ON THE ORDER OF POINTS ON CURVES OVER FINITE FIELDS

José Felipe Voloch Department of Mathematics, University of Texas, Austin, Texas 78712, USA voloch@math.utexas.edu

Received: 10/3/07, Revised: 10/18/07, Accepted: 10/30/07, Published: 11/19/07

Abstract

We discuss the problem of constructing elements of multiplicative high order in finite fields of large degree over their prime field. We prove that for points on a plane curve, one of the coordinates has to have high order. We also discuss a conjecture of Poonen for subvarieties of semiabelian varieties for which our result is a weak special case. Finally, we look at some special cases where we obtain sharper bounds.

0. Introduction

We prove a theorem which gives information on the multiplicative orders of the coordinates of points on plane curves over finite fields. In the special case where the curve is given by x + y = 1 our result is related to the main results of [GS] and [ASV], although the results there have stronger hypotheses and stronger conclusions, see section 5. Some of our arguments extend those of the aforementioned papers. Our result can also be viewed as a weak form a conjecture of Poonen in the case of two dimensional tori. We discuss Poonen's conjecture in section 4.

Throughout this paper \mathbf{F}_q is a field of q elements where q is a power of the prime p. Our main result is as follows:

Theorem. Let $F(x, y) \in \mathbf{F}_q[x, y]$ be an absolutely irreducible polynomial such that F(x, 0) is not a monomial. Given $\epsilon > 0$, there exists $\delta > 0$ such that, for d sufficiently large if $a, b \in \bar{\mathbf{F}}_q^*$ satisfy F(a, b) = 0 and $d = [\mathbf{F}_q(a) : \mathbf{F}_q]$ and r, the multiplicative order of a, satisfies $r < d^{2-\epsilon}$ then b has multiplicative order at least $\exp(\delta(\log d)^2)$.

We also obtain a much better lower bound for the multiplicative order of b when F(x, y) = 0admits a parametrization y = R(x) for $R(x) \in \mathbf{F}_q(x)$ (see section 5). Note that our result applies only certain finite fields, namely those generated (as a field) by a root of unity of small order. A result of Gao ([G]), using a different construction, produces elements of order at least $\exp(\delta(\log d)^2/\log \log d)$ in \mathbf{F}_{q^d} for many (conjecturally all) values of d.

1. Elementary Estimates

The following lemma is well-known and stated for convenience.

Lemma 1. For any $\epsilon > 0$ we have that $\#\{1 \le n \le N \mid (n,r) = 1\} = N\phi(r)/r + O(r^{\epsilon})$.

Lemma 2. For fixed integers $m, q \ge 2$ and real $\epsilon > 0$ If $r \ge 2$, (r, mq) = 1 is an integer and d is the order of $q \mod r$, then, given N < d, there is a coset Γ of $\langle q \rangle \subset (\mathbf{Z}/r)^*$ with

$$#\{n \mid 1 \le n \le N, (n,m) = 1, n \mod r \in \Gamma\} \gg Nd^{1-\epsilon}/r - r^{\epsilon}$$

Proof. There are $\phi(r)/d$ cosets of $\langle q \rangle$ in $(\mathbf{Z}/r)^*$, so there exists a coset Γ_1 of $\langle q \rangle$ with

$$#\{n \mid 1 \le n \le N, n \mod r \in \Gamma_1\} \ge (d/\phi(r)) #\{n \mid 1 \le n \le N, (n, r) = 1\}.$$

For each $n, 1 \leq n \leq N, n \mod r \in \Gamma_1$ we can write n = un', (n', m) = 1 and n' maximal. So u is divisible only by primes dividing m and, since $u \leq n \leq N \leq d$, there are $O(d^{\epsilon})$ possibilities for u, hence n' belongs to one of $O(d^{\epsilon})$ cosets of $\langle q \rangle \subset (\mathbf{Z}/r)^*$ and select for Γ the coset among these cosets with the most values of n' obtained from the above n. Note also that each n' gives rise to at most $O(d^{\epsilon})$ values of n, again because this in an upper bound for the number of possible u's. It follows that

$$\#\{n \mid 1 \le n \le N, (n,m) = 1, n \mod r \in \Gamma\} \gg (d/\phi(r))\#\{n \mid 1 \le n \le N, (n,r) = 1\}/d^{2\epsilon}$$

and Lemma 2 now follows from lemma 1.

2. Some Function Fields

Let K be the function field of F(x, y) = 0 (as in Section 0) contained in an algebraic closure of $\mathbf{F}_q(x)$. Within this algebraic closure, for each n, (n, p) = 1, select an n-th root of $x, x^{1/n}$ and consider $K_n = K(x^{1/n})$. We now need to switch viewpoint as follows. Identify all the $\mathbf{F}_q(x^{1/n})$ with $\mathbf{F}_q(t)$ by sending $x^{1/n}$ to t and embed the K_n in a fixed algebraic closure of $\mathbf{F}_q(t)$ and denote the image of $y \in K_n$ under this embedding by y_n , thus $F(t^n, y_n) = 0$. Let m be the degree of the divisor of zeros of x in K. If (n, mp) = 1 then the extension K_n/K is separable of degree n and $F(t^n, y)$ is absolutely irreducible. For those values of n, the divisor of zeros of y_n is supported at the places where $t^n = \alpha$ where α runs through the roots of F(x, 0) = 0 in $\overline{\mathbf{F}}_q$. Note that, by hypothesis, one of these roots is nonzero.

Lemma 3. The algebraic functions y_n , (n, pm) = 1, are multiplicatively independent.

Proof. It is enough to show that if L is a function field containing the $y_n, n \leq N, (n, pm) = 1$, that the divisors of the y_n in L are **Z**-linearly independent. This follows by induction on N, since if (N, p) = 1, not all the N-th roots of α are n-th roots of α for n < N, for $\alpha \neq 0$.

For a function field L/\mathbf{F}_q and an element z of L, denote by $\deg_L z$ the degree of the divisor of zeros of z in L, which is also $[L : \mathbf{F}_q(z)]$ if z in non-constant. We have that $\deg_{K_n} y_n \ll n$.

3. Proof of the Main Theorem

With notation as in the statement of the theorem, let $N = [d^{1-\epsilon}]$ and $\Gamma = \gamma \langle q \rangle$ be the coset given by lemma 2. Choose an element $c \in \bar{\mathbf{F}}_q$ such that $a = c^{\gamma}$. Note that c is also of multiplicative order r. If $n \leq N, (n,q) = 1, n \mod r \in \Gamma$ then $n \equiv \gamma q^j \pmod{r}$ for some j and let J be the set of all such j. Thus, for $j \in J$, $0 = F(a,b)^{q^j} = F(a^{q^j}, b^{q^j})$ and $a^{q^j} = c^{n_j}$, where $n_j \leq N, (n_j, q) = 1, n_j \mod r \in \Gamma$ gives rise to j. It follows that there is a place of K_{n_j} above t = c where y_{n_j} takes the value b^{q^j} . Let $T = [\eta \log d]$, where $\eta > 0$ will be chosen later. If $I \subset J$, let $b_I = \prod_{i \in I} b^{q^i}$.

We now claim that the b_I are distinct for distinct $I \subset J, |I| \leq T$. If $b_I = b_{I'}$ for two distinct such subsets I, I', then the algebraic function $z = (\prod_{j \in I} y_{n_j} / \prod_{j \in I'} y_{n_j}) - 1$ vanishes at a place of the field L, compositum of the $K_{n_j}, j \in I \cup I'$ above t = c, but, denoting by D the degree of F,

$$\deg_L z \le \sum_{j \in I \cup I'} \deg_L y_{n_j} = \sum_{j \in I \cup I'} [L : K_{n_j}] \deg_{K_{n_j}} y_{n_j} \ll T D^{2T} N$$

which is smaller than $d = [\mathbf{F}_q(c) : \mathbf{F}_q]$ for a suitably small choice of η and all d sufficiently large and that is not possible, unless z = 0 and therefore the $y_{n_j}, j \in I \cup I'$ are multiplicatively dependent. This contradicts lemma 3. It follows that there are at least $\binom{|J|}{T}$ distinct powers of b. Now lemma 2 (with $\epsilon/3$ instead of ϵ) gives that

$$|J| \gg d^{2-\epsilon/3}/r - r^{\epsilon/3} \gg d^{2\epsilon/3} - (d^{3/2-\epsilon})^{\epsilon/3} \gg d^{2\epsilon/3},$$

hence $\binom{|J|}{T} \ge (|J|/T-1)^T \gg \exp(\delta(\log d)^2)$, for some suitably small $\delta > 0$, proving the theorem.

4. A Conjecture of Poonen

Conjecture (Poonen). Let A be a semiabelian variety defined over a finite field F_q and X a closed subvariety of A. Let Z be the union of all translates of positive-dimensional semiabelian varieties (over $\mathbf{\bar{F}}_q$) contained in X. Then there exists a constant c > 0 such that for every nonzero x in $(X - Z)(\mathbf{\bar{F}}_q)$, the order of x in $A(\mathbf{\bar{F}}_q)$ is at least $(\#\mathbf{F}_q(x))^c$, where $\mathbf{F}_q(x)$ is the field generated over \mathbf{F}_q by the coordinates of x.

Our result corresponds to the special case $A = \mathbf{G}_m \times \mathbf{G}_m$ but our bound is much weaker than the prediction of the conjecture. Our hypothesis that F(x,0) is not a monomial is a bit stronger than requiring that $X \neq Z$, which would have been a more natural condition. Finally, our result is not symmetric in the x and y coordinates. A symmetric result would be that the order of (a, b) as in the theorem is at least $d^{3/2-\epsilon}$, which follows immediately from our theorem. However, it follows from the proof of Liardet's theorem (as e.g. given in [L]), that the order of (a, b) is at least d^2 .

5. Rational functions

In this section we discuss the special case where our plane curve can be described by $y = R(x), R(x) \in \mathbf{F}_q(x), R(x)$ not a monomial. In this case, we can obtain much better bounds. Indeed, following the proof of the theorem, we have that $y_n = R(t^n)$ so $K_n = \mathbf{F}_q(t)$ and we get the much smaller estimate $\deg_L z \ll TDN$. We can, therefore choose a much larger value of T, say $T = [d^{\eta}]$ for some small $\eta > 0$ and the proof of the theorem yields that b has multiplicative order at least $\exp(d^{\delta})$ with the same notation and assumptions. In [GS] and [ASV] better estimates are obtained (essentially $\delta = 1/2$) when R(x) = 1 - x and r = d + 1

6. Gauss Periods

Let r be prime and a a primitive r-th root of unity in $\overline{\mathbf{F}}_q$ of degree r-1 over \mathbf{F}_q . If H is a subgroup of \mathbf{Z}/r we define the Gauss period $b = \sum_{h \in H} a^h$ and we'd like to estimate the order of b by the above methods. We need the following lemma proved in [BR].

Lemma 4. There exists $\gamma \in Z$ such that, for all $h \in H$, there exists $u_h \equiv \gamma h \mod r, |u_h| \leq r^{1-1/\#H}$.

By choosing c with $c^{\gamma} = a$ we can write $b = \sum_{h \in H} c^{u_h}$. We now use the same strategy as been used twice before and, as in the previous section, obtain the estimate deg $z \ll TDN$ with $D \leq r^{1-1/\#H}$. So we choose $N = [r^{1/(2\#H)}]$ and lemma 2 yields J with $\#J \gg r^{1/(2\#H)-\epsilon}$ and we can take T = #J so we get that the order of b is at least $2^{\#J}$, i.e., $2^{r^{1/(2\#H)-\epsilon}}$.

The experimental results of [GV] and [GGP] suggest that the order of Gauss sums are probably a lot larger than what we can prove.

Acknowledgements. The author would like to thank Bjorn Poonen and Igor Shparlinski.

References

[ASV] O. Ahmadi, I. Shparlinski and J. F. Voloch, Multiplicative order of Gauss periods, preprint 2007.

[BR] A. Brauer, R. L. Reynolds, On a theorem of Aubry-Thue. Canadian J. Math. 3, (1951). 367–374.

[G] S. Gao, Elements of provable high orders in finite fields, Proc. American Math. Soc. 127 (1999), 1615-1623.

[GGP] S. Gao, J. von zur Gathen and D. Panario, Gauss periods: orders and cryptographical applications, Mathematics of Computation, 67 (1998), 343-352.

 $[{\rm GS}]$ J. von zur Gathen and I. E. Shparlinski, Orders of Gauss periods in finite fields, Appl. Algebra in Engin., Commun. and Comp., 9 (1998), 15–24.

[GV] S. Gao, S. Vanstone, On orders of optimal normal basis generators, Mathematics of Computation 64 (1995), 1227–1233.

[L] S. Lang, Fundamentals of Diophantine Geometry, Springer, New York 1983.