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Abstract

Let n ∈ N and A ⊆ Zn be such that A is non–empty and does not contain 0. Adhikari et
al proposed two generalized constants related to the zero-sum problem. One is DA(n),
which denotes the least natural number k such that for any sequence (x1, · · · , xk) ∈
Zk, there exists a non-empty subsequence (xj1 , · · · , xjl

) and (a1, · · · , al) ∈ Al such that∑l
i=1 aixji ≡ 0 (mod n). The other is EA(n), defined as the smallest t ∈ N such that for

all sequences (x1, . . . , xt) ∈ Zt, there exist indices j1, . . . , jn ∈ N, 1 ≤ j1 < · · · < jn ≤ t
and (ϑ1, · · · ,ϑn) ∈ An with

∑n
i=1 ϑixji ≡ 0 (mod n). S. D. Adhikari et al proposed

characterizing any other sets for which EA(n) = n + 1 or even those for which EA(n) =
n + j for specific small values of j. In this paper we give two kinds of sets, calculate
DA(n) and EA(n) for these sets, and partially solve Adhikari’s problem.

1. Introduction

Let G be an additive finite abelian group. A finite sequence S = (g1, g2, · · · , gl) =
g1g2 · · · gl of elements of G, where repetition of elements is allowed and their order is
disregarded, is called a zero-sum sequence if g1 + g2 + · · · + gl = 0.

For a finite abelian group G of cardinality n, the Davenport constant D(G) is the
smallest natural number t such that any sequence of t elements in G has a non-empty zero-
sum subsequence. Another interesting constant, E(G), is the smallest natural number k
such that any sequence of k elements in G has a zero-sum subsequence of length n.

For the particular group Zn, the following generalization of E(G) has been considered
in [1] and [2] recently. Let n ∈ N and assume A ⊆ Zn. Then EA(n) is the least t ∈ N
such that for all sequences (x1, . . . , xt) ∈ Zt, there exist indices j1, . . . , jn ∈ N, 1 ≤ j1 <
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· · · < jn ≤ t and (ϑ1, · · · ,ϑn) ∈ An with

n∑

i=1

ϑixji ≡ 0 (mod n).

To avoid trivial cases, one assumes that the weight set A does not contain 0 and it is
non–empty.

Similarly, for any such set A ⊆ Zn \ {0} of weights, we define the Davenport constant
of Zn with weight A, denoted by DA(n), as the least natural number k such that for
any sequence (x1, · · · , xk) ∈ Zk, there exists a non-empty subsequence (xj1 , · · · , xjl

) and
(a1, · · · , al) ∈ Al such that

l∑

i=1

aixji ≡ 0 (mod n).

Thus, for the group G = Zn, if we take A = {1}, then EA(n) and DA(n) are, respectively,
E(G) and D(G) as defined earlier.

EA(n) and DA(n) were studied in [1], [2] and [3].

It is not difficult to observe the following result.

Lemma 1 DA(n) + n− 1 ≤ EA(n) ≤ 2n− 1 for any A ⊆ Zn \ {0}.

Lemma 2 ([2]) Let A = Zn\{0}. Then EA(n) = n + 1.

In [2] Adhikari et al proposed characterizing any other sets for which EA(n) = n + 1
or even those for which EA(n) = n+ j for specific small values of j. It is easy to see that
if A ⊆ B, then DA(n) ≥ DB(n).

In this paper we prove the following results:

Theorem 1 Let n be a positive integer and p be a prime satisfying pk‖n. If A = {a |a (≡
0 (mod p)}, then DA(n) = k + 1 and EA(n) = n + k.

Theorem 2 If A is an arithmetic progression with length l = )n
2 *, where for any real

number x, )x* denotes the smallest integer ≥ x, and common difference 1, that is, A is
the set of the form {a + i|i = 1, 2, · · · , l} where 1 ≤ a < a + l ≤ n− 1, then DA(n) = 2,
EA(n) = n + 1.
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2. Proofs of Theorem 1 and Theorem 2

In order to prove the theorems, we need the following result.

Lemma 3 ([4]) Let A,B be subsets of a finite group G such that |A| + |B| ≥ |G| + 1.
Then A + B = G.

Proof of Theorem 1. (1) We will prove that DA(n) = k + 1.

First, we prove that DA(n) > k. We assert that 0 /∈
∑

i∈I
n
pi A with I ⊆ {1, 2, · · · , k}.

We proceed by induction on the cardinality of I. Note that for |I| = 1, the result follows
trivially. Inductively, assume the result holds true for 1 ≤ |I| < k. Now consider |I| = k.
If 0 ∈

∑k
i=1

n
pi A, then there must exist ai ∈ A for i = 1, 2, · · · , k such that

n

p
a1 +

n

p2
a2 + · · · + n

pk
ak ≡ 0 (mod n).

Multiplying the above equation by p, we get

n

p
a2 +

n

p2
a3 + · · · + n

pk−1
ak ≡ 0 (mod n).

Hence 0 ∈ n
pA + n

p2 A + · · · + n
pk−1 A, which contradicts to the inductive hypothesis.

Next we prove that DA(n) ≤ k + 1. Let S = (s1, · · · , sN) be a sequence of elements
in Zn of length N = k +1. We will prove that S has a zero-sum subsequence with weight
A. We distinguish two cases:

Case 1. If there exist two elements s1 and s2 such that pi ‖ s1, pi ‖ s2 for some
i = 0, 1, · · · , k − 1, then s2

pi , n− s1
pi ∈ A. Hence,

s1
s2

pi
+ s2(n−

s1

pi
) ≡ 0 (mod n).

Case 2. If Case 1 does not hold, then there must exist one element, say si0 , satisfying
pk‖si0 . Since n

pk ∈ A, we have

si0

n

pk
≡ 0 (mod n).

Thus, we have proved that DA(n) = k + 1.

(2) We will prove that EA(n) = n + k. Assume that S = (s1, · · · , sN ′) is a sequence
of elements in Zn of length N ′ = n + k. To prove EA(n) = n + k, because of Lemma 1
it suffices to prove that S has a zero-sum subsequence of length n with weight A. We
partition S into the following multisets (sets with repetitions allowed).

Mi =
{
sj| pi ‖ sj, sj ∈ S

}
, for i = 0, 1, 2, · · · , k.
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Note that every pair of elements s(1)
i , s(2)

i in Mi constitutes a zero-sum subsequence of S
with weight A since

s(1)
i · s(2)

i

pi
+ s(2)

i

(
n− s(1)

i

pi

)
≡ 0 (mod n),

where s(2)
i
pi , n− s(1)

i
pi ∈ A, for i = 0, 1, · · · , k − 1.

Since every element s
′
k in Mk produces a zero-sum subsequence of S of length 1 with

weight A since s
′
k

n
pk ≡ 0 (mod n), n

pk ∈ A. We consider two cases:

Case 1. n is even. We can choose m (0 ≤ m ≤ k) integers l1, l2, · · · , lm satisfying

l1 + l2 + · · · + lm = n−t
2 , where t = |Mk|, l1 = [

|Mi1 |
2 ], l2 = [

|Mi2 |
2 ], · · · , lm = [ |Mim |

2 ], 0 ≤
i1 ≤ i2 ≤ im ≤ k − 1. Hence, we can obtain n−t

2 pairs of disjoint zero-sum subsequences
of S with weight A and t disjoint zero-sum subsequences of S of length 1 with weight A,
and it follows that we can get a zero-sum subsequence of S of length n with weight A.

Case 2. n is odd. If n is a prime, the result follows because of Lemma 2. For n > 3
and composite, since 2(k + 1) < n we know that there must exist some Mi (0 ≤ i ≤ k)

satisfying |Mi| ≥ 3. Let s(1)
i , s(2)

i , s(3)
i ∈ Mi. We conclude that there must exist x, y, z ∈ A

satisfying xs(1)
i + ys(2)

i + zs(3)
i ≡ 0 (mod n).

Indeed, choose x = 1, y = 1 if s(1)
i
pi + s(2)

i
pi (≡ 0 (mod p), and x = 1, y = n − 1 if

s(1)
i
pi + s(2)

i
pi ≡ 0 (mod p). Then the equation s(3)

i
pi

z = −(xs(1)
i
pi

+y s(2)
i
pi

) (mod n
pi ) has a solution

in A, and the result follows as before. !

Corollary 1 Let n be a positive integer and p be a prime satisfying p‖n. If A = {a |a (≡
0 (mod p)}, then DA(n) = 2 and EA(n) = n + 1.

Proof of Theorem 2. (1) We prove that DA(n) = 2. Let S = (s1, s2) be a sequence of
elements in Zn of length 2. It suffices to show that S has a zero-sum subsequence with
weight A. We distinguish two cases:

Case 1. n is even. We see that n
2 ∈ A since |A| = )n

2 *. So if 2|s1 or 2|s2, then
s1

n
2 ≡ 0 (mod n) or s2

n
2 ≡ 0 (mod n). If s1 and s2 are both odd, then n

2 ∈ s1A, s2A.
Therefore, 0 ∈ s1A + s2A.

Case 2. n is odd. If gcd(s1, n) = gcd(s2, n) = 1, then |s1A| = |s2A| = n+1
2 . Hence

|s1A| + |s2A| = 2n+1
2 = n + 1 > n. From Lemma 3 it follows that s1A + s2A = Zn.

Therefore, 0 ∈ s1A+ s2A. If gcd(s1, n) = d ≥ 1, that is 3 ≤ d ≤ n
3 , then there must exist

i(1 ≤ i ≤ d− 1) such that in
d ∈ A since |A| = n+1

2 . It follows that s1
in
d ≡ 0 (mod n).

(2). We now prove that EA(n) = n + 1. Assume that S = (s1, · · · , sN) is a sequence
of elements in Zn of length N = n + 1. To prove EA(n) = n + 1, because of Lemma
1 it suffices to prove that S has a zero-sum subsequence of length n with weight A.
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Partition S into the two multi-sets M1,M2 where M1 = {si| gcd(si, n) = 1, si ∈ S} and
M2 = {si| gcd(si, n) (= 1, si ∈ S}. We note the two following facts.

Fact 1. If s1, s2 ∈ M1, then 0 /∈ s1A, s2A. Thus, from DA(n) = 2, we conclude that
there exist two elements a1, a2 ∈ A such that a1s1 + a2s2 ≡ 0 (mod n).

Fact 2. If si0 ∈ M2, then there must exist one element a0 ∈ A such that a0si ≡ 0 (mod n).
We distinguish two cases:

Case 1. n is even.

(1) |M1| ≥ n. Using Fact 1, it is easy to see that we can get a zero-sum subsequence
of length n with weight A.

(2) |M2| < n. Using Fact 1 and Fact 2, it is easy to see that we can get a zero-sum
subsequence of length n with weight A.

Case 2. n is odd.

(1) |M2| ≥ 1. Using Fact 1 and Fact 2, it is easy to see that we can get a zero-sum
subsequence of length n with weight A.

(2) M2 = ∅. Then |M1| = n + 1 and gcd(si, n) = 1 for i = 1, 2, · · · , n + 1. Set
Ai = siA. Therefore, |Ai| = )n

2 * = n+1
2 . Since |A1| + |A2| > n, the result follows that∑n

i=1 Ai ⊇ A1 + A2 = Zn. Therefore, 0 ∈
∑n

i=1 Ai = Zn. !
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