A NOTE ON DEACONESCU'S RESULT CONCERNING LEHMER'S PROBLEM

Santos Hernández Hernández ${ }^{1}$
Unidad Académica de Matemáticas, UAZ, Ap. Postal 612, C.P. 98000, Zacatecas, Zacatecas
shh@mate.reduaz.mx

Florian Luca
Instituto de Matemáticas, UNAM, Ap. Postal 61-3 (Xangari), C.P. 58 089, Morelia, Michoacán, MEXICO
fluca@matmor.unam.mx

Received: 11/7/07, Accepted: 2/13/08, Published: 3/24/08

Abstract

Let $\phi(n)$ be the Euler function of n. We prove that there are at most finitely many composite integers n such that $\phi(n) \mid n-1$ and $P(\phi(n)) \equiv 0(\bmod n)$, where $P(X) \in \mathbb{Z}[X]$ is any monic non-constant polynomial.

1. Introduction and the Result

Let $\phi(n)$ be the Euler function of n. In [3], D. H. Lehmer conjectured that $\phi(n) \mid n-1$ if an only if n is prime. This is still an open problem. Several partial results can be found in [1], [6] and [8]. In [5], F. Luca has shown that there is no composite Fibonacci number n such that $\phi(n) \mid n-1$. Several partial results on Lehmer's problem with up to dated references can be found in the recent monograph [7].

Recently, Deaconescu (see [2]) has proved the following results:

1. Let $r \geq 2$ be a fixed integer. Then there are only finitely many n such that $\phi(n) \mid n-1$ and $\phi(n)^{2} \equiv r(\bmod n)$.
2. Let $k \geq 3$ be a fixed integer. Then, there are only finitely many composite n such that $\phi(n) \mid n-1$ and $\phi(n)^{k} \equiv 1(\bmod n)$.
[^0]In this note, we prove the following result.
Theorem 1. Let $P(X) \in \mathbb{Z}[X]$ be a monic non-constant polynomial. Then there are at most finitely many composite integers n such that $\phi(n) \mid n-1$ and $P(\phi(n)) \equiv 0(\bmod n)$.

Our theorem implies Deaconescu's results by taking $P(X)=X^{2}-r$ and $P(X)=X^{k}-1$, respectively.

2. Proof of the Theorem 1

In what follows, we use the Vinogradov symbols \gg and \ll with their usual meanings. Let

$$
P(X)=a_{0} X^{d}+a_{1} X^{d-1}+\cdots+a_{d} \in \mathbb{Z}[X]
$$

with $a_{0}=1$ and $d \geq 1$ and write

$$
\begin{equation*}
n-1=k \phi(n), \quad \text { where } \quad k \geq 2 \tag{1}
\end{equation*}
$$

It is known that $\phi(n) \gg n / \log \log n$ (see [4] Vol. I, pag. 114). Thus,

$$
\begin{equation*}
k \ll \log \log n \tag{2}
\end{equation*}
$$

Since $P(\phi(n)) \equiv 0(\bmod n)$ we have that $k^{d} P(\phi(n)) \equiv 0(\bmod n)$. Thus, by (1), we get

$$
a_{0}(-1)^{d}+a_{1} k(-1)^{d-1}+\cdots+a_{d} k^{d} \equiv 0 \quad(\bmod n)
$$

Let A denote the left hand of the above congruence. Now, we distinguish two cases:
Case 1: $A \neq 0$. Then, from the above congruence and (2), we have that

$$
n \leq|A|<\left(\sum_{j=o}^{n}\left|a_{j}\right|\right) k^{d} \ll(\log \log n)^{d},
$$

which implies $n \ll 1$, as we want.
Case 2: $A=0$. Then, $a_{0}(-1)^{d}+a_{1} k(-1)^{d-1}+\cdots+a_{d} k^{d}=0$ or

$$
a_{0}\left(\frac{-1}{k}\right)^{d}+a_{1}\left(\frac{-1}{k}\right)^{d-1}+\cdots+a_{d}=0
$$

or $P(-1 / k)=0$. Since $a_{0}=1$, we get that $-1 / k$ is both an algebraic integer and a rational number, which is impossible since $k \geq 2$.

More generally, our argument implies that if $P(X) \in \mathbb{Z}[X]$ is a nonconstant polynomial such that the congruence $P(\phi(n)) \equiv 0(\bmod n)$ has infinitely many composite solutions n, then there exists an integer $k \geq 2$ with $P(-1 / k)=0$. Furthermore, all but finitely many of the composite n satisfying the above congruence satisfy also $n-1=k \phi(n)$ for some $k \geq 2$ such that $-1 / k$ is a root of $P(X)$.

Acknowledgment We thank the referee for valuable comments that improved the presentation of this paper.

References

[1] W. D. Banks, F. Luca, Composite integers n for which $\phi(n) \mid n-1$, Acta Math. Sinica 23 (2007), 1915-1918.
[2] M. Deaconescu, On the equation $m-1=a \phi(m)$, Integers: Elec. Jour. of Comb. Number theory 6 (2006), \#A06.
[3] D. H. Lehmer, On Euler's totient function, Bull. Amer. Math. Soc. 38 (1932), 745-751.
[4] W. J. LeVeque, Topics in number theory, Vol. I, II, Dover Pubications Inc., New York, 2002.
[5] F. Luca, Fibonacci numbers with the Lehmer property, Bull. Pol. Acad. Sci. Math. 55 (2007), 7-15.
[6] C. Pomerance, On composite n for which $\phi(n) \mid n-1$, II, Pacific J. Math. 69 (1977), 177-186.
[7] J. SÁndor, B. Crstici, Handbook of number theory. II, Kluwer Academic Publishers, Dordrecht, 2004.
[8] Z. Shan, On composite n for which $\phi(n) \mid n-1$, J. China Univ. Sci. Tech. 15 (1985), 109-112.

[^0]: ${ }^{1}$ Partly supported by grant PROMEP/103.5/07/2573

