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Abstract

Define {f(n)}∞n=1, the floor sequence, by the linear recurrence

f(n + 1) =
n∑

k=1

⌊n

k

⌋
f(k), f(1) = 1.

Similarly, define {g(n)}∞n=1, the roof sequence, by the linear recurrence

g(n + 1) =
n∑

k=1

⌈n

k

⌉
g(k), g(1) = 1.

This paper studies various properties of these two sequences, including prime criteria, as-

ymptotic approximations of
{

f(n+1)
f(n)

}∞
n=1

and
{

g(n+1)
g(n)

}∞
n=1

, and the iteration coefficients as-

sociated with f(n + r) and g(n + r), for any r ≥ 1.

1. Introduction

The Bell numbers may be defined by the linear recurrence

B(n + 1) =
n∑

k=0

(
n
k

)
B(k), (1.1)

with the initial condition that B(0) = 1. These numbers, 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, ...
have been extensively studied in [2]. They may also be defined by the exponential generating
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function
∞∑

n=0

B(n)
tn

n!
= exp(et − 1). (1.2)

In [7], we studied the following generalization of Equation (1.1). Let {h(n)}∞n=0 be the
sequence defined by the linear difference equation

h(n + 1) =
n∑

k=0

(
n
k

)
h(k), (1.3)

where h(0) = a and h(1) = b. Note, if h(0) = 1 and h(1) = 1, Equation (1.3) becomes (1.1).
Through successive iterations of (1.3), we were able to show that

h(n + r) =
n∑

k=1

h(k)
r−1∑

j=0

Ar
j(n)

(
n + j

k

)
, r ≥ 1, n ≥ 1, (1.4)

where the Ar
j(n) are polynomials in n that satisfy

Ar+1
j (n) =

r−j−1∑

i=0

(
n + r

i

)
Ar−i

j (n). (1.5)

One reason the Ar
j(n) are important is that they provide a new partition of the Bell numbers

which is reminiscent of the formula

B(n) =
n∑

k=0

S(n, k). (1.6)

In Equation (1.6), S(n, k) is the appropriate Stirling number of the second kind.
In particular, we have shown that [7]

B(n) =
n−1∑

j=0

An
j (0) (1.7)

B(n) = An+1
0 (−1). (1.8)

When analyzing the proof of Equation (1.4), we realized that the

(
n
k

)
in (1.3) can be

replaced by A(n, k), where A(n, k) is an arbitrary function of n [3]. Because

(
n
k

)
is

closely related to
⌊

n
k

⌋
by the relation [1]

(
n
k

)
≡

⌊n

k

⌋
mod k, (1.9)

we thought it would be natural to let A(n, k) =
⌊

n
k

⌋
.
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Thus, we decided to study two particular functions. The first function, a floor function
analog of (1.1) , is defined by

f(n + 1) =
n∑

k=1

⌊n

k

⌋
f(k) =

n∑

j=1

∑

d|j

f(d), (1.10)

with the initial condition of f(1) = 1. The f(n) so generated, 1, 1, 3, 7, 16, 33, 71, 143, 295, 594,
1206, 2413, 4871, 9743, 19559, ..., evidently have not been studied in the literature and were
not found in the Online Encyclopedia of Integer Sequences (OEIS). We will call the {f(n)}∞n=1

the floor sequence.

We also define a roof function analog of (1.1), namely

g(n + 1) =
n∑

k=1

⌈n

k

⌉
g(k), (1.11)

with the initial condition that g(1) = 1. Recall that
⌈

n
k

⌉
denotes the least integer greater than

or equal to n
k . The g(n) so generated by 1, 1, 3, 8, 20, 50, 121, 297, 716, 1739, 4198, 10157, ...

behave somewhat differently than the f(n). They also were not found in the OEIS. We
call {g(n)}∞n=1 the roof sequence. Because $x% = −&−x', there are interesting relationships
between floor and roof.
Note that given positive integers n and k, it is easy to verify that

⌈n

k

⌉
=

⌊
n + k − 1

k

⌋
=

⌊
n− 1

k

⌋
+ 1. (1.12)

Equation (1.12) allows us to form an alternative recurrence formula for the roof sequence,
namely

g(n + 1) =
n∑

k=1

g(k) +
n−1∑

k=1

⌊
n− 1

k

⌋
g(k), n ≥ 2. (1.13)

If we adopt the convention that the second sum on the right is vacuous when n = 1, Relation
(1.13) is true for n ≥ 1.

This paper has four main sections. In Section 2, we prove prime criteria for the floor se-
quence and the roof sequence. These criteria are reminiscent of the prime criteria discussed
in [4] and [5]. In Section 3, we discuss the asymptotic nature of f(n) and g(n). In Section
4, we analyze the ordinary generating functions associated with f(n) and g(n). Finally, in
Section 5, we give formulas that relate f(n + r) and g(n + r) back to f(n) and g(n). These
iteration formulas are similar to Equations (1.3) and (1.4).
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2. Prime Number Criteria for the Floor and Roof Sequences

For the floor sequence f(n) defined by (1.10), we state a useful prime number criterion. The
proof of this criterion uses the following lemma.

Lemma 2.1 Let f(n) be as defined by (1.10). Then, for n ≥ 2,

f(n + 1)− f(n) =
∑

d|n

f(d) (2.1)

Proof of Lemma 2.1. We have

f(n + 1)− f(n) =
n∑

k=1

⌊n

k

⌋
f(k)−

n−1∑

k=1

⌊
n− 1

k

⌋
f(k)

=
n∑

k=1

(⌊n

k

⌋
−

⌊
n− 1

k

⌋)
f(k)

=
∑

d|n

f(d).

The last equality follows because

⌊n

k

⌋
−

⌊
n− 1

k

⌋
=

{
1, if k|n;

0, if k ! n.

!

Remark 2.1 Lemma 2.1 is an alternative recurrence that shows how to calculate f(n + 1)
from f(n).

Theorem 2.1 (Prime number criterion for the floor sequence) Let f(n) be the function
defined by Equation (1.10). Then n is prime if and only if

f(n + 1) = 2f(n) + 1. (2.2)

Proof of Theorem 2.1. When n is prime, the only divisors of n are itself and 1. Thus,
Equation (2.1) implies

f(n + 1)− f(n) =
∑

d|n

f(d) = f(1) + f(n),

which is simply Equation (2.2) restated.

On the other hand, if n is not prime then at least one of the positive summands on the
right side of Equation (2.1), other than d = 1 and d = n, is non-zero. This means that
Equation (2.2) could not hold. !
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Remark 2.2 Relations (2.1) and (2.2) show that the sequence defined by f(n) increases
somewhat faster than 2n−1 for n ≥ 6.

We now turn to the roof sequence, namely g(n) defined by (1.11), and find the corresponding
versions of Lemma 2.1 and Theorem 2.2.

Lemma 2.2 Let g(n) be as defined by (1.11). Then, for n ≥ 2,

g(n + 1) = 2g(n) +
∑

d|(n−1)

g(d) (2.3)

Proof of Lemma 2.2. We have

g(n + 1)− g(n) =
n∑

k=1

⌈n

k

⌉
g(k)−

n−1∑

k=1

⌈
n− 1

k

⌉
g(k)

= g(n) +
n−1∑

k=1

(⌈n

k

⌉
−

⌈
n− 1

k

⌉)
g(k)

= g(n) +
∑

d|(n−1)

g(d)

The last equality follows because

⌈n

k

⌉
−

⌈
n− 1

k

⌉
=

{
1, if k|(n− 1);

0, if k ! (n− 1).

!

We no longer detect a simple prime criterion for the roof sequence. We shall be content with
just the following theorem, whose proof follows directly from Lemma 2.2.

Theorem 2.2 (Prime number criterion for roof sequence) Let g(n) be the function defined
by Equation (1.11). Then n− 1 is prime if and only if

g(n + 1) = 2g(n) + g(n− 1) + 1. (2.4)

Remark 2.3 We see from Relations (2.3) and (2.4) that g(n) increases considerably faster
than 2n−1 for n ≥ 5.
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3. Growth Estimates for f(n) and g(n) Using a Third Sequence

We define a fraction analog h(n) of (1.10) and (1.11) by

h(n + 1) =
n∑

k=1

n

k
h(k), (3.1)

with the initial condition that h(1) = 1. Since we are working with all positive numbers,
then

⌊n

k

⌋
≤ n

k
≤

⌈n

k

⌉
, (3.2)

The first few values of the h sequence are 1, 1, 3, 7.5, 17.5, 39.375, 86.625, 187.8675, and 402.1875.

Theorem 3.1 (Recurrence relation for h(n)) For all n ≥ 2,

h(n + 1) =
2n− 1

n− 1
h(n). (3.3)

Proof of Theorem 3.1. By (3.1), we have

h(n + 1) =
n∑

k=1

n

k
· h(k) = h(n) +

n−1∑

k=1

n

k
h(k)

= h(n) +
n

n− 1

n−1∑

k=1

n− 1

k
h(k)

= h(n) +
n

n− 1
h(n)

=
2n− 1

n− 1
h(n),

which is precisely (3.3). !

From (3.3), we have immediately obtain h(n+1)
h(n) = 2n−1

n−1 , giving us the following result.

Theorem 3.2 (Limit of h(n+1)
h(n) ) The sequence

{
h(n+1)

h(n)

}∞
n=3

is a decreasing sequence that

approaches 2 as n →∞.

Applying (3.3) iteratively leads to the explicit formula given in the next theorem.

Theorem 3.3 (Explicit formula for h(n)) For all n ≥ 0, h(n + 2) = (2n+2)!
n!(n+1)!2n+1 .
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Remark 3.1 Substituting (3.4) back into (3.1) gives the binomial identity

n +
n∑

k=2

n

k

(2k − 2)!

(k − 2)!(k − 1)!2k−1
=

(2n)!

(n− 1)!n!2n

for n ≥ 2. This may be restated in binomial coefficient form as

n∑

k=2

(
2k − 2

k

)
2n+1−k =

(
2n
n

)
− 2n (3.4)

for n ≥ 2, and does not appear in [8]. The identity may be proved quickly by induction.

It is a routine calculation with the binomial series to use (3.4) to establish the following
generating function result.

Theorem 3.4 (Generating function for h(n))

∞∑

n=1

h(n + 1)xn =
x

(1− 2x)
3
2

. (3.5)

Remark 3.2 In analogy to (3.1), (3.2), and (3.3), it is not difficult to use the binomial
expansion (4.1) to obtain a generating function for n

k .

∞∑

n=k

n

k
xn−k =

1

1− x
+

x

k(1− x)2
. (3.6)

From these results, and numerical tables, we are led to the following result.

Theorem 3.5 (Bounds for ratios of successive terms) For all n ≥ 4, the sequences f, h,
and g satisfy

f(n) < h(n) < g(n) (3.7)

Moreover, for all for n ≥ 4, we have

2 <
f(n + 1)

f(n)
<

h(n + 1)

h(n)
<

g(n + 1)

g(n)
. (3.8)

Furthermore, limn→∞
f(n+1)

f(n) = 2 and limn→∞
h(n+1)

h(n) = 2.

Table 2 exhibits values of the ratios in Equation (3.8) for n = 1, 2, . . . , 24.
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The following 4 lemmas will prove Theorem 3.5.

Lemma 3.1 Let f(n), g(n), and h(n) be as previously defined. Then, for n ≥ 4,

f(n) < h(n) < g(n).

Proof of Lemma 3.1. The proof will use mathematical induction. For example, in order to
show that f(n) < h(n), we note that f(4) = 7 < 7.5 = h(4). We now assume the induction
hypothesis, i.e., for all integer values greater than 4 and less then or equal to n, f(n) < h(n).
Thus,

f(n + 1) =
n∑

k=1

⌊n

k

⌋
f(k) = nf(1) +

n−1∑

k=2

⌊n

k

⌋
f(k) + f(n)

≤ nf(1) +
n−1∑

k=2

n

k
f(k) + f(n)

< nh(1) +
n−1∑

k=2

n

k
f(k) + h(n)

< nh(1) +
n−1∑

k=2

n

k
h(k) + h(n) = h(n + 1).

The inequality between the first and second lines comes from (3.2), while the other two
inequalities are a result of the induction hypothesis. The proof of h(n) < g(n) is similar and
will be omitted. !

Lemma 3.2 For n ≥ 4, we have 2 < f(n+1)
f(n) .

Proof of Lemma 3.2. We want to show f(n+1)
f(n) > 2n−2

n−1 = 2n−1
n−1 −

1
n−1 ; that is, we want to show

f(n + 1)− 2n− 1

n− 1
f(n) >

−f(n)

n− 1
. (3.9)

However, the calculations of Theorem 2.1 imply, for n ≥ 4, that f(n+1)− 2f(n) > 0. Thus,

f(n + 1)− 2f(n) = f(n + 1) +
−2n + 2

n− 1
f(n) = f(n + 1) +

−2n + 1

n− 1
f(n) +

f(n)

n− 1
> 0.

The right hand inequality is simply a restatement of (3.10), which proves our claim. !

Lemma 3.3 For n ≥ 4, we have f(n+1)
f(n) < h(n+1)

h(n) .
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Proof of Lemma 3.3. Table 2 shows, for 4 ≤ n < 15, that f(n+1)
f(n) < h(n+1)

h(n) . So we now assume

n ≥ 15. By Equation (3.3), it is sufficient to show f(n+1)
f(n) − 2n−1

n−1 < 0, i.e., it is sufficient to
show

f(n + 1)− 2f(n) <
f(n)

n− 1
. (3.10)

By Equation (2.1), we know f(n + 1)− 2f(n) = 1 +
∑

d|n
d$=1,n

f(d). Thus, (3.11) becomes

(n− 1)



1 +
∑

d|n
d$=1,n

f(d)



 < f(n) =
n−1∑

k=1

⌊
n− 1

k

⌋
f(k). (3.11)

Since the largest possible divisor in

[
1 +

∑
d|n

d$=1,n
f(d)

]
is

⌊
n
2

⌋
, we have

1 +
∑

d|n
d$=1,n

f(d) =
∑

d|n
d$=n

f(d) ≤ f
(⌊n

2

⌋) ∑

d|n
d$=n

1 ≤ f
(⌊n

2

⌋) &n
2 '∑

i=1

1 =
⌊n

2

⌋
f

(⌊n

2

⌋)
.

We claim that

(n− 1)
⌊n

2

⌋
f

(⌊n

2

⌋)
< f(n− 1), n ≥ 15 (3.12)

The justification for (3.12) is as follows. First, rewrite Equation (3.12) as

(n− 1)
⌊n

2

⌋
<

f(n− 1)

f
(⌊

n
2

⌋) . (3.13)

By Remark 2.2, we know

2n−1−&n
2 ' <

f(n− 1)

f
(⌊

n
2

⌋) , n ≥ 12. (3.14)

Then by a simple induction argument, it is easy to show, for n ≥ 15, that

(n− 1)
⌊n

2

⌋
< 2n−1−&n

2 ' <
f(n− 1)

f
(⌊

n
2

⌋) .

By combining the previous calculations, we have, for n ≥ 15,

(n− 1)



1 +
∑

d|n
d$=1,n

f(d)



 ≤ (n− 1)
⌊n

2

⌋
f

(⌊n

2

⌋)
< f(n− 1) ≤

n−1∑

k=1

⌊
n− 1

k

⌋
= f(n),

which is Equation (3.12). !
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Remark 3.3 In the proof of Lemma 3.3, we showed that {f(n)}∞n=1 is an increasing se-
quence.

Remark 3.4 Using Theorem 3.2, Lemma 3.2, Lemma 3.3, and The Squeeze Theorem, we
f(n+1)

f(n) tends to the limit 2 as n increases indefinitely.

Lemma 3.4 For n ≥ 4, we have

h(n + 1)

h(n)
<

g(n + 1)

g(n)
.

Proof of Lemma 3.4. The result is clearly true when n = 4. We now assume n > 4. Using
Theorem 3.2, it suffices to show that g(n+1)

g(n) > 2n−1
n−1 i.e., it suffices to show

g(n + 1)− g(n) >
g(n)

n− 1
. (3.15)

By (2.4), we can rewrite (3.15) as

(n− 1)
∑

d|(n−1)

g(d) > g(n). (3.16)

Clearly,

(n− 1)
∑

d|(n−1)

g(d) ≥ (n− 1)g(n− 1). (3.17)

Thus, we now want to show

(n− 1)g(n− 1) > g(n). (3.18)

In order to prove (3.18), and thus finish the proof of Lemma 3.4, we first note that (3.18) is
equivalent to

ng(n− 1)− g(n− 1) > g(n− 1) +
n−2∑

k=1

⌈
n− 1

k

⌉
g(k),

i.e.,

ng(n− 1) > 2g(n− 1) +
n−2∑

k=1

⌈
n− 1

k

⌉
g(k).

Thus, proving (3.18) is equivalent to proving

n−2∑

k=1

⌈
n− 1

k

⌉
g(k) < (n− 2)

n−2∑

k=1

⌈
n− 2

k

⌉
g(k). (3.19)
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A term-by-term comparison of the sums in (3.19) implies that we must show
⌈

n− 1

k

⌉
< (n− 2)

⌈
n− 2

k

⌉
. (3.20)

Note that
n− 1

k
=

n− 2

k
+

1

k
.

Using properties of the floor and the fact that &x' = −$−x%, it is easy to show that for all
real numbers a and b, $a+b% ≤ $a%+$b%. Thus, the previous line implies, since 1 ≤ k ≤ n−2,

⌈
n− 1

k

⌉
≤ 1 +

⌈
n− 2

k

⌉
≤

⌈
n− 2

k

⌉
+

⌈
n− 2

k

⌉
< (n− 2)

⌈
n− 2

k

⌉
,

which is a restatement of (3.20). !

3.1. Open Questions

By analyzing the ratios in Table 2, we form the following conjectures, whose proofs remain
open questions.

Conjecture 3.1 The sequence
{

f(n+1)
f(n)

}∞
n=4

alternately increases then decreases to its limit.

Conjecture 3.2 The sequence
{

g(n+1)
g(n)

}∞
n=4

alternately increases then decreases to the limit

of 1 +
√

2.

A plausibility argument for the limit g(n+1)
g(n) may run as follows. From Equation (2.4), with

n = p being a prime, we find

g(p + 2)

g(p + 1)
= 2 +

1
g(p+1)

g(p)

+
1

g(p + 1)
. (3.21)

It is easy to show that g(p) is an increasing sequence. Thus, if g(n+1)
g(n) has limit L, we are led

to the equation L = 2 + 1
L , from which we deduce that L = 1 +

√
2.

One possible way to compute the limit of
{

g(n+1)
g(n)

}∞
n=4

is to use (1.13) to obtain a bounding

sequence for g(n). In particular

g(n + 1) =
n∑

k=1

⌈n

k

⌉
g(k) =

n−1∑

k=1

⌊
n− 1

k

⌋
g(k) +

n∑

k=1

g(k)

<
n−1∑

k=1

n− 1

k
g(k) +

n∑

k=1

g(k) =
n−1∑

k=1

n− 1 + k

k
g(k) + g(n).



INTEGERS:ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7 (2007), #A58 12

We may then define a bounding sequence M(n) as follows:

M(n + 1) =
n−1∑

k=1

n− 1 + k

k
M(k) + M(n), (3.22)

with initial condition that M(1) = 1. Then, g(n) < M(n) for all n ≥ 5. This sequence has
the values 1, 1, 3, 8, 20.5, 51.5, 128, 316.1, ....

Lemma 3.5 (Limit of M(n+1)
M(n) ) If

lim
n→∞

1

M(n + 2)

n∑

k=1

M(k)

k
= 0 (3.23)

and

lim
n→∞

M(n + 1)

M(n)
= L (3.24)

exist, then L = 1 +
√

2.

Proof of Lemma 3.5. From (3.23), we have

M(n + 1) =
n−1∑

k=1

n− 1

k
M(k) +

n∑

k=1

M(k), (3.25)

M(n) =
n−2∑

k=1

n− 2

k
M(k) +

n−1∑

k=1

M(k). (3.26)

Subtracting (3.25) from (3.26), we find

M(n + 1)−M(n) =
n−1∑

k=1

n− 1

k
M(k)−

n−2∑

k=1

n− 2

k
M(k) + M(n),

which then gives

M(n + 1) = 2M(n) + M(n− 1) +
n−2∑

k=1

M(k)

k
.

This then yields the relation

M(n + 1)

M(n)
= 2 +

1
M(n)

M(n−1)

+
1

M(n)

n−2∑

k=1

M(k)

k
. (3.27)

Therefore, if we assume the limit (3.24) exists and that M(n+1)
M(n) approaches a limit L, we find

that L = 2 + 1/L, which gives L = 1 +
√

2. !
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Remark 3.5 (The converse of Lemma 3.5) We find from (3.28) that if M(n + 1)/M(n)
approaches a limit L, and if the limit in (3.24) is R, then R = L− 2− 1/L, from which we
could compute L if we knew R.

Thus, from Lemma 3.5, we see that the M(n) sequence would be useful if we could show
that

1 +
√

2 <
g(n + 1)

g(n)
<

M(n + 1)

M(n)
.

Then, by the Squeeze Theorem, we would a have a proof of Conjecture 2.

3.2. Asymptotic Tables

Table 1 below gives values for the four sequences. Table 2 gives values of the ratios in (3.9)
and M(n+1)

M(n) .

n f h g M(n)
1 1 1 1 1
2 1 1 1 1
3 3 3 3 3
4 7 7.5 8 8
5 16 17.5 20 20.5
6 33 39.375 50 51.5
7 71 86.625 121 128
8 143 187.6875 297 316.1
9 295 402.1875 716 777.3833333
10 594 854.6484375 1739 1906.335714
11 1206 1804.257812 4198 4665.036310
12 2413 3788.941406 10157 11397.76581
13 4871 7922.332031 24513 27812.55897
14 9743 16504.85840 59246 67798.969
15 19559 34279.32129 143006 1.651363960 ×105

16 39138 71007.16553 345381 4.019370878 ×105

17 78428 1.467481421 ×105 833792 9.777186817 ×105

18 156857 3.026680431 ×105 2013272 2.377091654 ×106

19 314047 6.231400887 ×105 4860337 5.776740262 ×106

20 628095 1.280899071 ×106 11734717 1.403292331 ×107

21 1256809 2.629213883 ×106 28329772 3.407699867 ×107

22 2513693 5.389888460 ×106 68396030 8.272537140 ×107

23 5028594 1.103643827 ×107 165121957 2.007678384 ×108

24 10057189 2.257453283 ×107 398644144 4.871238593 ×108

Table 1: The Sequences f(n), h(n), g(n), and M(n) for n = 1, 2, 3, ...24
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n f(n+1)
f(n)

h(n+1)
h(n)

g(n+1)
g(n)

M(n+1)
M(n)

1 1.000000000 1.000000000 1.000000000 1.000000000
2 1.000000000 1.000000000 1.000000000 1.000000000
3 3.000000000 3.000000000 3.000000000 3.000000000
4 2.333333333 2.500000000 2.666666666 2.666666667
5 2.285714286 2.333333333 2.500000000 2.562500000
6 2.062500000 2.250000000 2.500000000 2.512195122
7 2.151515152 2.200000000 2.420000000 2.485436893
8 2.014084507 2.166666666 2.454545455 2.469531250
9 2.062937063 2.142857143 2.410774411 2.459295582
10 2.013559322 2.125000000 2.428770950 2.452246701
11 2.030303030 2.111111111 2.414031052 2.447122128
12 2.000829187 2.100000000 2.419485469 2.443231960
13 2.018648985 2.090909091 2.413409471 2.440176385
14 2.000205297 2.083333333 2.416921633 2.437710571
15 2.007492559 2.076923077 2.413766330 2.435677098
16 2.001022547 2.071428571 2.415150413 2.433970326
17 2.003883694 2.066666667 2.414122375 2.432516708
18 2.000012751 2.062500000 2.414597406 2.431263408
19 2.002122953 2.058823529 2.414148212 2.430171445
20 2.000003184 2.055555556 2.414383406 2.429211402
21 2.000985520 2.052631579 2.414184509 2.428360642
22 2.000059675 2.050000000 2.414280990 2.427601450
23 2.000480568 2.047619048 2.414203821 2.426919759
24 2.000000199 2.045454545 2.414240669 2.426304249
25 2.000258621 2.043478261 2.414208914 2.425745711
26 2.000000845 2.041666667 2.414225288 2.425236570

Table 2: The Ratios f(n+1)
f(n) , h(n+1)

h(n) , g(n+1)
g(n) , M(n+1)

M(n) for n = 1, 2, 3, ...26

4. Generating Functions for the Floor and Roof Sequences

Recall that a variation of the binomial theorem ([1]) is

∞∑

n=k

(
n
k

)
xn−k =

1

(1− x)k+1
. (4.1)

The floor function analog of Equation (4.1) ([1]) is

∞∑

n=k

⌊n

k

⌋
xn−k =

1

(1− x)(1− xk)
, (4.2)
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while the roof function analog of (4.1) is

∞∑

n=k

⌈n

k

⌉
xn−k =

1 + x− xk

(1− x)(1− xk)
. (4.3)

Remark 4.1 The idea of studying the floor sum in Equation (1.10) is not entirely new.
Relation (4.2) was used in [6] to study the series transform

G(n) =
n∑

k=1

⌊n

k

⌋
F (k), n ≥ 1, (4.4)

which has the inverse

F (n) =
∑

d|n

µ
(n

d

)
[G(d)−G(d− 1)], n ≥ 1. (4.5)

What is novel now is when, in Equation (4.4), we make G(n) = F (n), Equation (4.5) does
not hold.

For the f(n) defined by (1.10), we define the ordinary generating function

F (t) =
∞∑

n=1

f(n)tn. (4.6)

Using (4.2), we find

∞∑

n=1

tnf(n + 1) =
∞∑

n=1

tn
n∑

k=1

⌊n

k

⌋
f(k) =

∞∑

k=1

f(k)tk
∞∑

n=k

⌊n

k

⌋
tn−k

=
1

1− t

∞∑

k=1

f(k)tk

1− tk
=

−1

1− t

∞∑

k=1

f(k) +
1

1− t

∞∑

k=1

f(k)

1− tk

=
1

1− t

∞∑

r=1

∞∑

k=1

f(k)(tr)k =
1

1− t

∞∑

r=1

F (tr).

On the other hand

∞∑

n=1

tnf(n + 1) =
∞∑

n=2

tn−1f(n) =
1

t

∞∑

n=1

tnf(n)− 1 =
1

t
F (t)− 1,

so that the generating function for the floor sequence must satisfy the functional equation

1

t
F (t)− 1 =

1

1− t

∞∑

r=1

F (tr). (4.7)



INTEGERS:ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7 (2007), #A58 16

For the g(n) defined by (1.11), we define the ordinary generating function

G(t) =
∞∑

n=1

g(n)tn. (4.8)

Equation (4.3) implies

∞∑

n=1

tng(n + 1) =
∞∑

n=1

tn
n∑

k=1

⌈n

k

⌉
g(k) =

∞∑

k=1

g(k)tk
∞∑

n=k

⌈n

k

⌉
tn−k

=
1

1− t

∞∑

k=1

tk + tk+1 − t2k

1− tk
g(k)

=
1

1− t

∞∑

k=1

g(k)tk − t

1− t

∞∑

k=1

g(k) +
t

1− t

∞∑

k=1

g(k)

1− tk

=
G(t)

1− t
+

t

1− t

∞∑

r=1

∞∑

k=1

g(k)(tr)k

=
G(t)

1− t
+

t

1− t

∞∑

r=1

G(tr).

On the other hand,

∞∑

n=1

tng(n + 1) =
∞∑

n=2

tn−1g(n) =
1

t

∞∑

n=1

tng(n)− 1 =
1

t
G(t)− 1.

Thus, the generating function for the roof sequence must satisfy

1− 2t

t(1− t)
G(t)− 1 =

t

1− t

∞∑

r=1

G(tr). (4.9)

5. Expansions Involving f(n + r) and g(n + r)

In [3], we studied a class of functions, H, defined by the relationship

H(n + 1) =
n∑

k=0

A(n, k)H(k), (5.1)

where A(n, k) is an arbitrary function of n. In this situation, we can let A(n, k) =
⌊

n
k

⌋
,

H(0) = 0, and H(1) = 1 or A(n, k) =
⌈

n
k

⌉
, H(0) = 0, and H(1) = 1. It is an easy exercise

to restate Theorems 2.1 to 2.4 of [3] in the context of the floor function and the roof function.
These restatements are recorded below as Corollaries 5.1 to 5.5 respectively.
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Corollary 5.1 Let f be the function defined by Equation (1.10). Let g be the function
defined by Equation (1.11). Let r be a positive integer. There exist functions of n, namely
Ar

j(n) and Cr
j (n), such that,

f(n + r) =
n∑

k=1

f(k)
r−1∑

j=0

Ar
j(n)

⌊
n + j

k

⌋
, r ≥ 1, n ≥ 1, (5.2)

g(n + r) =
n∑

k=1

g(k)
r−1∑

j=0

Cr
j (n)

⌈
n + j

k

⌉
, r ≥ 1, n ≥ 1, (5.3)

where Ar
j(n) and Cr

j (n) satisfy the recurrence relations

Ar+1
j (n) =

r−j−1∑

i=0

Ar−i
j (n)

⌊
n + r

n + r − i

⌋
, 0 ≤ j ≤ r − 1, (5.4)

Cr+1
j (n) =

r−j−1∑

i=0

Cr−i
j (n)

⌈
n + r

n + r − i

⌉
, 0 ≤ j ≤ r − 1. (5.5)

Note that Ar
r−1(n) = 1 and Ar

j(n) = 0 if j < 0 or j > r − 1. A similar statement holds for
the Cr

j (n).

Corollary 5.2 (The Shift Theorem of [3]) The Ar
j(n) (and Cr

j (n)) coefficients satisfy the
relation

Ar+1
j+1(n) = Ar

j(n + 1), j ≥ 1, r ≥ 0. (5.6)

Corollary 5.3

Ar
k−1(0) =

r−1∑

j=k

Ar
j(0)

⌊
j

k

⌋
, 0 < k < r − 1 (5.7)

Cr
k−1(0) =

r−1∑

j=k

Cr
j (0)

⌈
j

k

⌉
, 0 < k < r − 1. (5.8)

Corollary 5.4 (The Inversion Theorem for the Floor Function) We have

F (r) =
r−1∑

j=0

Ar
j(0)G(j), r ≥ 1 (5.9)

if and only if

G(r) = F (r + 1)−
r∑

j=1

⌊
r

j

⌋
F (j), with G(0) = F (1). (5.10)
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Corollary 5.5 (The Inversion Theorem for the Roof Function) We have

F (r) =
r−1∑

j=0

Cr
j (0)G(j), r ≥ 1 (5.11)

if and only if

G(r) = F (r + 1)−
r∑

j=1

⌈
r

j

⌉
F (j), with G(0) = F (1). (5.12)

Below we provide a table of the Ar
j(0) and a table of the Cr

j (0). Using Equations (5.4) and
(5.5) it is easy to show that f(n) = An

0 (0) and g(n) = Cn
0 (0). In other words, note that the

left most diagonal of the table is our sequence f(n) or g(n).

1
1 1

3 1 1
7 2 1 1

16 5 2 1 1
33 10 4 2 1 1

71 22 9 4 2 1 1
143 44 18 8 4 2 1 1

Table 3: Values of Ar
j(0).

1
1 1

3 1 1
8 3 1 1

20 7 3 1 1
50 18 7 3 1 1

121 43 17 7 3 1 1
297 106 42 17 7 3 1 1

Table 4: Values of Cr
j (0)

For Tables 3 and 4, rows correspond to r = 1, 2, 3, ... and diagonals to j = 0, 1, ..., r − 1.

Inspection of Tables 3 and 4 suggests that as n →∞, the rows tend to stabilize to a fixed
sequence. In the case of Table 3, the fixed sequence is bn = 2n. Thus, we have the following
theorem.
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Theorem 5.1 Let n ≥ 0. Then, A2n+2
n (0) = 2n.

For Table 4, the stabilization sequence is more complicated. In particular, we have the
following theorem.

Theorem 5.2 Let an be the sequence defined by the recursion an = 2an−1 + an−2, a0 =
1, a1 = 1. Then, for n ≥ 2, C2n−1

n−2 (0) = an.

We will prove Theorem 5.2. Since the proof of Theorem 5.1 is similar, its proof is omitted.

In order to prove Theorem 5.2, we will need the following two lemmas.

Lemma 5.1 Let n ≥ 2. Let i ≥ 0 and 0 ≤ k ≤ n. Then,
⌈

2n + i

2n + i− k

⌉
=

⌈
2n

2n− k

⌉
(5.13)

Proof of Lemma 5.1. Clearly Equation (5.13) is true when k = 0. Now we assume 1 ≤ k ≤ n,
or equivalently, −1 ≥ −k ≥ −n. By adding 2n to each term of the inequality, we obtain
2n > 2n− 1 ≥ 2n− k ≥ n. In other words,

1

2n
<

1

2n− 1
≤ 1

2n− k
≤ 1

n
.

Multiply each term in the above inequality by 2n to obtain

1 <
2n

2n− 1
≤ 2n

2n− k
≤ 2. (5.14)

Thus, Equation (5.14) implies that if 1 ≤ k ≤ n,
⌈

2n
2n−k

⌉
= 2.

We now want to obtain the left side of (5.13). Once again, assume 1 ≤ k ≤ n, or equivalently.
−1 ≥ −k ≥ −n. Add 2n+ i to each term and obtain 2n+ i > 2n+ i−1 ≥ 2n+ i−k ≥ n+ i.
Thus, 1

2n+i < 1
2n+i−1 ≤

1
2n+i−k ≤

1
n+i . Multiply each term in the above inequality by 2n + i

to obtain

1 <
2n + i

2n + i− 1
≤ 2n + i

2n + i− k
≤ 2n + i

n + i
= 2− i

n + i
≤ 2. (5.15)

Thus, Equation (5.15) implies that if 1 ≤ k ≤ n,
⌈

2n+i
2n+i−k

⌉
= 2. Combining (5.14) and (5.15)

proves the lemma. !

Lemma 5.2 (Stabilization of the left to right diagonal) Let n ≥ 2 and i ≥ 0. Then,

C2n−1
n−2 (0) = C2n−1+i

n−2+i (0). (5.16)
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Proof of Lemma 5.2. We use induction on n. If n = 2, it easy to show, via Equation (5.5),
that C3

0(0) = 3 = C3+i
i (0). We now assume (5.16) is true for all integer values less than or

equal to n. In otherwords, we assume the first n left to right diagonals of Table 4 stabilize
to a fixed number. By Equation (5.5),

C2n+1+i
n−1+i (0) =

n∑

k=0

C2n+i−k
n−1+i (0)

⌈
2n + i

2n + i− k

⌉

=
n∑

k=0

C2n−k
n−1 (0)

⌈
2n + i

2n + i− k

⌉
, inductive hypothesis

=
n∑

k=0

C2n−k
n−1 (0)

⌈
2n

2n− k

⌉
, by, Lemma 4.1

= C2n+1
n−1 (0) by (5.5).

The above calculations prove the lemma. !

Remark 5.1 Lemma 5.2 implies that for n ≥ 4, and i ≥ 0, C2n−5
n−4 (0) = C2n−5+i

n−4+i (0).

Proof of Theorem 5.2. Note that C3
0(0) = 3 = a2 and C5

1(0) = 7 = a3. If we can show, for
n ≥ 4, that

C2n−1
n−2 (0) = 2C2n−3

n−3 (0) + C2n−5
n−4 (0), (5.17)

we will prove the theorem, since both the C2n−1
n−2 (0) and an obey the same recursion relation

and have the same initial conditions. By Equation (5.8),

C2n−1
n−2 (0) =

2n−2∑

j=n−1

C2n−1
j (0)

⌈
j

n− 1

⌉
= C2n−1

n−1 (0) + 2C2n−1
n (0) + 2

2n−2∑

j=n+1

C2n−1
j (0). (5.18)

The last equality is a simple adaptation of Lemma 5.1. Also, by (5.8), we have

C2n−3
n−3 (0) =

2n−4∑

j=n−2

C2n−3
j (0)

⌈
j

n− 2

⌉

= C2n−3
n−2 (0) + 2

2n−4∑

j=n−1

C2n−3
j (0)

= C2n−1
n (0) + 2

2n−4∑

j=n−1

C2n−1
j+2 (0) = C2n−1

n (0) + 2
2n−2∑

j=n+1

C2n−1
j (0).

The third equality comes from letting i = 2 in Remark 5.1. Thus, the preceding calculations
imply that (5.18) is, in fact, C2n−1

n−2 (0) = C2n−1
n−1 (0) + C2n−1

n (0) + C2n−3
n−3 (0). By repeated

applications of Lemma 5.2, the above equation becomes

C2n−1
n−2 (0) = C2n−3

n−3 (0) + C2n−1
n (0) + C2n−3

n−3 (0) = 2C2n−3
n−3 (0) + C2n−5

n−4 (0).

which is exactly Equation (5.17). !.
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Remark 5.2 Lemma 5.2 implies, that for all i ≥ 0, an = C2n−1
n−2 (0) = C2n−1+i

n−2+i (0). Thus, the
proof of Theorem 5.2 shows that an = C2n−1+i

n−2+i (0), whenever i ≥ 0 and n ≥ 2. Similiarly, we
can show that whenever i ≥ 0, A2n+2+i

n+i (0) = 2n.

We end this section with Corollary 5.6, which is a result of Theorems 5.1 and 5.2. This
corollary states that the limiting sequence is the central column of Tables 3 and 4.

Corollary 5.6 Let n ≥ 0. Let an and bn be as defined in Theorems 5.1 and 5.2. Then,
bn = A2n+1

n (0) and an = C2n+1
n (0).

6. Closing Remarks: A Combinatorial Question

There remains the problem of determining combinatorial structures enumerated by f(n)
and g(n). Although h(n) is fractional, removing the powers of 2 in (3.4) and relabeling, the
sequence a(n) = n

(
2n
n

)
, which has the values 2, 12, 60, 280, 1260, 5544, 24024, 102960,... does

have some interest. This sequence is A005430 in the OEIS and the numbers are sometimes
called Apery numbers since they occur in Roger Apery’s proof of the irrationality of ζ(3).
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