ON THE ORDER OF POINTS ON CURVES OVER FINITE FIELDS

José Felipe Voloch
Department of Mathematics, University of Texas, Austin, Texas 78712, USA
voloch@math.utexas.edu

Received: 10/3/07, Revised: 10/18/07, Accepted: 10/30/07, Published: 11/19/07

Abstract

We discuss the problem of constructing elements of multiplicative high order in finite fields of large degree over their prime field. We prove that for points on a plane curve, one of the coordinates has to have high order. We also discuss a conjecture of Poonen for subvarieties of semiabelian varieties for which our result is a weak special case. Finally, we look at some special cases where we obtain sharper bounds.

0. Introduction

We prove a theorem which gives information on the multiplicative orders of the coordinates of points on plane curves over finite fields. In the special case where the curve is given by $x+y=1$ our result is related to the main results of [GS] and [ASV], although the results there have stronger hypotheses and stronger conclusions, see section 5 . Some of our arguments extend those of the aforementioned papers. Our result can also be viewed as a weak form a conjecture of Poonen in the case of two dimensional tori. We discuss Poonen's conjecture in section 4.

Throughout this paper \mathbf{F}_{q} is a field of q elements where q is a power of the prime p. Our main result is as follows:

Theorem. Let $F(x, y) \in \mathbf{F}_{q}[x, y]$ be an absolutely irreducible polynomial such that $F(x, 0)$ is not a monomial. Given $\epsilon>0$, there exists $\delta>0$ such that, for d sufficiently large if $a, b \in \overline{\mathbf{F}}_{q}^{*}$ satisfy $F(a, b)=0$ and $d=\left[\mathbf{F}_{q}(a): \mathbf{F}_{q}\right]$ and r, the multiplicative order of a, satisfies $r<d^{2-\epsilon}$ then b has multiplicative order at least $\exp \left(\delta(\log d)^{2}\right)$.

We also obtain a much better lower bound for the multiplicative order of b when $F(x, y)=0$ admits a parametrization $y=R(x)$ for $R(x) \in \mathbf{F}_{q}(x)$ (see section 5). Note that our result applies only certain finite fields, namely those generated (as a field) by a root of unity of small order. A result of Gao ([G]), using a different construction, produces elements of order at least $\exp \left(\delta(\log d)^{2} / \log \log d\right)$ in $\mathbf{F}_{q^{d}}$ for many (conjecturally all) values of d.

1. Elementary Estimates

The following lemma is well-known and stated for convenience.

Lemma 1. For any $\epsilon>0$ we have that $\#\{1 \leq n \leq N \mid(n, r)=1\}=N \phi(r) / r+O\left(r^{\epsilon}\right)$.

Lemma 2. For fixed integers $m, q \geq 2$ and real $\epsilon>0$ If $r \geq 2,(r, m q)=1$ is an integer and d is the order of $q \bmod r$, then, given $N<d$, there is a coset Γ of $\langle q\rangle \subset(\mathbf{Z} / r)^{*}$ with

$$
\#\{n \mid 1 \leq n \leq N,(n, m)=1, n \bmod r \in \Gamma\} \gg N d^{1-\epsilon} / r-r^{\epsilon}
$$

Proof. There are $\phi(r) / d$ cosets of $\langle q\rangle$ in $(\mathbf{Z} / r)^{*}$, so there exists a coset Γ_{1} of $\langle q\rangle$ with

$$
\#\left\{n \mid 1 \leq n \leq N, n \bmod r \in \Gamma_{1}\right\} \geq(d / \phi(r)) \#\{n \mid 1 \leq n \leq N,(n, r)=1\}
$$

For each $n, 1 \leq n \leq N, n \bmod r \in \Gamma_{1}$ we can write $n=u n^{\prime},\left(n^{\prime}, m\right)=1$ and n^{\prime} maximal. So u is divisible only by primes dividing m and, since $u \leq n \leq N \leq d$, there are $O\left(d^{\epsilon}\right)$ possibilities for u, hence n^{\prime} belongs to one of $O\left(d^{\epsilon}\right)$ cosets of $\langle q\rangle \subset(\mathbf{Z} / r)^{*}$ and select for Γ the coset among these cosets with the most values of n^{\prime} obtained from the above n. Note also that each n^{\prime} gives rise to at most $O\left(d^{\epsilon}\right)$ values of n, again because this in an upper bound for the number of possible u 's. It follows that

$$
\#\{n \mid 1 \leq n \leq N,(n, m)=1, n \bmod r \in \Gamma\} \gg(d / \phi(r)) \#\{n \mid 1 \leq n \leq N,(n, r)=1\} / d^{2 \epsilon}
$$

and Lemma 2 now follows from lemma 1.

2. Some Function Fields

Let K be the function field of $F(x, y)=0$ (as in Section 0) contained in an algebraic closure of $\mathbf{F}_{q}(x)$. Within this algebraic closure, for each $n,(n, p)=1$, select an n-th root of $x, x^{1 / n}$ and consider $K_{n}=K\left(x^{1 / n}\right)$. We now need to switch viewpoint as follows. Identify all the $\mathbf{F}_{q}\left(x^{1 / n}\right)$ with $\mathbf{F}_{q}(t)$ by sending $x^{1 / n}$ to t and embed the K_{n} in a fixed algebraic closure of $\mathbf{F}_{q}(t)$ and denote the image of $y \in K_{n}$ under this embedding by y_{n}, thus $F\left(t^{n}, y_{n}\right)=0$. Let m be the degree of the divisor of zeros of x in K. If $(n, m p)=1$ then the extension K_{n} / K is separable of degree n and $F\left(t^{n}, y\right)$ is absolutely irreducible. For those values of n, the divisor of zeros of y_{n} is supported at the places where $t^{n}=\alpha$ where α runs through the roots of $F(x, 0)=0$ in $\overline{\mathbf{F}}_{q}$. Note that, by hypothesis, one of these roots is nonzero.

Lemma 3. The algebraic functions $y_{n},(n, p m)=1$, are multiplicatively independent.

Proof. It is enough to show that if L is a function field containing the $y_{n}, n \leq N,(n, p m)=1$, that the divisors of the y_{n} in L are \mathbf{Z}-linearly independent. This follows by induction on N, since if $(N, p)=1$, not all the N-th roots of α are n-th roots of α for $n<N$, for $\alpha \neq 0$.

For a function field L / \mathbf{F}_{q} and an element z of L, denote by $\operatorname{deg}_{L} z$ the degree of the divisor of zeros of z in L, which is also $\left[L: \mathbf{F}_{q}(z)\right]$ if z in non-constant. We have that $\operatorname{deg}_{K_{n}} y_{n} \ll n$.

3. Proof of the Main Theorem

With notation as in the statement of the theorem, let $N=\left[d^{1-\epsilon}\right]$ and $\Gamma=\gamma\langle q\rangle$ be the coset given by lemma 2. Choose an element $c \in \overline{\mathbf{F}}_{q}$ such that $a=c^{\gamma}$. Note that c is also of multiplicative order r. If $n \leq N,(n, q)=1, n \bmod r \in \Gamma$ then $n \equiv \gamma q^{j}(\bmod r)$ for some j and let J be the set of all such j. Thus, for $j \in J, 0=F(a, b)^{q^{j}}=F\left(a^{q^{j}}, b^{q^{j}}\right)$ and $a^{q^{j}}=c^{n_{j}}$, where $n_{j} \leq N,\left(n_{j}, q\right)=1, n_{j} \bmod r \in \Gamma$ gives rise to j. It follows that there is a place of $K_{n_{j}}$ above $t=c$ where $y_{n_{j}}$ takes the value $b^{q^{j}}$. Let $T=[\eta \log d]$, where $\eta>0$ will be chosen later. If $I \subset J$, let $b_{I}=\prod_{j \in I} b^{q^{j}}$.

We now claim that the b_{I} are distinct for distinct $I \subset J,|I| \leq T$. If $b_{I}=b_{I^{\prime}}$ for two distinct such subsets I, I^{\prime}, then the algebraic function $z=\left(\prod_{j \in I} y_{n_{j}} / \prod_{j \in I^{\prime}} y_{n_{j}}\right)-1$ vanishes at a place of the field L, compositum of the $K_{n_{j}}, j \in I \cup I^{\prime}$ above $t=c$, but, denoting by D the degree of F,

$$
\operatorname{deg}_{L} z \leq \sum_{j \in I \cup I^{\prime}} \operatorname{deg}_{L} y_{n_{j}}=\sum_{j \in I \cup I^{\prime}}\left[L: K_{n_{j}}\right] \operatorname{deg}_{K_{n_{j}}} y_{n_{j}} \ll T D^{2 T} N
$$

which is smaller than $d=\left[\mathbf{F}_{q}(c): \mathbf{F}_{q}\right]$ for a suitably small choice of η and all d sufficiently large and that is not possible, unless $z=0$ and therefore the $y_{n_{j}}, j \in I \cup I^{\prime}$ are multiplicatively dependent. This contradicts lemma 3. It follows that there are at least $\binom{|J|}{T}$ distinct powers of b. Now lemma 2 (with $\epsilon / 3$ instead of ϵ) gives that

$$
|J| \gg d^{2-\epsilon / 3} / r-r^{\epsilon / 3} \gg d^{2 \epsilon / 3}-\left(d^{3 / 2-\epsilon}\right)^{\epsilon / 3} \gg d^{2 \epsilon / 3},
$$

hence $\binom{|J|}{T} \geq(|J| / T-1)^{T} \gg \exp \left(\delta(\log d)^{2}\right)$, for some suitably small $\delta>0$, proving the theorem.

4. A Conjecture of Poonen

Conjecture (Poonen). Let A be a semiabelian variety defined over a finite field F_{q} and X a closed subvariety of A. Let Z be the union of all translates of positive-dimensional semiabelian varieties (over $\overline{\mathbf{F}}_{q}$) contained in X. Then there exists a constant $c>0$ such that for every nonzero x in $(X-Z)\left(\overline{\mathbf{F}}_{q}\right)$, the order of x in $A\left(\overline{\mathbf{F}}_{q}\right)$ is at least $\left(\# \mathbf{F}_{q}(x)\right)^{c}$, where $\mathbf{F}_{q}(x)$ is the field generated over \mathbf{F}_{q} by the coordinates of x.

Our result corresponds to the special case $A=\mathbf{G}_{m} \times \mathbf{G}_{m}$ but our bound is much weaker than the prediction of the conjecture. Our hypothesis that $F(x, 0)$ is not a monomial is a bit stronger than requiring that $X \neq Z$, which would have been a more natural condition. Finally, our result is not symmetric in the x and y coordinates. A symmetric result would be that the order of (a, b) as in the theorem is at least $d^{3 / 2-\epsilon}$, which follows immediately from our theorem. However, it follows from the proof of Liardet's theorem (as e.g. given in [L]), that the order of (a, b) is at least d^{2}.

5. Rational functions

In this section we discuss the special case where our plane curve can be described by $y=$ $R(x), R(x) \in \mathbf{F}_{q}(x), R(x)$ not a monomial. In this case, we can obtain much better bounds. Indeed, following the proof of the theorem, we have that $y_{n}=R\left(t^{n}\right)$ so $K_{n}=\mathbf{F}_{q}(t)$ and we get the much smaller estimate $\operatorname{deg}_{L} z \ll T D N$. We can, therefore choose a much larger value of T, say $T=\left[d^{\eta}\right]$ for some small $\eta>0$ and the proof of the theorem yields that b has multiplicative order at least $\exp \left(d^{\delta}\right)$ with the same notation and assumptions. In [GS] and [ASV] better estimates are obtained (essentially $\delta=1 / 2$) when $R(x)=1-x$ and $r=d+1$

6. Gauss Periods

Let r be prime and a a primitive r-th root of unity in $\overline{\mathbf{F}}_{q}$ of degree $r-1$ over \mathbf{F}_{q}. If H is a subgroup of \mathbf{Z} / r we define the Gauss period $b=\sum_{h \in H} a^{h}$ and we'd like to estimate the order of b by the above methods. We need the following lemma proved in [BR].

Lemma 4. There exists $\gamma \in Z$ such that, for all $h \in H$, there exists $u_{h} \equiv \gamma h \bmod r,\left|u_{h}\right| \leq$ $r^{1-1 / \# H}$.

By choosing c with $c^{\gamma}=a$ we can write $b=\sum_{h \in H} c^{u_{h}}$. We now use the same strategy as been used twice before and, as in the previous section, obtain the estimate $\operatorname{deg} z \ll T D N$ with $D \leq r^{1-1 / \# H}$. So we choose $N=\left[r^{1 /(2 \# H)}\right]$ and lemma 2 yields J with $\# J \gg r^{1 /(2 \# H)-\epsilon}$ and we can take $T=\# J$ so we get that the order of b is at least $2^{\# J}$, i.e., $2^{r^{1 /(2 \# H)-\epsilon}}$.

The experimental results of [GV] and [GGP] suggest that the order of Gauss sums are probably a lot larger than what we can prove.

Acknowledgements. The author would like to thank Bjorn Poonen and Igor Shparlinski.

References

[ASV] O. Ahmadi, I. Shparlinski and J. F. Voloch, Multiplicative order of Gauss periods, preprint 2007.
[BR] A. Brauer, R. L. Reynolds, On a theorem of Aubry-Thue. Canadian J. Math. 3, (1951). 367-374.
[G] S. Gao, Elements of provable high orders in finite fields, Proc. American Math. Soc. 127 (1999), 1615-1623.
[GGP] S. Gao, J. von zur Gathen and D. Panario, Gauss periods: orders and cryptographical applications, Mathematics of Computation, 67 (1998), 343-352.
[GS] J. von zur Gathen and I. E. Shparlinski, Orders of Gauss periods in finite fields, Appl. Algebra in Engin., Commun. and Comp., 9 (1998), 15-24.
[GV] S. Gao, S. Vanstone, On orders of optimal normal basis generators, Mathematics of Computation 64 (1995), 1227-1233.
[L] S. Lang, Fundamentals of Diophantine Geometry, Springer, New York 1983.

