

xi '∈Ak

aixi ≡L ±
h+1∑

i=1

aizi, (2.14)



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (2008), #A16 8

for some (h + 1)-tuple (z1, . . . , zh+1) of integers in Bk−1.

Indeed, suppose that (x1, . . . , xh+1) and (y1, . . . , yh+1) are any two (h + 1)-tuples in Bk

such that
n+1∑

i=1

aixi =
n+1∑

i=1

aiyi = T, say. (2.15)

Then either (i) or (iii) in Claim 1 holds. But if (iii) holds then Claim 2 gives the contradiction
that the integer tk is already represented by Bk−1. Suppose (i) holds. Let z be any element
of Bk−1 and put

x′i :=

{
z, if xi ∈ Ak,
xi, if xi ∈ Bk−1,

y′i :=

{
z, if yi ∈ Ak,
yi, if yi ∈ Bk−1.

(2.16)

Then, since Bk−1 represents every integer at most once, we must have that (x′1, . . . , x
′
h+1) and

(y′1, . . . , y
′
h+1) are equivalent representations of T . But then (x1, . . . , xh+1) and (y1, . . . , yh+1)

are also equivalent representations of T , so Bk satisfies (II) in this case also.

Proof of Claim 1 : To simplify notation, put

wi := dk,i for i = 1, . . . , h; wh+1 := ek. (2.17)

Consider the difference

∑

xi∈Ak

aixi −
∑

yi∈Ak

aiyi :=
h+1∑

i=1

ciwi, (2.18)

where
ci :=

∑

xu=wi

au −
∑

yv=wi

av. (2.19)

Alternative (i) trivially holds if all ci = 0, so so we may assume that some ci -= 0.

First suppose ch+1 = 0 and let j ∈ [1, h] be the largest index for which cj -= 0. Then, for
M ( 0, it is clear that the left-hand side of (2.18) is Θ(dk,j) and hence alternative (ii) holds.

So finally we may suppose that ch+1 -= 0. Let f ∈ Q be such that ch+1 = f · ah+1.
Then

ch+1wh+1 = −fahwh + Ψh, (2.20)

where, for M ( 0, the ‘error term’ Ψh must be much smaller in absolute value than the
‘leading term’ −fahwh. Thus alternative (ii) will hold unless ch = fah. But then

chwh + ch+1wh+1 = −fah−1wh−1 + Ψh−1, (2.21)

where, once again, for M ( 0, the term Ψh−1 must be much smaller in absolute value than
fah−1wh−1. Hence alternative (ii) holds unless ch−1 = fah−1 and, by iteration of the same



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (2008), #A16 9

argument, unless ci = fai for i = 1, . . . , h. In that case we thus have that

∑

xi∈Ak

aixi −
∑

yi∈Ak

aiyi ≡L f

(
n+1∑

i=1

aiwi

)
. (2.22)

But f · ai ∈ Z for i = 1, . . . , h+1 and since L is primitive, this implies that f ∈ Z. But then
it is clear that we must have |f | = 1 and hence that alternative (iii) holds. .

Proof of Claim 2 : Without loss of generality we may assume that

∑

xi∈Ak

aixi −
∑

yi∈Ak

aiyi ≡L
h+1∑

i=1

aiwi, (2.23)

and now need to construct an (h + 1)-tuple (z1, . . . , zh+1) of integers in Bk−1 such that

∑

yi∈Bk−1

aiyi −
∑

xi∈Bk−1

aixi ≡L
h+1∑

i=1

aizi. (2.24)

Let i1 < i2 < · · · < im be the indices for which xi ∈ Bk−1. We shall decompose the index
set {1, . . . , h + 1} as the disjoint union of m + 1 subsets S1, . . . , Sm+1 defined as follows :

Fix l with 1 ≤ l ≤ m. Set Sl,0 := {il}. For each j > 0 set

Sl,j := {i : xi ∈ {wk}k∈Sl,j−1
}. (2.25)

Noting that the sets Sl,j are pairwise disjoint for different j and hence empty for all j ( 0,
we set

Sl :=
⊔

j

Sl,j. (2.26)

It is also easy to see that the sets S1, . . . , Sm are pairwise disjoint. We define

Sm+1 := {1, . . . , h + 1}\
m⊔

l=1

Sl. (2.27)

Note further that the sets W1, . . . ,Wm+1 are pairwise disjoint, where

Wl := {wi : wi = xj or wj for some j ∈ Sl}, l = 1, . . . ,m + 1, (2.28)

and that

Ak = {w1, . . . , wh+1} =
m+1⊔

l=1

Wl. (2.29)

Let z be any element of Bk−1. We are now ready to define the (h + 1)-tuple (z1, . . . , zh+1).
Let 1 ≤ i ≤ h + 1. We put

zi :=






yi, if yi ∈ Bk−1,
z, if yi ∈Wm+1,
xil , if yi ∈Wl, 1 ≤ l ≤ m.

(2.30)
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Then (2.24) now follows from (2.23), since the latter implies that
∑

i∈Sm+1

aiwi ≡L
∑

i∈Sm+1

aixi, (2.31)

and, for 1 ≤ l ≤ m, that
∑

yi∈Wl

aiyi ≡L
∑

i∈Sl

aixi −
∑

i∈Sl

aiwi − ailxil . (2.32)

.

Since Claim 2 has been proved, the first part of Theorem 2.1 has also been proved. For
the second part, it follows immediately from the definitions (2.7), (2.8) and (2.10) that, if
the coefficients ai don’t all have the same sign, then the elements of A in (2.4) can all be
chosen to lie in any given half-line. So we are done. !

Remark 2.2 If we were instead to work with ordered representations, then it is an immediate
corollary of Theorem 2.1 that there exists a unique representation basis for the form a1x1 +
· · ·+ ahxh if and only if there do not exist two distinct subsets I, I ′ of {1, . . . , h} such that

∑

i∈I

ai =
∑

i∈I′

ai. (2.33)

This resolves Problem 16 in [7].

Remark 2.3 The proof of Theorem 2.1 simplifies considerably if the form L is partition
regular, thus in particular in the case of the forms x1 + · · ·+ xh. See Remark 3.5 below for
an explanation. This is why we think our presentation streamlines those in earlier papers.

3. Partition Regular Forms

We wish to use the method of the previous section in order to generalize Theorem 1.1. As
in [7], we adopt the following notations :

F0(Z) := {f : Z → N0 ∪ {∞} : f−1(0) is finite}, (3.1)

F∞(Z) := {f : Z → N0 ∪ {∞} : f−1(0) has asymptotic density zero}. (3.2)

Theorem 1.1 is a statement about F0(Z). Only minor modifications to the method of
Section 2 will be required, both to obtain a similar result for general linear forms, and to
extend the result to F∞(Z). We prepare the ground for this with a couple of lemmas. First
some terminology :

Definition 3.1 An automorphism of the linear form L : a1x1 + · · · + ahxh is a pair of
functions (ψ,χ) from the set {x1, . . . , xh} of variables to {x1, . . . , xh} ∪ {0} such that the
linear form

h∑

i=1

aiψ(xi)−
h∑

i=1

aiχ(xi) (3.3)
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is the same form as L. The automorphism is said to be trivial if χ ≡ 0.

For example, a non-trivial automorphism of the form L1,−1 : x1 − x2 is given by

ψ(x1) = x1, ψ(x2) = 0, χ(x1) = x2, χ(x2) = 0. (3.4)

Our first lemma is for the purpose of generalizing Theorem 1.1 to other linear forms :

Lemma 3.2 A linear form L is partition regular if and only if it possesses no non-trivial
automorphisms.

Proof. Denote L : a1x1 + · · · + ahxh as usual. First suppose L is partition regular and
thus, without loss of generality, that h ≥ 2 and a1 + · · ·+ ar = 0 for some 2 ≤ r ≤ h. Set

ψ(x1) = 0, ψ(xi) = xi, i = 2, . . . , h, (3.5)

and
χ(x1) = 0, χ(xi) = x1, i = 2, . . . , r, χ(xi) = 0, i = r + 1, . . . , h. (3.6)

Then one easily verifies that (ψ,χ) is a non-trivial automorphism of L.

Conversely, let (ψ,χ) be a non-trivial automorphism of L. For each i = 1, . . . , h, (3.3)
yields an equation between coeffcients of the form

ai =
∑

j∈Xi

aj −
∑

j∈Yi

aj, (3.7)

where Xi and Yi are subsets of {1, . . . , h}. The definition of automorphism means that every
index j ∈ {1, . . . , h} occurs in at most one of the Xi and at most one of the Yi. Non-triviality
means that there is at least one i such that (Xi, Yi) -= ({i},φ). Without loss of generality,
suppose that (Xi, Yi) -= ({i},φ) for i = 1, . . . , r only, and some r ≤ h. Adding together the
left and right hand sides of (3.7) for i = 1, . . . , r yields an equation of the form

a1 + · · ·+ ar =
∑

j∈X

aj −
∑

j∈Y

aj, (3.8)

for some disjoint subsets X and Y of {1, . . . , h}, with X ⊆ {1, . . . , r}. From (3.8) we can
extract a non-empty subset of the coefficients summing to zero, except if X = {1, . . . , r} and
Y = φ. But it is easily seen that the latter is impossible when χ -≡ 0.

The next lemma is for the purpose of extending our results to F∞(Z) :

Lemma 3.3 Let S ⊆ Z such that d(S) = 1. Let l,m, p be any three positive integers.
For each n ∈ Z set

Xl,m,p(n) := Z ∩ {a

b
n + c : (a, b, c) ∈ Z3 ∩ ([−l, l]×±[1,m]× [−p, p])}, (3.9)
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and set
Sl,m,p := {n : Xl,m,p(n) ⊆ S}. (3.10)

Then d(Sl,m,p) = 1.

Proof. The proof follows immediately from the following two facts :
(i) the intersection of finitely many sets of asymptotic density one has the same property
(ii) since S has density one, the same is true, for any fixed integers a, b, c, with b -= 0, of

the set
{n ∈ Z :

a

b
n + c ∈ S ∪ (Q\Z)} (3.11)

We are now ready to state the main result of this section :

Theorem 3.4 Let L : a1x1 + · · · + ahxh be any partition regular linear form. Then for
any f ∈ F∞(Z), there exists a subset A ⊆ Z such that fA,L = f .

Proof. Let a partition regular L : a1x1 + · · ·+ ahxh and f ∈ F∞(Z) be given : we shall show
how to construct A ⊆ Z with fA,L = f . Let M be the multisubset of Z consisting of f(n)
repititions of n for every n. The problem amounts to constructing a ‘unique representation
basis’ for M. This is some countable set : let O = {τ1, τ2, . . . } be any well-ordering of it. We
now construct A step-by-step as in (2.4)-(2.10). This time the ordering O is as just defined
above. We’ll have tk = τk′ for some k′ depending on k. Two requirements must be satisfied
when we tag on the numbers dk,1, . . . , dk,h, ek to our set A :

(I) No new representation is created of any number appearing before tk in the ordering
O.
(II) No representation is created of any integer n for which f(n) = 0.

To satisfy these requirements, the integer denoted M in (2.7) will now have to depend
on k. The first difficulty arises because, when considering (I), since the ordering O is chosen
randomly, we have no control over how quickly the sizes of numbers in this ordering grow
as ordinary integers. Clearly, M = Mk can be chosen large enough to take account of this
difficulty in the sense that Claim 1 holds as before. We still need to rule out case (iii) of that
claim occurring, and it is here that we make use of the assumption that L is partition regular,
for (2.13) describes an automorphism of L, just as long as the numbers dk,1, . . . , dk,h, ek are
distinct.

The only remaining problem is thus (II). Let S := Z\f−1(0). By assumption d(S) = 1.
Then it follows from Lemma 3.3 that there exists a choice of a sufficiently large M = Mk

which will mean that (II) is indeed satisfied. Indeed once dk,1, . . . , dk,h−1 have been chosen
with due regard to I, one just needs to choose dk,h to also lie in a set Sl,m,p, where l,m, p are
fixed integers depending a priori on all of the numbers dk,1, . . . , dk,h−1, tk, a1, . . . , ah+1, s1, . . . ,
sh+1.
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Thus there is indeed a choice of Mk that works at each step. !

Remark 3.5 The proof of Theorem 2.1 simplifies for partition regular forms in the same
way as in the argument just presented. Namely, we can ignore Case (iii) of Claim 1, and
thus don’t need the most technical part of the proof, which is the proof of Claim 2.

4. The Form x1 − x2

We do not know if there exist any partition irregular forms for which Theorem 3.4 still holds.
For the simplest such form, namely x1−x2, this is clearly not the case. Henceforth we denote
this form by D. Specializing our terminology from Section 1 to the form D, the (unordered)
representation function fA,D of a non-empty subset A of Z is given by

f(0) = 1, (4.1)

f(n) = {(a1, a2) ∈ A2 : a1 − a2 = n}, if n -= 0. (4.2)

Note that, in particular, the unordered and ordered representation functions coincide for
this form, except at n = 0, where all representations a − a = 0 are considered equivalent :
see (1.6) and the examples after it. Relation (4.1) imposes an immediate restriction on the
functions representable by D. Also, it is clear from (4.2) that any representable function
must be even. There is a more serious obstruction, however. Let f : Z → N0 ∪ {∞} and
suppose f(n) ≥ 3 for some n. Suppose fA,D = f for some A ⊆ Z and let a1, . . . , a6 ∈ A be
such that

a1 − a2 = a3 − a4 = a5 − a6 = n, (4.3)

are three pairwise non-equivalent representations of n (i.e.: the numbers a1, a3, a5 are dis-
tinct). Then we also have the equalities

a1 − a3 = a2 − a4, a3 − a5 = a4 − a6, a1 − a5 = a2 − a6, (4.4)

and at least one of these three differences must be different from n. Thus there exists some
other number m for which f(m) ≥ 2.

The following definition captures this kind of condition imposed on a function f rep-
resentable by D :

Definition 4.1 Let f : Z → N0 ∪ {∞}. A sequence (finite or infinite) s1, s2, s3, . . . of
positive integers is said to be plentiful for f if, for every pair l ≤ m of positive integers, we
have

f

(
m∑

i=l

si

)
> 1. (4.5)

The main result of this section is the following.
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Theorem 4.2 Let f ∈ F0(Z) be even with f(0) = 1.
(i) If f−1(∞) -= φ then f is representable by D if and only if there exists an infinite

plentiful sequence for f .
(ii) If f−1(∞) = φ but f is unbounded, then f is representable by D if and only if there

exist arbitrarily long plentiful sequences for f .

We do not know whether this result can be extended to functions in F∞(Z), nor ex-
actly which bounded functions in F0(Z) can be represented by D.

Proof. Throughout this proof, since we are working with a fixed form D, we will write
simply fA for the representation function of a subset A of Z.

We begin with the proof of part (i) and then outline the changes needed to prove part
(ii). First suppose f is representable by D and let A ⊆ Z be such that fA = f . Suppose
f(n) = ∞. Let (xi, yi)∞i=1 be a sequence of pairs of elements of A such that xi − yi = n for
each i and such that the sequence (xi) is either strictly increasing or strictly decreasing. Let

si :=

{
xi+1 − xi, if (xi) increasing,
xi − xi+1, if (xi) decreasing.

(4.6)

Let 1 ≤ l ≤ m. Then

xm+1 − ym+1 = xl − yl ⇒ xm+1 − xl = ym+1 − yl = ±
m∑

i=l

si, (4.7)

and hence

fA

(
m∑

i=l

sj

)
≥ 2. (4.8)

Thus the sequence (si) is plentiful for f .

Conversely, suppose there exists an infinite plentiful sequence (si)∞i=1 for f . We will
construct a set A which represents f . Set

S :=

{
σl,m :=

m∑

i=l

si | 1 ≤ l ≤ m <∞
}

. (4.9)

Set
I := {n : f(n) > 1}, J := {n : f(n) = 1}, (4.10)

and note that S ⊆ I. Let M be the multisubset of Z consisting of f(n) copies of n for each
n, and O any well-ordering of M. Put A0 := {d0} for any choice of a non-zero integer d0.
The set A will be constructed step-by-step as in (2.4). At each step k > 0 the set Ak will
consist of two suitably chosen integers xk and yk. As before we set Bk := ,k

j=0Ak and denote
by tk the least number in the ordering O not yet represented by Bk−1. We also set

Uk := {n : fBk
(n) > fBk−1

(n)}, (4.11)
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Our choices will be made so as to ensure that the following two requirements are satisfied
for every k :

(I) tk ∈ Uk and, moreover, for any n ∈ Uk it is the case that

fBk−1
(n) < f(n), (4.12)

fBk
(n) ≤ fBk−1

(n) + 2, (4.13)

and
if fBk

(n) = fBk−1
(n) + 2 then fBk−1

(n) = 0 and n ∈ S. (4.14)

(II) Suppose n ∈ I. Let p := fBk
(n) and

a1 − b1 = · · · = ap − bp = n, (4.15)

be the different representations of n in Bk, where a1 < a2 < · · · < ap. Then there exist
integers 0 < m1 < m2 < · · · < mp such that

ai+1 − ai = σmi,mi+1, i = 1, . . . , p− 1. (4.16)

It is clear that if (I) and (II) are satisfied for every k ≥ 0, then the set A given by (2.4)
represents f . The condition (II) will be useful in establishing (4.14). The elements of the
different Ak are chosen inductively. Observe that (I), (II) are trivially satisfied for k = 0,
so suppose k > 0 and that (I), (II) are satisfied for each k′ < k. We now describe how the
elements of Ak may be chosen. Let

Mk := max{|n| : n ∈ Bk−1}. (4.17)

and note that fBk−1
(n) = 0 for all n > 2Mk.

Case I : tk ∈ J .

Then (II) will continue to hold no matter what we do. We now choose xk to be any inte-
ger greater than 2|tk|+ 3Mk, and choose yk := xk − tk. This choice of xk and yk guarantees
that, if n ∈ Uk, then

(a) fBk−1
(n) = 0 and

(b) fBk
(n) = 1,

hence that (I) is satisfied. To verify (a), we observe that if n ∈ Uk then either n = ±tk =
±(xk − yk) or |n| > 2Mk. For (b), we note that if a, b ∈ Bk−1 and xk − a = yk − b, then
xk − yk = a− b, contradicting the assumption that tk ∈ J .

Case II : tk ∈ I.

Let p := fBk−1
(tk). If p = 0 then proceed as in Case I. Otherwise let (ai, bi)

p
i=1 be
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the different representations of tk in Bk−1 and let m1, . . . ,mp be the integers for which (4.15)
is satisfied (with k − 1 instead of k). We choose

xk := ap + σmp,mp+1, (4.18)

for some sufficiently large integer mp+1 such that xk > 2|tk|+3Mk. Then we take yk := xk−tk.
Reasoning as in Case I, the size of xk and yk guarantee that (4.12) and (4.13) will be satisfied,
and the relationships (4.16) and (4.18) will imply (4.14), and thus ensure that (II) still holds.

This completes the induction step, and hence the proof of part (i) of the theorem.

Now we briefly outline the proof of part (ii). That representability of f implies the
existence of arbitrarily long plentiful sequences is shown in the same way as before. Suppose
now such sequences exist. The construction of A such that fA = f proceeds as above and,
with notation as before, the only difference is in the inductive choice of the elements in Ak

for k > 0. Suppose we have already chosen A′k for k′ < k so that

fBk−1
(n) ≤ f(n) ∀ n ∈ Z. (4.19)

Let tk be the least integer in the ordering O for which fBk−1
(tk) < f(tk). Set γk :=

f(tk)− fBk−1
(tk). The set Ak will be the union of 2γk elements xi,k, yi,k, i = 1, . . . , γk.

First, with Mk defined as in (4.17), we choose x1,k to be any integer greater than
2|tk|+ 3Mk and take y1,k := x1,k − tk. Since there exist arbitrarily long plentiful sequences,
we can find such a sequence

0 < a1 < a2 < · · · < aγk−1 (4.20)

such that each of the quotients

a1

x1,k
,

ai+1

ai
, i = 1, . . . , γk − 1 (4.21)

is arbitrarily large. We then wish to choose the remaining elements of Ak as

xi,k := xi−1,k + ai−1, yi,k := xi,k − tk, i = 2, . . . , γk. (4.22)

Provided the quotients in (4.21) are all sufficiently large, it is clear that, if n ∈ Uk, then
either

(a) n = ±tk and fBk
(n) = fBk−1

(n) + γk = f(n), or
(b) fBk−1

(n) = 0 and either fBk
(n) = 1, or fBk

(n) = 2 and n ∈ I.
Thus (a) and (b) ensure that (4.19) is also satisfied for this value of k, and thus the set A
given by (2.4) will satisfy fA = f .

Hence the proof of Theorem 4.2 is complete. !
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5. Open Problems

We only mention what are probably the two most glaring issues left unresolved by the
investigations above.

1. Which functions f ∈ F∞(Z) are representable by a partition irregular form ? Does
there exist such a form which represents any such function ? For the formD, we want to know
if Theorem 4.2 can be extended to F∞(Z), and which bounded functions are representable.

2. The methods employed in this paper to construct sets with given representation
functions have, in common with previous similar methods, the obvious weakness that they
produce very sparse sets. It is an important unsolved problem to find the maximal possible
density of a set with a given representation function : this problem is still unsolved for every
possible f and L, though the most natural case to look at is f ≡ 1. It should be investigated
to what extent existing optimal constructions for the forms x1 + · · · + xh can be extended
to general forms.

Acknowledgement I thank Boris Bukh for a very helpful discussion. I also thank the
referee for a very careful reading of the paper.
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