INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (2008), #A12

A NOTE ON DEACONESCU'S RESULT CONCERNING LEHMER'S PROBLEM

Santos Hernández Hernández¹

Unidad Académica de Matemáticas, UAZ, Ap. Postal 612, C.P. 98000, Zacatecas, Zacatecas shh@mate.reduaz.mx

Florian Luca

Instituto de Matemáticas, UNAM, Ap. Postal 61-3 (Xangari), C.P. 58 089, Morelia, Michoacán, MEXICO fluca@matmor.unam.mx

Received: 11/7/07, Accepted: 2/13/08, Published: 3/24/08

Abstract

Let $\phi(n)$ be the Euler function of n. We prove that there are at most finitely many composite integers n such that $\phi(n) \mid n-1$ and $P(\phi(n)) \equiv 0 \pmod{n}$, where $P(X) \in \mathbb{Z}[X]$ is any monic non-constant polynomial.

1. Introduction and the Result

Let $\phi(n)$ be the Euler function of n. In [3], D. H. Lehmer conjectured that $\phi(n) \mid n-1$ if an only if n is prime. This is still an open problem. Several partial results can be found in [1], [6] and [8]. In [5], F. Luca has shown that there is no composite Fibonacci number n such that $\phi(n) \mid n-1$. Several partial results on Lehmer's problem with up to dated references can be found in the recent monograph [7].

Recently, Deaconescu (see [2]) has proved the following results:

- 1. Let $r \ge 2$ be a fixed integer. Then there are only finitely many n such that $\phi(n) \mid n-1$ and $\phi(n)^2 \equiv r \pmod{n}$.
- 2. Let $k \ge 3$ be a fixed integer. Then, there are only finitely many composite n such that $\phi(n) \mid n-1$ and $\phi(n)^k \equiv 1 \pmod{n}$.

¹Partly supported by grant PROMEP/103.5/07/2573

In this note, we prove the following result.

Theorem 1. Let $P(X) \in \mathbb{Z}[X]$ be a monic non-constant polynomial. Then there are at most finitely many composite integers n such that $\phi(n) \mid n-1$ and $P(\phi(n)) \equiv 0 \pmod{n}$.

Our theorem implies Deaconescu's results by taking $P(X) = X^2 - r$ and $P(X) = X^k - 1$, respectively.

2. Proof of the Theorem 1

In what follows, we use the Vinogradov symbols \gg and \ll with their usual meanings. Let

$$P(X) = a_0 X^d + a_1 X^{d-1} + \dots + a_d \in \mathbb{Z}[X]$$

with $a_0 = 1$ and $d \ge 1$ and write

$$n-1 = k\phi(n), \quad \text{where} \quad k \ge 2.$$
 (1)

It is known that $\phi(n) \gg n/\log \log n$ (see [4] Vol. I, pag. 114). Thus,

$$k \ll \log \log n. \tag{2}$$

Since $P(\phi(n)) \equiv 0 \pmod{n}$ we have that $k^d P(\phi(n)) \equiv 0 \pmod{n}$. Thus, by (1), we get

$$a_0(-1)^d + a_1k(-1)^{d-1} + \dots + a_dk^d \equiv 0 \pmod{n}$$

Let A denote the left hand of the above congruence. Now, we distinguish two cases:

Case 1: $A \neq 0$. Then, from the above congruence and (2), we have that

$$n \le |A| < \left(\sum_{j=0}^{n} |a_j|\right) k^d \ll (\log \log n)^d,$$

which implies $n \ll 1$, as we want.

Case 2: A = 0. Then, $a_0(-1)^d + a_1k(-1)^{d-1} + \dots + a_dk^d = 0$ or

$$a_0\left(\frac{-1}{k}\right)^d + a_1\left(\frac{-1}{k}\right)^{d-1} + \dots + a_d = 0,$$

or P(-1/k) = 0. Since $a_0 = 1$, we get that -1/k is both an algebraic integer and a rational number, which is impossible since $k \ge 2$.

More generally, our argument implies that if $P(X) \in \mathbb{Z}[X]$ is a nonconstant polynomial such that the congruence $P(\phi(n)) \equiv 0 \pmod{n}$ has infinitely many composite solutions n, then there exists an integer $k \geq 2$ with P(-1/k) = 0. Furthermore, all but finitely many of the composite n satisfying the above congruence satisfy also $n - 1 = k\phi(n)$ for some $k \geq 2$ such that -1/k is a root of P(X). Acknowledgment We thank the referee for valuable comments that improved the presentation of this paper.

References

- [1] W. D. BANKS, F. LUCA, Composite integers n for which $\phi(n) \mid n-1$, Acta Math. Sinica 23 (2007), 1915–1918.
- [2] M. DEACONESCU, On the equation $m 1 = a\phi(m)$, Integers: Elec. Jour. of Comb. Number theory 6 (2006), #A06.
- [3] D. H. LEHMER, On Euler's totient function, Bull. Amer. Math. Soc. 38 (1932), 745-751.
- [4] W. J. LEVEQUE, Topics in number theory, Vol. I, II, Dover Publications Inc., New York, 2002.
- [5] F. LUCA, Fibonacci numbers with the Lehmer property, Bull. Pol. Acad. Sci. Math. 55 (2007), 7-15.
- [6] C. POMERANCE, On composite *n* for which $\phi(n) \mid n-1$, II, *Pacific J. Math.* **69** (1977), 177–186.
- [7] J. SÁNDOR, B. CRSTICI, Handbook of number theory. II, Kluwer Academic Publishers, Dordrecht, 2004.
- [8] Z. SHAN, On composite n for which $\phi(n) \mid n-1$, J. China Univ. Sci. Tech. 15 (1985), 109–112.