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Abstract

A graph G has a representation modulo n if there exists an injective map f : V (G) →
{0, 1, . . . , n} such that vertices u and v are adjacent if and only if |f(u) − f(v)| is relatively
prime to n. The representation number rep(G) is the smallest n such that G has a represen-
tation modulo n. We present new results involving representation numbers for stars, split
graphs, complements of split graphs, and hypercubes.

1. Introduction

Let G be a finite graph with vertices {v1, . . . , vr}. A representation of G modulo n is an
assignment of distinct labels to the vertices such that the label ai assigned to vertex vi is in
{0, 1, . . . , n − 1} and such that |ai − aj| and n are relatively prime if and only if (vi, vj) ∈
E(G). Erdős and Evans showed that every finite graph can be represented modulo some
positive integer [1]. The representation number of a graph G, rep (G), is the smallest n such
that G has a representation modulo n. An example of a representation modulo 15 is given
in Figure 1. In fact for this graph, rep (G) = 15. We note as part of this representation, the
graph is completely described by the set of vertex labels {0, 1, 3, 5} and the number 15.
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Figure 1. Representation of a graph modulo 15.

Modular representations have been studied extensively [1]-[12]. As part of an existence
proof, Erdős and Evans established a general upper bound for the representation number of
a graph [1]. Narayan later refined this bound by proving that a graph G can be represented
modulo a positive integer less than or equal to the product of the first |V (G)| − 1 primes
greater than or equal to |V (G)|− 1 [10]. This new bound was also shown to be best possible
[10].

The determination of rep (G) for an arbitrary graph G is a very difficult problem indeed.
It seems to be as difficult, if not more so, than determining p dim(G) which has been shown
to be NP-Complete [8]. In addition Evans, Isaak, and Narayan showed the representation
numbers for the family consisting of the disjoint union of complete graphs is dependent
upon the existence of families of mutually orthogonal Latin squares [4]. However calculation
of rep (G) for particular families of graphs is feasible. Representation numbers for several
families of graphs including complete graphs, independent sets, matchings, and graphs of the
form Km−Pl, Km−Cl, Km−K1,l (each along with a set of isolated vertices) were determined
in [3] and [4]. Recently, Evans used linked matrices and distance covering matrices to obtain
new results involving representation numbers for the disjoint union of complete graphs [2].

In this paper, we investigate representation numbers for new families of graphs and
present new results for each case. In Section 3, we examine representation numbers for stars.
In Section 4, we determine new representation numbers for split graphs (graphs that are
the disjoint union of a complete graph and an independent set). Later in Section 5, we
investigate representation numbers for complements of split graphs. Finally in Section 6, we
determine new results involving representation numbers for hypercubes.

2. Dimensions and Representations

The representation number of a graph is related to its product dimension as defined by
Nešetřil and Pultr [12]. A product representation of length t assigns distinct vectors of
length t to each vertex so that vertices u and v are adjacent if and only if their vectors differ
in every position. The product dimension of a graph, denoted pdimG, is the minimum
length of such a representation of G. The theory of product dimension has applications to
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constructions for perfect hashing and for qualitatively independent partitions [7]. Much of
the seminal work on product dimension was done by Lovász, Nešetřil, and Pultr [9] and we
shall build upon their results.

As developed in [3] and [4], there is a close correspondence between product representation
and modular representation. From a representation of a graph G modulo a product of primes
q1, . . . , qt, we obtain a product representation of length t as follows. The vector for vertex
v is (v1, . . . , vt), where vi ≡ a mod qi and vi ∈ {0, . . . , qi−1} for 1 ≤ i ≤ t. If u has
vector (u1, . . . , ut) and v has vector (v1, . . . , vt), then the modular representation implies
that u and v are adjacent if and only if ui &= vi for all i, making this assignment a product
representation.

Conversely, given a product representation, a modular representation can be obtained
by choosing distinct primes for the coordinates, provided that the prime for each coordinate
is larger than the number of values used in that coordinate. The numbers assigned to
the vertices can then be realized using the Chinese Remainder Theorem. The resulting
modular representation generated from the product representation is called the coordinate
representation.

3. Representation Numbers for Stars

We consider the representation number of the star K1,m. It was shown in [4] that rep(K1,m) ≤
min{2"log2 m#+1, 2p} where p is the smallest prime number greater than or equal to m + 1.
However it is possible to have values of m that do not fit one of the two possibilities. For
example if m = 24, then 2"log2 m#+1 = 64 and 2p = 2 · 29 = 58. However assigning 0 to
the root of the star and labeling the remaining vertices {1, 3, . . . , 11, 15, . . . , 37, 43, . . . , 51}
forms a representation of G modulo 52 = 22 · 13.

We first show that without loss of generality it is possible to label the root vertex of the
star with a 0. Assume that K1,r has a representation modulo r with labels {a0, a1, . . . , ar}
where {0, a0, a1 − a0, . . . , ar − a0} is also a representation of K1,r, as the differences between
the vertex labels are all preserved.

In a representation modulo n with the root labeled 0 the remaining vertices must be
labeled so that the following two conditions are satisfied: (i) any two labels are congruent
modulo some prime dividing n, and (ii) each label is relatively prime to n. We give an
example of such a representation in Figure 2.
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Figure 2. A representation of K1,6 modulo 2 · 7 = 14.

The above idea is generalized in Theorem 1.

Theorem 1. Let n be a positive integer and let p be the smallest prime dividing n. Then
K1,r has a representation modulo pkn if r ≤ pk−1φ(n), where φ(n) denotes the Euler phi
function.

Proof. For a given n and pk, we construct a representation of K1,pk−1φ(n). We first label the
root 0. The remaining vertices are then labeled with integers equivalent to 1 mod p but not
equivalent to 0 mod q where q is any other prime dividing n. This gives pk−1φ(n) possible
labels for the non-root vertices. !

4. Representations of Split Graphs

While it is not difficult to show that the product dimension of Km + tK1 is m + 1 for
all t > (m − 1)! the determination of the representation number for such graphs is not
straightforward. We begin by reviewing some known results. Let pi denote the ith prime,
and for any prime pi let pi+1, pi+2, . . . , pi+k denote the next k primes larger than pi. We
restate a lemma from [4] that gives the representation number of a split graph when the
number of isolated vertices is not too large.

Lemma 1. If t < (m − 1)! then Then rep (Km + tK1) = psps+1 · · · ps+m−1where ps is the
smallest prime greater than or equal to m.

We will extend the above lemma to investigate cases where t is arbitrarily large. We first
consider the case where G consists of one edge and an arbitrary number of isolated vertices.

4.1. Graphs with One Edge

Surprisingly the representation of a graph comprised of a single edge along with a set of
isolated vertices is non-trivial. This problem is suggested in [3] where it is mentioned that
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rep(K2 ∪ mK1) ≤ 6m. They also noted that this bound is not optimal as rep(K2 ∪ 5K1) =
rep (K2 ∪ 6K1) = 30.

Let G be a graph consisting of a single edge along with a set of isolated vertices. In the
next lemma we show that we may label the two vertices of degree one with 0 and 1.

Lemma 2. Let {a1, a2, . . . , ar} be a representation of K2∪tK1 modulo n where the endpoints
v1 and v2 of K2 are labeled a1 and a2 respectively. Then without loss of generality, a1 = 0
and a2 = 1.

Proof. Let {a1, a2, . . . , at+2} be a representation of G modulo n. Then it follows that
{0, a2 − a1 ( mod n), . . . , at+2 − a1( mod n)} is a representation modulo n. Since v1

and v2 are adjacent it follows that gcd( a2 − a1 − 0, n) = 1. Then by Euler’s Theorem,

(a2−a1)φ(n) ≡ 1 mod n. Hence {0, 1, a3a
φ(n)−1
2 ( mod n), a4a

φ(n)−1
2 ( mod n), . . . , at+2a

φ(n)−1
2 }

is a representation modulo n. !

In Table 1 we give a representation of K2 + 11K1 modulo 42.

Example 1. Let n = 2 · 3 · 7 = 42. We will construct a coordinate representation of
K2 + 11K1 modulo 42 where t is as large as possible. Without loss of generality the two
vertices with degree 1 can be labeled 0 and 1, or equivalently with coordinate vectors (0, 0, 0)
and (1, 1, 1). We now seek a maximum sized collection of coordinate vectors that contain
a 0 and a 1, and also intersect when taken pairwise. A set of nine such vectors can be
constructed by having the vectors agree on a single coordinate. A coordinate representation
of K2 + 9K1 modulo 2 · 3 · 7 = 42 is given below:

mod 2 mod 3 mod 7 #
v1 0 0 0 0
v2 1 1 1 1
v3 0 1 0 28
v4 0 1 1 22
v5 0 1 2 16
v6 0 1 3 10
v7 0 1 4 4
v8 0 1 5 40
v9 0 1 6 34
v10 0 0 1 36
v11 0 2 1 8

Table 1: A Representation of K2 + 11K1 modulo 42

Next we will start with a given value of n (and its prime factorization) and seek the
maximum value of t such that K2 + tK1 has a representation represented modulo n.

Theorem 2. For odd n > 1, K2+tK1 has a representation modulo 2kn if t < 2k−1(n−φ(n)).
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Proof. By Lemma 2 we may label the vertices of degree 1, v1 and v2 with 0 and 1. For
each of the remaining labels we choose numbers that are both odd and not relatively prime
to n. Since there are n − φ(n) numbers that are not relatively prime to n there must be
2k−1(n − φ(n)) odd numbers less than 2kn that are relatively prime to n. !

We then have the following corollary.

Corollary 1. We have rep(K2 + tK1) ≤ min{2kn|n > 1 is odd and t < 2k−1(n − φ(n))}.

4.2. Split Graphs with More than One edge

Next we generalize the above results for graphs with one edge to the family of split graphs.
We give an example that illustrates many of the key ideas.

Example 2. We have rep(K3 ∪ 40K1) ≤ 3 · 5 · 7 · 11 = 1155.

Table 2: Calculating an upper bound for rep (K3 ∪ 40K1)

Observing the mod 3, mod 5 and mod 7 columns, the number of possible independent
vertices is: 5 · 7 · 11 −

(
2
1

)
φ1 (5 · 7 · 11) +

(
2
2

)
φ2 (5 · 7 · 11) = 40.

Theorem 3. Let p be the smallest prime dividing n. Assume that p ≥ m > 1 where there
are at least m − 1 distinct primes dividing n. Then Km + tK1 has a representation modulo

pkn for all t satisfying t ≤ pk−1
m−1∑
i=0

(−1)i
(

m−1
i

)
φi(n).

Proof. We begin by labeling the vertices of Km with 0, 1, . . . , m − 1. Since the remaining
vertices must be congruent to each of 0, 1, .., m − 1 modulo some prime dividing pkn there
must be m − 1 distinct primes dividing n. Since each of the independent vertices must
agree pairwise on some prime dividing pkn, we can make their labels congruent to m − 1
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on the smallest p. Thus for the remaining coordinates, we must include each of the integers
0, 1, . . . , m − 2 at least once.

This becomes an inclusion-exclusion problem. First we must get rid of the vertices that
are not congruent to i where 0 ≤ i ≤ m − 1. There are

(
m−1

i

)
such i and for each there

are φ1(n) of these. However we must add back in the
(

m−1
2

)
φ2(n) numbers that are not

congruent to some i, j where 0 ≤ i < j < m− 1 that are double counted. Continuing in this
manner, we keep adding in more (−1)i

(
m−1

i

)
φi(n) until i = m − 1. Thus we may include

at least pk−1
m−1∑
i=0

(−1)i
(

m−1
i

)
φi(n) independent vertices along with Km in a representation

modulo pkn. !

Corollary 2. We have rep(Km+tK1) ≤ min{pkn | no prime less than or equal to p ≥ m > 1

is one of the at least m − 1 primes dividing n and t ≤ pk−1
m−1∑
i=0

(−1)i
(

m−1
i

)
φi(n)}

5. Representation Numbers for Complements of Split Graphs

We next consider the representation for graphs which are the complements of split graphs.
Let G be a complement of a split graph. Then there exist disjoint sets A and B such that
V (G) = A ∪ B and E(G) = {(u, v)|u ∈ A or v ∈ A}. If |A| = m and |B| = n. Note that
when m = 1, G = K1,n and when n = 1, G = Km+1. In order to find the representation
number of such graphs, we define the following function on the integers in the definition
below.

Definition. If pk1
1 pk2

2 · · · pkr
r is the prime factorization of n where pj < pj+1, let φi(n) be the

number of nonnegative integers less than n that are not congruent to 0, 1, . . . i−1 modulo pj

for 1 ≤ j ≤ r. Equivalently, φi(n) = (p1 − i)pk1−1
1 (p2 − i)pk2−1

2 · · · (pr − i)pkr−1
r when i ≤ p1

and φi(n) = 0 otherwise.

Note that φ0(n) = n is the identity function and that φ1(n) = φ(n) is the Euler phi
function.

Theorem 4. Let r be a positive integer and p be a prime such that q does not divide r for
1 < q ≤ p. Then G has a representation modulo pkr if m < p and n ≤ pk−1φn(r).

Proof. Since the subset A of G constitutes a complete graph on m vertices we may label
them 0, 1, . . . , m−1. Since the n vertices on the outside must agree on some prime pairwise,
label them so that they are all congruent to m modulo p. Then, to make them disagree
completely with the roots, make the components for primes dividing r all at least m. Since
each label corresponds to a number that is not congruent to 0, 1, . . . , m − 1 for any prime
dividing r, there are φm(r) of these. Finally, since there are pk−1 copies of this, we may fit
at least pk−1φm(r) non-root vertices. !
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Corollary 3. Let G be a complement of a split graph with disjoint sets A and B such that
V (G) = A ∪ B and E(G) = {(u, v)|u ∈ A or v ∈ A} and |A| = m and |B| = n. Then
rep(FSm,n) ≤ min{pkr | no q ≤ p divides r, where p > m is prime and n ≤ pk−1φm(r)}.

6. Bounds for Representation Numbers of Hypercubes

Recall that for given graphs G and H, their (Cartesian) product, G × H, is the graph such
that V (G × H) = V (G) × V (H) and ((u1, u2), (v1, v2)) ∈ E(G × H) if and only if either
u1 = v1 and (u2, v2) ∈ E(H), or (u1, v1) ∈ E(G) and u2 = v2. Inductively, we denote
G1 = G and for positive n, Gn+1 = Gn × G. The hypercube Kd

2 is the graph whose vertices
are d-tuples with entries in {0, 1} and whose entries are the pairs of d-tuples that differ in
exactly one position.

The first two cases are clear, with rep(K2) = 2 and rep(K2
2) = 4. After a little more

inspection one may note that rep(K3
2) = 10. Next, we justify rep(K4

2) ≤ 70. To see this,
convert the labels of K3

2 to their coordinate representation. Since it is modulo 10, each label
a is put in the form (a mod 2, a mod 5).

Figure 3. Extending a representation of K3
2 modulo 10

to a representation of K4
2 modulo 70.

If we divide the set of labels of Kn
2 into four sets Sn

ij for i, j ∈ {0, 1} where Sn
00 is the

top left quadrant, Sn
01 is the bottom left, Sn

10 is the top right and Sn
11 is the bottom right,
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we may properly define the induction in the following mathematical form. Let S3
00 = {0, 6},

S3
01 = {2, 8}, S3

10 = {3, 7} and S3
11 = {1, 5} with inductive step

Sn+1
ij = {x( mod

1

3
Pn+1)|x( mod

1

3
Pn) ∈ Sn

ikx ≡ [2(i + j) + k mod 4] mod pn+1}, (1)

where Pn is the product of the first n primes. That is, for each x ∈ Sn
ij, there exist y ∈

Sn+1
i0 and z ∈ Sn+1

i1 such that x ≡ y ≡ z( mod 1
3Pn), but that y ≡ 2i + j mod pn+1 while

z ≡ [2(i + 1) + j mod 4] mod pn+1. The corresponding y and z are found using the Chinese
Remainder Theorem. It is also important to note that if x ∈ Sn

ij, then for every a where
3 ≤ a < n, x( mod 1

3Pa) ∈ Sa
ik for some k ∈ {0, 1}. With this, we have a representation of

Kn
2 by labeling 2n vertices uniquely with the numbers in the set

⋃

i,j∈{0,1}

Sn
ij.

We have proven the following theorem.

Theorem 5. Let Pn be the product of the first n primes. Then rep(Kn
2 ) ≤ 1

3Pn for n > 2.

Proof. First, we want to make sure that there are exactly 2n−2 numbers in each Sn
ij and that

none are in any other Sn
kl. Certainly this is true for n = 3, so we assume it holds for some n ≥

3. Then for every x ∈ Sn
ij, there exists a y ∈ Sn+1

i0 and a z ∈ Sn+1
i1 by the Chinese remainder

theorem. Since y ≡ [2(i + j) mod 4]( mod pn+1), and z ≡ [2(i + j) + 1 mod 4]( mod pn+1),
y &= z. Furthermore there does not exist an x′ ∈ Sn

kl such that x′ ≡ x( mod 1
3Pn) unless

x′ = x, i = k and j = l. Hence there can not be a y′ ∈ Sn+1
kl such that y′ = y or y′ = z.

Thus, |Sn+1
ij | = 2n−1 and Sn+1

ij ∩ Sn+1
kl = ∅ when i &= k or j &= l.

We next show that these four sets of labels form a representation of Kn
2 mod 1

3Pn. Let
A ⊆ {0, 1, . . . , m−1} and denote R(A, m) as the graph on |A| vertices such that there exists
a representation modulo m using the entire set A as labels. For example, R({0, 2}, 4) = 2K1

and R({0, 1, 2, 3, 5, 6, 7, 8}, 10) = K3
2 . One may note that for the labeling given for K3

2 , the
following properties hold, where i, j, k, l ∈ {0, 1}, i &= k and j &= l.

R(S3
ij ∪ S3

il, 10) = 22K1

R(S3
ij ∪ S3

kl, 10) = 21K2

R(S3
ij ∪ S3

kj, 10) = K2
2

R(S3
00 ∪ S3

01 ∪ S3
10 ∪ S3

11,
1

3
(2 · 3 · 5)) = K3

2 .

!
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Figure 4. The inductive step

In general we show:

R(Sn
ij ∪ Sn

il,
1

3
Pn) = 2n−1K1 (2)

R(Sn
ij ∪ Sn

kl,
1

3
Pn) = 2n−2K2 (3)

R(Sn
ij ∪ Sn

kj,
1

3
Pn) = Kn−1

2 (4)

R(Sn
00 ∪ Sn

01 ∪ Sn
10 ∪ Sn

11,
1

3
Pn) = Kn

2 (5)

Property (2) is trivial since the elements of the sets Sn
0j are all even and those of Sn

1j are
odd. For the remaining properties we will proceed with induction. The inductive step is
illustrated in Figure 4.

Suppose that x ∈ Sn
ij and that x′ ∈ Sn

kl where i &= k and j &= l and there exists an edge
between the vertices labelled x and x′. This is the only edge between x and any vertex
with a label from Sn

kl and the only one between the one labelled y and any in Sn
ij. There

exists a y ∈ Sn+1
ij and z ∈ Sn+1

il that correspond to x and y′ ∈ Sn+1
kj and z′ ∈ Sn+1

kl that
correspond to x′. Since all other vertices in Sn

ij ∪ Sn
kl are adjacent to neither x nor x′, the

only adjacencies to check are between y and z′ and between y′ and z. It cannot be the case
that y ≡ z′( mod pn+1), because

y ≡ [2(i + j) + j mod 4] ≡ [2i + 3j mod 4]( mod pn+1)

and
z′ ≡ [2(k + l) + l mod 4] ≡ [2k + 3l mod 4]( mod pn+1).

To see this, note that if they were congruent, we would have

2(i − k) ≡ 3(l − j)( mod pn+1),

which is impossible. The case for z and y′ can be shown similarly.

Thus for every vertex labelled with an element of Sn+1
ij , there is exactly one other in Sn+1

kl

that is adjacent to it, and property (3) is shown.
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To verify that (4) holds we first note that for every x ∈ Sn
ij there is exactly one corre-

sponding y ∈ Sn+1
im for a given m with x ≡ y( mod 1

3Pn). Furthermore we note if x′ ∈ Sn
kl

where i &= k, there is a corresponding y′ ∈ Sn+1
km . Also, note that

y ≡ [2(i + m) + j mod 4]( mod pn+1)

y′ ≡ [2(k + m) + l mod 4]( mod pn+1).

If y ≡ y′ mod pn+1, then it would be the case that

l − j ≡ 2(i − k) ≡ 2 mod 4.

With l, j ∈ {0, 1}, this is impossible. Because R(Sn
ij ∪Sn

il,
1
3Pn) = 2n−1K1 and all adjacencies

are preserved from x ∈ Sij and x′ ∈ Sn
kl to y ∈ Sn+1

im and y′ ∈ Sn+1
km when i &= k, R(Sn+1

ij ∪
Sn+1

k,j , 1
3Pn+1) still retains the shape of Kn

2 , and (4) holds.

Finally we verify that (5) holds. While it is known that

R(Sn+1
00 ∪ Sn+1

10 ,
1

3
Pn+1) = R(Sn+1

01 ∪ Sn+1
11 ,

1

3
Pn+1) = Kn

2

and for each vertex v in R(Sn+1
00 ∪ Sn+1

10 , 1
3Pn+1) there is exactly one vertex in R(Sn+1

01 ∪
Sn+1

11 , 1
3Pn+1) to which v is connected in R(Sn+1

00 ∪ Sn+1
01 ∪ Sn+1

10 ∪ Sn+1
11 , 1

3Pn+1), it is not
necessarily the case that Sn+1

00 ∪ Sn+1
01 ∪ Sn+1

10 ∪ Sn+1
11 = Kn+1

2 . We verify that there exists
y ∈ Sn+1

0i and z ∈ Sn+1
1i with gcd(|y − z|, 1

3Pn+1) = 1. Then since y′ ∈ Sn+1
0j and z′ ∈ Sn+1

1j

such that i &= j, gcd(|y′ − z|, 1
3Pn+1) = 1 and gcd(|y − z′|, 1

3Pn+1) = 1, it follows that
gcd(|y′ − z′|, 1

3Pn+1) = 1, creating a cycle on four vertices in the graph with vertices labeled
with y, z, y′ and z′.

Next, let y, z, y′ and z′ be as above. If y( mod 1
3Pn) ∈ Sn

0k, then z′( mod 1
3Pn) ∈ Sn

1l where
k &= l. We note that if x ∈ Sn

1k such that gcd(|x− y|, 1
3Pn) = 1, then there exists a w ∈ Sn+1

1j

such that w ≡ x( mod 1
3Pn) and w ≡ [2(1 + i) + k mod 4]( mod pn+1), where the vertex

labeled w is adjacent to the one labelled y. As a result of property (3), the vertex labeled
w is the only one with a label from Sn+1

1j that is adjacent to the vertex labeled y, so w = z′.
By a similar proof, we also know that if y′( mod 1

3Pn) ∈ Sn
0k′ , then z( mod 1

3Pn) ∈ Sn
1l′ where

k′ &= l′. Now we are left with two cases: k = k′ or k = l′.

In either case, y′ is not congruent to z′ modulo pn+1 because y′ ∈ Sn+1
0j and z′ ∈ Sn+1

1j .
Hence we need only prove the vertices labeled y′( mod 1

3Pn) and z′( mod 1
3Pn) are adjacent

in Kn
2 . The case where k = k′, follows from properties (4) and (5). Now suppose that k = l′.

Then y′( mod 1
3Pn) ∈ Sn

0l and z′( mod 1
3Pn) ∈ Sn

1k. However y ≡ 2i + k( mod pn+1) and

z′ ≡ [2(1 + j) + k mod 4] ≡ [2(1 + (1 + i) mod 2) + k mod 4] ≡ 2i + k ≡ y( mod pn+1),

would contradict our assumption that the vertices labeled y and z′ are adjacent in Kn+1
2 .

Thus property (5) holds for n + 1 and, for n > 2,

R(Sn
00 ∪ Sn

01 ∪ Sn
10 ∪ Sn

11,
1

3
Pn) = Kn

2 .
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We note that we have obtained a new result involving the product dimension of hyper-
cubes.

Corollary 4. pdim(Kn
2 ) ≤ n − 1 for n > 2.

Proof. This follows from the fact that there is a one-to-one correspondence between the
coordinate representation of a label of a vertex in a representation modulo 1

3Pn with a
product representation over n − 1 coordinates. !

7. Conclusion and Open Problems

Little is known about representation numbers for multipartite graphs, including the most
basic cases involving trees and complete bipartite graphs. A collection of open problems in-
volving representations modulo n are presented in [11] and [5]. We state additional problems
below.

8. Problems

(i) In Theorem 8, we give a bound for the representation number of a graph with one
edge. The key idea in the theorem is start with two vectors a1 and a2 and generate
a large set of coordinate vectors a3, . . . , an which have at least one coordinate in the
same position as a1 and a2 and also mutually share at least one coordinate in the same
position. We obtained our set of vectors a3, . . . , an so that they agreed all on the same
coordinate. We conjecture that this is optimal. If this is proved, rep(K2 ∪ tK1) will be
precisely determined.

(ii) In Theorem 1, we provide a result involving the representation number of a star. We
pose the problem of determining rep(Km,n).
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