HEIGHTS IN FINITE PROJECTIVE SPACE, AND A PROBLEM ON DIRECTED GRAPHS

Melvyn B. Nathanson ${ }^{1}$
Department of Mathematics, Lehman College (CUNY), Bronx, New York 10468
melvyn.nathanson@lehman.cuny.edu
Blair D. Sullivan ${ }^{2}$
Department of Mathematics, Princeton University, Princeton, New Jersey 08544 bdowling@princeton.edu

Received: 6/14/07, Revised: 3/25/08, Accepted: 4/3/08, Published: 4/9/08

Abstract

Let $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$. The height of a point $\mathbf{a}=\left(a_{1}, \ldots, a_{d}\right) \in \mathbb{F}_{p}^{d}$ is $$
h_{p}(\mathbf{a})=\min \left\{\sum_{i=1}^{d}\left(k a_{i} \quad \bmod p\right): k=1, \ldots, p-1\right\} .
$$

Explicit formulas and estimates are obtained for the values of the height function in the case $d=2$, and these results are applied to the problem of determining the minimum number of edges that must be deleted from a finite directed graph so that the resulting subgraph is acyclic.

1. Heights in Finite Projective Space

Let F be a field and let $F^{*}=F \backslash\{0\}$. For $d \geq 2$, we define an equivalence relation on the set of nonzero d-tuples $F^{d} \backslash\{(0, \ldots, 0)\}$ as follows: $\left(a_{1}, \ldots, a_{d}\right) \sim\left(b_{1}, \ldots, b_{d}\right)$ if there exists $k \in F^{*}$ such that $\left(b_{1}, \ldots, b_{d}\right)=\left(k a_{1}, \ldots, k a_{d}\right)$. We denote the equivalence class of $\left(a_{1}, \ldots, a_{d}\right)$ by $\left\langle a_{1}, \ldots, a_{d}\right\rangle$. The set of equivalence classes is called the ($d-1$)-dimensional projective space over the field F, and denoted $\mathbb{P}^{d-1}(F)$.

We consider projective space over the finite field $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$. For every $x \in \mathbb{F}_{p}$, we denote by $x \bmod p$ the least nonnegative integer in the congruence class x. We define the height of the point $\mathbf{a}=\left\langle a_{1}, \ldots, a_{d}\right\rangle \in \mathbb{P}^{d-1}\left(\mathbb{F}_{p}\right)$ by $h_{p}(\mathbf{a})=\min \left\{\sum_{i=1}^{d}\left(k a_{i} \bmod p\right): k=1, \ldots, p-1\right\}$.

[^0]For every nonempty set $\mathcal{A} \subseteq \mathbb{P}^{d-1}\left(\mathbb{F}_{p}\right)$, we define $H_{p}(\mathcal{A})=\left\{h_{p}(\mathbf{a}): \mathbf{a} \in \mathcal{A}\right\}$. Then $H_{p}(\mathcal{A})$ is a set of positive integers.

For $\mathbf{a}=\left\langle a_{1}, \ldots, a_{d}\right\rangle \in \mathbb{P}^{d-1}\left(\mathbb{F}_{p}\right)$, let $d^{*}(\mathbf{a})$ denote the number of nonzero components of \mathbf{a}, that is, the number of $a_{i} \neq 0$. The function $d^{*}(\mathbf{a})$ is well-defined, that is, independent of the representative of the equivalence class of a. For $\mathcal{A} \subseteq \mathbb{P}^{d-1}\left(\mathbb{F}_{p}\right)$, we define

$$
d^{*}(\mathcal{A})=\max \left\{d^{*}(\mathbf{a}): \mathbf{a} \in \mathcal{A}\right\} .
$$

Then $h_{p}(\mathbf{a}) \leq d^{*}(\mathbf{a})(p-1)$ for all $\mathbf{a} \in \mathbb{P}^{d-1}\left(\mathbb{F}_{p}\right)$. We can reduce this upper bound by a simple averaging argument.

For every real number t, let $[t]$ denote the greatest integer not exceeding t.
Lemma 1. For every point $\mathbf{a} \in \mathbb{P}^{d-1}\left(\mathbb{F}_{p}\right), h_{p}(\mathbf{a}) \leq\left[\frac{d^{*}(\mathbf{a}) p}{2}\right]$.
Proof. If $a \in \mathbb{F}_{p}^{*}$, then $\{k a \bmod p: k=1, \ldots, p-1\}=\{1, \ldots, p-1\}$ and so

$$
\sum_{k=1}^{p-1}(k a \bmod p)=\sum_{k=1}^{p-1} k=\frac{p(p-1)}{2} .
$$

It follows that for every $\mathbf{a}=\left\langle a_{1}, \ldots, a_{d}\right\rangle \in \mathbb{P}^{d-1}\left(\mathbb{F}_{p}\right)$, we have

$$
\sum_{k=1}^{p-1} \sum_{i=1}^{d}\left(k a_{i} \quad \bmod p\right)=\sum_{i=1}^{d} \sum_{k=1}^{p-1}\left(k a_{i} \quad \bmod p\right)=\frac{d^{*}(\mathbf{a}) p(p-1)}{2} .
$$

Since the minimum of a set of numbers does not exceed the average of the set, we have

$$
h_{p}(\mathbf{a}) \leq \frac{1}{p-1} \sum_{k=1}^{p-1} \sum_{i=1}^{d}\left(k a_{i} \quad \bmod p\right)=\frac{d^{*}(\mathbf{a}) p}{2} .
$$

The lemma follows from the fact that the heights are positive integers.
Lemma 2. For every odd prime p and $d \geq 2$,

$$
\begin{aligned}
\max \left(H_{p}\left(\mathbb{P}^{d-1}\left(\mathbb{F}_{p}\right)\right)\right)=\frac{d p}{2} & \text { if } d \text { is even } \\
\frac{(d-1) p}{2}+1 \leq \max \left(H_{p}\left(\mathbb{P}^{d-1}\left(\mathbb{F}_{p}\right)\right)\right) \leq \frac{d p-1}{2} & \text { if } d \text { is odd. }
\end{aligned}
$$

Proof. If $2 r \leq d$ and $a_{1}, \ldots, a_{r}, a_{2 r+1}, \ldots, a_{d}$ are nonzero elements of the field \mathbb{F}_{p}, then the point $\mathbf{a}=\left\langle a_{1}, a_{2}, \ldots, a_{r},-a_{1},-a_{2} \ldots,-a_{r}, a_{2 r+1}, \ldots, a_{d}\right\rangle$, satisfies $d^{*}(\mathbf{a})=d$ and

$$
\begin{aligned}
\sum_{i=1}^{d}\left(k a_{i} \bmod p\right) & =\sum_{i=1}^{r}\left(\left(k a_{i} \bmod p\right)+\left(-k a_{i} \bmod p\right)\right)+\sum_{i=2 r+1}^{d}\left(k a_{i} \bmod p\right) \\
& \geq r p+d-2 r
\end{aligned}
$$

for all $k=1, \ldots, p-1$. If $d-2 r \leq p-1$, we can choose distinct elements $a_{2 r+1}, \ldots, a_{d}$ and

$$
\sum_{i=1}^{d}\left(k a_{i} \quad \bmod p\right) \geq r p+\frac{(d-2 r)(d-2 r+1)}{2}
$$

Applying Lemma 1 and the inequality with $r=[d / 2]$, we obtain $h_{p}(\mathbf{a})=d p / 2$ if d is even and $\frac{(d-1) p}{2}+1 \leq h_{p}(\mathbf{a}) \leq \frac{d p-1}{2}$ if d is odd. This completes the proof.

2. Heights on the Finite Projective Line

The projective line $\mathbb{P}^{1}\left(\mathbb{F}_{p}\right)$ consists of all equivalence classes of pairs $\left(a_{1}, a_{2}\right)$, where $a_{1}, a_{2} \in \mathbb{F}_{p}$ and a_{1} and a_{2} are not both 0 . If $a_{1}=0$, then $\left\langle 0, a_{2}\right\rangle=\langle 0,1\rangle$ and $h_{p}(\langle 0,1\rangle)=1$. If $a_{2}=0$, then $\left\langle a_{1}, 0\right\rangle=\langle 1,0\rangle$ and $h_{p}(\langle 1,0\rangle)=1$. If $a_{1} \neq 0$ and $a_{2} \neq 0$, then $\left\langle a_{1}, a_{2}\right\rangle=\left\langle 1, a_{1}^{-1} a_{2}\right\rangle$. Thus, for all $\mathbf{a} \in \mathbb{P}^{1}\left(\mathbb{F}_{p}\right)$, if $\mathbf{a} \neq\langle 1,0\rangle$ and $\mathbf{a} \neq\langle 0,1\rangle$, then $\mathbf{a}=\langle 1, a\rangle$ for some $a \in \mathbb{F}_{p}^{*}$, and $h_{p}(\langle 1, a\rangle) \geq 2$.

Lemma 3. Let p be an odd prime and $a \in \mathbb{F}_{p}^{*}$. Then
(i) $h_{p}(\langle 1, a\rangle) \leq 1+(a \bmod p)$ for all a,
(ii) $h_{p}(\langle 1, a\rangle)=1+(a \bmod p)$ if $a \bmod p<\sqrt{p}$,
(iii) $h_{p}(\langle 1, a\rangle)=2$ if and only if $a=1+p \mathbb{Z}$,
(iv) $h_{p}(\langle 1, a\rangle)=3$ if and only if $a=2+p \mathbb{Z}$ or $a=(p+1) / 2+p \mathbb{Z}$,
(v) $h_{p}(\langle 1, a\rangle)=p$ if and only if $a=p-1+p \mathbb{Z}$,
(vi) Let $a=p-b+p \mathbb{Z}$ for $1 \leq b \leq p-1$. Then $h_{p}(\langle 1, a\rangle) \leq\left(p+(b-1)^{2}\right) / b$.

Proof. For all $a \in \mathbb{F}_{p}^{*}$ and $k \in\{1, \ldots, p-1\}$ we have $k a \bmod p \in\{1, \ldots, p-1\}$, and so

$$
h_{p}(\langle 1, a\rangle)=\min \{k+(k a \bmod p): k=1, \ldots, p-1\} \leq 1+(a \bmod p) .
$$

Note that $k a \bmod p \leq k(a \bmod p)$ for all $k \geq 1$. If $k \geq a \bmod p$, then $k+(k a \bmod p) \geq(a$ $\bmod p)+1$. If $1 \leq k \leq(a \bmod p)-1$ and $(a \bmod p)<\sqrt{p}$, then
$k a \bmod p \leq k(a \bmod p) \leq((a \bmod p)-1)(a \bmod p) \leq(a \bmod p)^{2}<p$
It follows that $k a \bmod p=k(a \bmod p)$ and

$$
k+(k a \quad \bmod p)=k+k(a \quad \bmod p) \geq 1+(a \bmod p) .
$$

and so $h_{p}(\langle 1, a\rangle)=1+(a \bmod p)$. This proves (i) and (ii).
We have $k+(k a \bmod p)=2$ if and only if $k=1$ and $k a \bmod p=a \bmod p=1$, that is, $a=1+p \mathbb{Z}$. Similarly, $k+(k a \bmod p)=3$ if and only if either $k=1$ and $k a \bmod p=a$ $\bmod p=2$, or $k=2$ and $k a \bmod p=2 a \bmod p=1$. In the first case, $a=2+p \mathbb{Z}$ and, in the second case, $a=(p+1) / 2+p \mathbb{Z}$. This proves (iii) and (iv).

If $a=-1+p \mathbb{Z}$, then $k+(k a \bmod p)=k+(p-k)=p$ for all $k=1, \ldots, p-1$ and so $h_{p}(1, a)=p$. Conversely, if $h_{p}(1, a)=p$, then $k+(k a \bmod p)=p$ for some k, and so $k a$ $\bmod p=-k \bmod p$ and $a=-1+p \mathbb{Z}$. This proves (v).

Finally, to prove (vi), we let $p=q b+r$, where $q=[p / b]$ and $1 \leq r \leq p-1$. Then

$$
q a=\left[\frac{p}{b}\right](p-b)+p \mathbb{Z}=p-\left[\frac{p}{b}\right] b+p \mathbb{Z}=r+p \mathbb{Z}
$$

and so $q a \bmod p=r$. Therefore,

$$
\left.h_{p}(\langle 1, a)\rangle\right) \leq q+r=\frac{p+r(b-1)}{b} \leq \frac{p+(b-1)^{2}}{b} .
$$

This completes the proof.
Theorem 1. Let p be an odd prime and $a \in \mathbb{F}_{p}$. Then $h_{p}(\langle 1, a\rangle)=(p+1) / 2$ if and only if $a=(p-1) / 2+p \mathbb{Z}$ or $a=p-2+p \mathbb{Z}$. If $a \notin\{(p-1) / 2+p \mathbb{Z}, p-2+p \mathbb{Z}, p-1+p \mathbb{Z}\}$, then $h_{p}(\langle 1, a\rangle) \leq \frac{p-1}{2}$.

Proof. The theorem is true for $p=3,5$, and 7 , so we can assume that $p \geq 11$. Let $a=$ $p-2+p \mathbb{Z}$. If $1 \leq k \leq(p-1) / 2$, then

$$
k+(k a \bmod p)=k+(p-2 k)=p-k \geq \frac{p+1}{2}
$$

and $k+(k a \bmod p)=(p+1) / 2$ when $k=(p-1) / 2$. If $k \geq(p+1) / 2$, then $k+(k a$ $\bmod p) \geq(p+3) / 2$. Therefore, $\left.h_{p}(\langle 1, a)\rangle\right)=(p+1) / 2$.

Let $a=(p-1) / 2+p \mathbb{Z}$. If $j=1, \ldots,(p-1) / 2$ and $k=2 j$, then

$$
k+(k a \quad \bmod p)=2 j+(j(p-1) \quad \bmod p)=2 j+(p-j)=p+j \geq p+1
$$

If $k=2 j-1$, then

$$
\begin{aligned}
k+(k a \bmod p) & =(2 j-1)+\left(\frac{(2 j-1)(p-1)}{2} \bmod p\right) \\
& =(2 j-1)+\left(\frac{p+1}{2}-j\right) \\
& =\frac{p+2 j-1}{2} \geq \frac{p+1}{2} .
\end{aligned}
$$

Since $1+(a \bmod p)=(p+1) / 2$, it follows that $h_{p}(\langle 1, a\rangle)=(p+1) / 2$.
If $a \in \mathbb{F}_{p}^{*}$ and $(a \bmod p) \in\{0,1,2, \ldots,(p-3) / 2\}$, then $h_{p}(\langle 1, a\rangle) \leq 1+(a \bmod p) \leq \frac{p-1}{2}$ by Lemma 3 (i). If $a \in \mathbb{F}_{p}^{*}$ and $(a \bmod p)=(p+1) / 2$, then $h_{p}(\langle 1, a\rangle)=3<(p+1) / 2$ by Lemma 3 (iv).

Let $a \in \mathbb{F}_{p}^{*}$ and $(p+3) / 2 \leq a \bmod p \leq p-3$. There is an integer b such that

$$
3 \leq b \leq \frac{p-3}{2} \quad \text { and } \quad a=p-b+p \mathbb{Z}
$$

By Lemma 3 (vi) we have $h_{p}(\langle 1, a\rangle) \leq\left(p+(b-1)^{2}\right) / b$, and so $h_{p}(\langle 1, a\rangle) \leq(p-1) / 2$ if

$$
2 b+1+\frac{4}{b-2} \leq p
$$

If $4 \leq b \leq(p-3) / 2$, then $2 b+1+\frac{4}{b-2} \leq 2 b+3 \leq p$. If $b=3$, then $h_{p}(\langle 1, a\rangle)=h_{p}(\langle 1, p-3\rangle) \leq$ $(p-1) / 2$ since

$$
2 b+1+\frac{4}{b-2}=11 \leq p .
$$

This completes the proof.

Table of Heights for Primes $11 \leq p \leq 29$

prime p	$a \bmod p$	$h_{p}(\langle 1, a\rangle)$	prime p	$a \bmod p$	$h_{p}(\langle 1, a\rangle)$
11	2	3	23	2	3
	3	4		3	4
	4	4		4	5
	5	6		5	6
	6	3		6	5
	7	5		7	8
	8	5		8	4
	9	6		9	7
13	2	3		10	8
	3	4		11	12
	4	5		12	3
	5	5		13	5
	6	7		14	6
	7	3		15	9
	8	5		16	5
	9	4		17	8
	10	5		18	7
	11	7		19	8
17	2	3		20	9
	3	4		21	12
	4	5	29	2	3
	5	6		3	4
	6	4		4	5
	7	6		5	6
	8	9		6	6
	9	3		7	8
	10	5		8	7
	11	7		9	10
	12	5		10	4
	13	5		11	7
	14	7		12	7
	15	9		13	10
19	2	3		14	15
	3	4		15	3
	4	5		16	5
	5	5		17	7
	6	7		18	8
	7	5		19	11
	8	7		20	5
	9	10		21	8
	10	3		22	5
	11	5		23	9
	12	7		24	9
	13	4		25	8
	14	7		26	11
	15	7		27	15
	16	7			
	17	10			

3. Problems on Heights

Problem 1. Let $d \geq 2$ and $\mathbf{a}=\left\langle a_{1}, \ldots, a_{d}\right\rangle \in \mathbb{P}^{d-1}\left(\mathbb{F}_{p}\right)$. Is there a simple formula to compute $h_{p}(\mathbf{a})$? Is there a simple formula to estimate $h_{p}(\mathbf{a})$? This is not known even for the projective line $d=2$.
Problem 2. By Theorem 1 and Lemma 3, we have $H_{p}\left(\mathbb{P}^{1}\left(\mathbb{F}_{p}\right)\right) \bigcap\left(\frac{p+1}{2}, p\right)=\emptyset$. For which positive integers r does there exist a number c_{r} such that

$$
H_{p}\left(\mathbb{P}^{1}\left(\mathbb{F}_{p}\right)\right) \bigcap\left(\frac{p}{r+1}+c_{r}, \frac{p}{r}-c_{r}\right)=\emptyset
$$

for all sufficiently large p ?
Problem 3. Is there an upper bound for the heights of points in the projective plane $\mathbb{P}^{2}\left(\mathbb{F}_{p}\right)$ analogous to the upper bound in Theorem 1 for the projective line?

Problem 4. The following problem arises in graph theory. Let $k \geq 2$ and let $\mathcal{A} \subseteq \mathbb{P}^{d-1}\left(\mathbb{F}_{p}\right)$ be a nonempty subset of projective space such that
(1) If $\mathbf{a}=\left\langle a_{1}, \ldots, a_{d}\right\rangle \in \mathcal{A}$, then the coordinates a_{i} are pairwise distinct.
(2) For $\ell=1, \ldots, k$, none of the equations $x_{1}+x_{2}+\cdots+x_{\ell}=0$ has a solution with $x_{1}, \ldots, x_{k} \in\left\{a_{1}, a_{2}, \ldots, a_{d}\right\}$. (These conditions are homogeneous and independent of the representative of the equivalence class of \mathbf{a}.)

Find an upper bound for $H_{p}(\mathcal{A})$.
Problem 5. Find a good definition of the height of a point in the projective space $\mathbb{P}^{d-1}\left(\mathbb{F}_{q}\right)$ over any finite field \mathbb{F}_{q}.

4. Cayley Graphs with Vertex Set \mathbb{F}_{p}

Let $G=(V, E)$ be a directed graph with vertex set V and edge set $E \subseteq V \times V$. A directed path of length n in G is a sequence of vertices $v_{i_{0}}, v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{n}}$ such that $\left(v_{i_{j}}, v_{i_{j+1}}\right)$ is an edge for $j=0,1, \ldots, n-1$. A directed cycle of length n in G is a directed path $v_{i_{0}}, v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{n}}$ such that $v_{i_{n}}=v_{i_{0}}$. A loop is a directed cycle of length 1 , a digon is a directed cycle of length 2 , and a triangle is a directed cycle of length 3. A 3-free or triangle-free graph is a graph with no loop, digon, or triangle. The graph $G=(V, E)$ is called directed acyclic if it has no directed cycle.

The outdegree of the vertex v is the number of edges of the form $\left(v, v^{\prime}\right)$ for some vertex v^{\prime}. The pigeonhole principle implies that in a finite directed graph, if the outdegree of every vertex is at least 1 , then the graph contains a cycle. Thus, every finite directed acyclic graph contains at least one vertex with outdegree 0 .

Theorem 2. Let $\left\{k_{0}, k_{1}, \ldots, k_{m-1}\right\}$ be a set of m distinct integers, and let G be a finite directed graph with vertex set $V=\left\{v_{k_{0}}, v_{k_{1}}, \ldots, v_{k_{m-1}}\right\}$. The graph G is directed acyclic if and only if there is a one-to-one map $\sigma:\{0,1, \ldots, m-1\} \rightarrow\left\{k_{0}, k_{1}, \ldots, k_{m-1}\right\}$ such that, if $\left(v_{\sigma(i)}, v_{\sigma(j)}\right)$ is an edge of the graph, then $i<j$. If $\left\{k_{0}, k_{1}, \ldots, k_{m-1}\right\}=\{0,1, \ldots, m-1\}$,
then G is directed acyclic if and only if there is a permutation σ of $\{0,1, \ldots, m-1\}$ such that $r<s$ for every edge $\left(v_{\sigma(r)}, v_{\sigma(s)}\right)$ of the graph.

Proof. Let $\sigma:\{0,1, \ldots, m-1\} \rightarrow\left\{k_{0}, k_{1}, \ldots, k_{m-1}\right\}$ be a one-to-one map such that, if $\left(v_{\sigma(i)}, v_{\sigma(j)}\right)$ is an edge of the graph, then $i<j$. If $v_{\sigma\left(i_{0}\right)}, v_{\sigma\left(i_{1}\right)}, \ldots, v_{\sigma\left(i_{n}\right)}$ is a path in G, then $i_{0}<i_{1}<i_{2}<\cdots<i_{n}$ and so $i_{n} \neq i_{0}$, that is, $v_{\sigma\left(i_{n}\right)} \neq v_{\sigma\left(i_{0}\right)}$, and so no path in G is a cyclic.

To prove the converse, we use induction on m. The Lemma holds for $m=1$ and $m=2$. Assume that $m \geq 2$ and that the lemma is true for every finite acyclic graph with m vertices. If G is an acyclic directed graph with $m+1$ vertices $\left\{v_{k_{0}}, v_{k_{1}}, \ldots, v_{k_{m}}\right\}$, then there exists a vertex $v_{k_{r}}$ with outdegree 0 . Consider the induced subgraph G^{\prime} of G on the vertex set $\left\{v_{k_{0}}, v_{k_{1}}, \ldots, v_{k_{r-1}}, v_{k_{r+1}}, \ldots, v_{k_{m}}\right\}$. By the induction hypothesis, there is a one-to-one map σ^{\prime} from $\{0,1, \ldots, m-1\}$ into $\left\{k_{0}, k_{1}, \ldots, k_{r-1}, k_{r+1}, \ldots, k_{m}\right\}$ such that if $\left(v_{\sigma^{\prime}(i)}, v_{\sigma^{\prime}(j)}\right)$ is an edge of the graph G^{\prime}, then $i<j$. Extend this map to a function σ of $\{0,1, \ldots, m\}$ by defining $\sigma(i)=\sigma^{\prime}(i)$ for $i=0,1, \ldots, m-1$ and $\sigma(m)=k_{r}$. Since $v_{k_{r}}=v_{\sigma(m)}$ has outdegree 0 , there is no edge of the form $\left(v_{\sigma(m)}, v_{\sigma(j)}\right)$ for $j \leq m$. This completes the proof.

Corollary 1. Let $G=(V, E)$ be a finite directed graph with vertex set $\left\{v_{0}, v_{1}, \ldots, v_{m-1}\right\}$, and let σ be a permutation of $\{0,1, \ldots, m-1\}$. Let B_{σ} be the set of edges $\left(v_{\sigma(r)}, v_{\sigma(s)}\right) \in E$ with $r \geq s$. Then the subgraph $G^{\prime}=\left(V, E \backslash B_{\sigma}\right)$ is acyclic.

Proof. This follows immediately from Theorem 2.

Let $\beta(G)$ denote the minimum size of a set X of edges such that the graph $G^{\prime}=(V, E \backslash X)$ is directed acyclic.

Corollary 2. Let $G=(V, E)$ be a finite directed graph with vertex set $\left\{v_{0}, v_{1}, \ldots, v_{m-1}\right\}$, and let Σ_{m} be a set of permutations of $\{0,1, \ldots, m-1\}$. For $\sigma \in \Sigma_{m}$, let B_{σ} be the set of edges $\left(v_{\sigma(r)}, v_{\sigma(s)}\right) \in E$ with $r \geq s$. Then $\beta(G) \leq \min \left\{\operatorname{card}\left(B_{\sigma}\right): \sigma \in \Sigma_{m}\right\}$.

Proof. This follows immediately from Corollary 1.

Let $\gamma(G)$ denote the number of pairs of nonadjacent vertices in the undirected graph obtained from G by replacing each directed edge with an undirected edge. A tournament is a directed graph with no loops and exactly one edge between every two vertices. If G is a tournament, then $\gamma(G)=0$. Let G be a finite, triangle-free tournament. If G contains directed cycles, then the minimum length n of a directed cycle in G is 4 . Let $v_{i_{0}}, v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{n}}$ be a cycle in G of minimum length n. Since $\gamma(G)=0$, it follows that either $\left(v_{i_{0}}, v_{i_{2}}\right)$ or $\left(v_{i_{2}}, v_{i_{0}}\right)$ is an edge. If $\left(v_{i_{0}}, v_{i_{2}}\right)$ is an edge, then $v_{i_{0}}, v_{i_{2}}, \ldots, v_{i_{n}}$ is a cycle in G of length $n-1$, which contradicts the minimality of n. If ($v_{i_{2}}, v_{i_{0}}$) is an edge, then $v_{i_{0}}, v_{i_{1}}, v_{i_{2}}$ is a triangle in G, which is impossible. It follows that every finite, triangle-free tournament is directed acyclic. Equivalently, if G is triangle-free and $\gamma(G)=0$, then $\beta(G)=0$.

This is a special case of a theorem of Chudnovsky, Seymour, and Sullivan[1], who proved that if G is a triangle-free digraph, then $\beta(G) \leq \gamma(G)$. They conjectured that if G is a triangle-free digraph, then $\beta(G) \leq \gamma(G) / 2$.

We shall consider the special case of the CSS conjecture in which the triangle-free graph is a Cayley graph $G=\left(\mathbb{F}_{p}, E_{A}\right)$ whose vertex set is the additive group of the finite field \mathbf{F}_{p} and whose edge set E_{A} is determined by a nonempty subset A of \mathbf{F}_{p}^{*} by the following rule:

$$
E_{A}=\left\{(x, x+a): x \in \mathbf{F}_{p} \text { and } a \in A\right\} .
$$

Let $d=\operatorname{card}(A)$. If the Cayley graph has neither loops nor digons, then the number of pairs of adjacent vertices is the same as the number of directed edges, which is $d p$, and so the number of pairs of nonadjacent vertices is

$$
\gamma(G)=\binom{p}{2}-d p=\frac{p(p-1-2 d)}{2} .
$$

In this case the CSS conjecture asserts that

$$
\beta(G) \leq \frac{p(p-1-2 d)}{4}
$$

Lemma 4. Let p be a prime number and $A=\left\{a_{1}, a_{2}, \ldots, a_{d}\right\} \subseteq \mathbf{F}_{p}^{*}$. Let $G=\left(\mathbb{F}_{p}, E_{A}\right)$ be the Cayley graph constructed from A. Let Σ_{p} be a set of permutations of $\{0,1,2, \ldots, p-1\}$. For $i \in\{0,1, \ldots, p-1\}$ and $j \in\{1, \ldots, d\}$, define $t_{i, j} \in\{0,1, \ldots, p-1\}$ by

$$
(\sigma(i)+p \mathbb{Z})+a_{j}=\sigma\left(t_{i, j}\right)+p \mathbb{Z}
$$

Then $E_{A}=\left\{\left(\sigma(i)+p \mathbb{Z}, \sigma\left(t_{i, j}\right)+p \mathbb{Z}\right): i=0, \ldots, p-1\right.$ and $\left.j=1, \ldots, d\right\}$. Let

$$
B_{\sigma}=\left\{\left(\sigma(i+p \mathbb{Z}), \sigma\left(t_{i, j}+p \mathbb{Z}\right)\right): t_{i, j}<i\right\} .
$$

The graph $G^{\prime}=\left(\mathbb{F}_{p}, E_{A} \backslash B_{\sigma}\right)$ is directed acyclic for every permutation $\sigma \in \Sigma_{p}$, and

$$
\beta(G) \leq \min \left\{\operatorname{card}\left(B_{\sigma}\right): \sigma \in \Sigma_{p}\right\} .
$$

Proof. This follows immediately from Corollary 2.
Theorem 3. Let p be prime and $A=\left\{a_{1}, a_{2}, \ldots, a_{d}\right\} \subseteq \mathbf{F}_{p}^{*}$. Let $G=\left(\mathbb{F}_{p}, E_{A}\right)$ be the Cayley graph constructed from A. Then $\beta(G) \leq h_{p}\left(\left\langle a_{1}, a_{2}, \ldots, a_{d}\right\rangle\right) \leq \frac{d p}{2}$.

Proof. Let $\Sigma_{p}=\left\{\sigma_{k}\right\}_{k=1}^{p-1}$ be the set of permutations of $\{0,1,2, \ldots, p-1\}$ defined by

$$
\sigma_{k}(i) \equiv k i \quad(\bmod p) \quad \text { for } i=0,1, \ldots, p-1
$$

Fix $k \in\{1,2, \ldots, p-1\}$. For $i \in\{0,1, \ldots, p-1\}$ and $j \in\{1, \ldots, d\}$, define $t_{i, j} \in\{0,1, \ldots, p-$ $1\} \backslash\{i\}$ by $\left(\sigma_{k}(i)+p \mathbb{Z}\right)+a_{j}=\sigma_{k}\left(t_{i, j}\right)+p \mathbb{Z}$. Let u_{k} denote the least nonnegative integer such that $k u_{k} \equiv 1(\bmod p)$. Then $\left\{u_{1}, u_{2}, \ldots, u_{p-1}\right\}=\{1,2, \ldots, p-1\}$. Defining $r_{j}=u_{k} a_{j}$ $\bmod p$, we have $r_{j} \in\{1,2, \ldots, p-1\}$ and $a_{j}=k r_{j}+p \mathbb{Z}$. Then

$$
\begin{aligned}
\sigma_{k}\left(t_{i, j}\right)+p \mathbb{Z} & =\left(\sigma_{k}(i)+p \mathbb{Z}\right)+a_{j} \\
& =(k i+p \mathbb{Z})+\left(k r_{j}+p \mathbb{Z}\right) \\
& =k\left(i+r_{j}\right)+p \mathbb{Z} \\
& =\sigma_{k}\left(i+r_{j}\right)+p \mathbb{Z}
\end{aligned}
$$

and so $t_{i, j} \equiv i+r_{j}(\bmod p)$. If $i+r_{j} \leq p-1$, then $t_{i, j}=i+r_{j}>i$. If $i+r_{j} \geq p$, then $t_{i, j}=i+r_{j}-p<i$. It follows that $t_{i, j}<i$ if and only if $i+r_{j} \geq p$, that is, $p-r_{j} \leq i \leq p-1$ and so $\operatorname{card}\left(B_{\sigma_{k}}\right)=\sum_{j=1}^{d} r_{j}=\sum_{j=1}^{d}\left(u_{k} a_{j} \bmod p\right)$.

By Corollary 2,

$$
\begin{aligned}
\beta(G) \leq \min \left\{\operatorname{card}\left(B_{\sigma_{k}}\right): k=1, \ldots, p-1\right\} & =\min \left\{\sum_{j=1}^{d}\left(u_{k} a_{j} \bmod p\right): k=1, \ldots, p-1\right\} \\
& =\min \left\{\sum_{j=1}^{d}\left(k a_{j} \bmod p\right): k=1, \ldots, p-1\right\} \\
& =h_{p}\left(\left\langle a_{1}, \ldots, a_{d}\right\rangle\right) .
\end{aligned}
$$

The upper bound for the height comes from Lemma 2.

We return to the CSS conjecture. Since $d p / 2 \leq p(p-1-2 d) / 4$ if and only if $d \leq(p-1) / 4$, it follows that, for a fixed prime p, we only need to consider sets A of cardinality $d>p / 4$. In the other direction, Hamidoune [2,3] proved the Caccetta-Haggkvist conjecture for Cayley graphs: If $A \subseteq \mathbf{F}_{p}^{*}$ and $d=|A| \geq p / r$, then the Cayley graph $\left(\mathbf{F}_{p}, E_{A}\right)$ contains a cycle of length no greater than r. In particular, if the graph has no directed loops, digons, or triangles, then $d<p / 3$. Therefore, to prove the CSS conjecture for the group \mathbb{F}_{p}, it suffices to consider only sets A of size d, where $p / 4<d<p / 3$.

The following result uses heights to prove a special case of the CSS conjecture.
Theorem 4. Let p be a prime number, $p \geq 7$, and let $A=\left\{a_{1}, a_{2}\right\} \subseteq \mathbf{F}_{p}^{*}$ with $a_{1} \neq a_{2}$. Let $G=\left(\mathbb{F}_{p}, E_{A}\right)$ be the Cayley graph constructed from A. If G is a triangle-free digraph, then

$$
\beta(G) \leq \frac{p-1}{2} \leq \frac{\gamma(G)}{2}
$$

Proof. Since $\left\langle a_{1}, a_{2}\right\rangle=\langle 1+p \mathbb{Z}, a\rangle$ in $\mathbb{P}^{1}\left(\mathbb{F}_{p}\right)$ with $a=a_{1}^{-1} a_{2} \neq 1+p \mathbb{Z}$, and since $\beta(G) \leq$ $h_{p}\left(\left\langle a_{1}, a_{2}\right\rangle\right)=h_{p}(\langle 1+p \mathbb{Z}, a\rangle)$, it suffices to consider the case $A=\{1+p \mathbb{Z}, a\}$. The Cayley graph G is triangle-free if and only if none of the equations

$$
x=p \mathbb{Z}, x+y=p \mathbb{Z}, \text { and } x+y+z=p \mathbb{Z}
$$

has a solution with $x, y, z \in\{1+p \mathbb{Z}, a\}$. The first equation implies that $a \neq p \mathbb{Z}$, the second that $a \neq p-1+p \mathbb{Z}$, and that third that $2 a+1 \neq p \mathbb{Z}$ and $a+2 \neq p \mathbb{Z}$, or, equivalently, that $a \neq(p-1) / 2+p \mathbb{Z}$ or $p-2+p \mathbb{Z}$. It follows from Theorem 1 that

$$
\beta(G) \leq h_{p}(\langle 1+p \mathbb{Z}, a\rangle) \leq \frac{p-1}{2} \leq \frac{p(p-5)}{4}=\frac{\gamma(G)}{2}
$$

if $p \geq 7$. This completes the proof.

References

[1] M. Chudnovsky, P. Seymour, and B. Sullivan, Cycles in dense digraphs, arXiv:math.CO/0702147, 2007.
[2] Y. O. Hamidoune, An application of connectivity theory in graphs to factorizations of elements in groups, European J. Combin. 2 (1981), no. 4, 349-355.
[3] M. B. Nathanson, The Caccetta-Häggkvist conjecture and additive number theory, arXiv: math.CO/0603469, 2006.

[^0]: ${ }^{1}$ The work of M.B.N. was supported in part by grants from the NSA Mathematical Sciences Program and the PSC-CUNY Research Award Program.
 ${ }^{2}$ The work of B.D. S. was supported in part by a Department of Homeland Security Dissertation Grant.

