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Abstract

For a positive composite integer n, we investigate the residues of
(

mn
k

)
for positive integers m

and k. First, we discuss divisibility of such coefficients. Then we study congruence identities
relating products of binomial coefficients modulo n. Certainly the Chinese Remainder The-
orem can be used in combination with prime power results to evaluate binomial coefficients
modulo a composite. However, in this study we investigate residues modulo a composite di-
rectly without appealing to the Chinese Remainder Theorem. And as a result we get closed
form identities modulo a composite.

One of the many consequences of the main result (Theorem 8) is the following: If p, q and
r are primes and m is a positive integer, then mr

(
mpqr

pq

)
≡

(
mqr

q

)(
mpr

p

)
(mod pqr). Several

numerical examples of these results are included.

Introduction

Several areas of number theory and discrete mathematics make use of arithmetical properties
of binomial coefficients. Congruence relations for binomial coefficients have been studied by
many prominent mathematicians including Gauss, Kummer, Legendre, and Lucas. Andrew
Granville [1] gives a wonderful survey of many of the elegant results pertaining to binomial
coefficients modulo prime powers. In addition, Prof. Granville maintains an on-line ‘dynamic
survey’ devoted to these results. In this study, we extend some of these result to composite
moduli.

We will focus mainly on binomial coefficients
(

a
b

)
modulo n, where n is a divisor of a.

This focus is motivated by their extensive use in the study of probabilistic primality testing
(also called compositeness testing). For the remainder of this introduction, we motivate this
statement.

The subject of probabilistic primality testing is full of congruence relations that always
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hold for a prime and rarely hold for a composite. A large portion of these congruences are
proved, at least in part, by making use of the following well-known property.

Theorem 1. The positive integer n is a prime if and only if
(

n
k

)
≡ 0 (mod n) for all k with 1 ≤ k ≤ n− 1.

This characterization of primes is not an efficient form of primality testing since it requires
the direct computation of binomial coefficients. However, this theorem is used indirectly to
give effective probabilistic primality tests. The main goal in researching such tests is to study
when and why a composite integer may satisfy a congruence that is usually only satisfied by
primes.

In this study, we let n be a composite number and we examine the generalizations of
Theorem 1. The results naturally extend to the case when the modulus divides the ‘top’
values in the binomial coefficient so we include this case as well. We believe that these results
are interesting and elegant in their own right, but we ultimately hope that they will help in
the study of primality testing.

To summarize, we are motivated by the following question:

Question: For a composite integer n, what can be said about the residue of
(

mn
k

)
modulo n

for 1 ≤ k ≤ n− 1?

We will show that such binomial coefficients can be expressed in closed form in terms of
products of binomial coefficients in which the divisors of (n, k) are removed in a certain way,
where (n, k) is the greatest common divisor of n and k. The techniques are elementary, but
the results seem interesting in their own right. The only results of a similar nature that this
author could find was in a chapter of the book “Computational Recreations in Mathematica”
[2]. On pages 65-66 of this book, the following result is given.

Theorem 2. If f(n) :=

(
n− 1

(n− 1)/2

)
is defined for odd integers n, then

f(pq) ≡ f(p)f(q) (mod pq), and

f(pqr)f(p)f(q)f(r) ≡ f(pq)f(pr)f(qr) (mod pqr).

Although this is not the same class of binomial coefficients that we consider in this study,
the nature of our results is similar to Theorem 2.

At the end of this study, we also give some minor extensions to binomial coefficients
(

a
b

)

modulo n, for which n does not divide a, by using well-known binomial coefficient identities.
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1. Binomial Coefficients Divisible By n

In this section we characterize all values k, 1 ≤ k ≤ n − 1, such that
(

n
k

)
≡ 0 (mod n).

Various results are known concerning the divisibility of binomial coefficients by a positive
integer. One of the most useful of these is the so-called Kummer’s Theorem.

Theorem 3. Kummer’s Theorem.
If n and k are integers and p is a prime, then the largest power of p dividing

(
n
k

)
is given by

the number of borrows required when subtracting the base p representations of k from n.

The last part of the theorem is often equivalently stated as the number of carries when
k and n− k are added in the base p. For convenience we will use the notation pa||n to mean
that a is the largest power of the prime p dividing n. A simple application of Kummer’s
Theorem gives the following.

Theorem 4. If m, n, and k are positive integers with (n, k) = 1, then
(

mn
k

)
≡ 0 (mod n).

Proof. Let p be an arbitrary prime divisor of n with pa||n. Write k = krpr + · · ·+k1p+k0 in
the base p and note that k0 $= 0 because (n, k) = 1. Since mn = mn0pa for some integer n0,
subtracting the base p representation of k from mn requires at least a borrows. Kummer’s
Theorem gives

(
mn
k

)
≡ 0 (mod pa). The prime p was an arbitrary divisor of n. Thus,(

mn
k

)
≡ 0 (mod n).

The converse of this theorem is not true. In fact,
(
63
48

)
≡ 0 (mod 63) and (63, 48) = 3 $= 1.

A true characterization of binomial coefficients congruent to zero is given by the following
corollary to Kummer’s result.

Corollary 1. For a positive integer n,
(

n
k

)
≡ 0 (mod n) if and only if for each pa||n the

subtraction of the base p representation of k from n requires at least a borrows.

Proof. Note that
(

n
k

)
≡ 0 (mod n) if and only if

(
n
k

)
≡ 0 (mod pa) for all primes p dividing

n, where pa||n. By Kummer’s Theorem,
(

n
k

)
≡ 0 (mod pa) if and only if the number of

borrows, when subtracting the base p representation of k from n, is at least a.

In the example
(
63
48

)
≡ 0 (mod 63), we have n = 63 = 32 · 7 and k = 48. Taking pa = 32,

we have n = 2 · 33 + 32 and k = 33 + 2 · 32 + 3. So n− k requires 2 ≥ 2 = a borrows in the
base p = 3. Taking pa = 71, we have n = 72 + 2 · 7 and k = 6 · 7 + 6. So n − k requires
2 ≥ 1 = a borrows in the base p = 7. Thus, the binomial coefficient has to be congruent to
0 as predicted by the characterization.
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2. Binomial Coefficient Residues Modulo n

In this section we are concerned with finding a way to simplify binomial coefficients modulo
n. For a prime p, the following theorem of Lucas is well-known.

Theorem 5. Lucas Theorem.
If p is a prime and n and k are positive integers with base p representations n = nrpr + · · ·+
n1p + n0 and k = krpr + · · · + k1p + k0, respectively, then

(
n
k

)
=

(
nrpr + · · · + n1p + n0

krpr + · · · + k1p + k0

)
≡

(
nr

kr

)
· · ·

(
n1

k1

)(
n0

k0

)
(mod p).

The case with a prime power modulus is considered by Davis and Webb [3]. They
determined that binomial coefficients modulo pa depends on blocks of a consecutive digits
in the base p representation of n and k.

In addition, we will make use of the following result which is attributed to Jacobsthal in
[1] and [3].

Theorem 6. If n and k are positive integers and p is prime p > 3, then
(

np
kp

)
≡

(
n
k

)
(mod pr),

where r is the largest power of p dividing p3nk(n− k)
(

n
k

)
.

In addition, we will need the following theorem for the cases p = 2 and p = 3 which are
consequences of Proposition 5 of [1].

Theorem 7. If n and k are positive integers and p = 2 or p = 3, then
(

pn
pk

)
≡

(
n
k

)
(mod pr),

where r is the largest power of 3 dividing 18nk(n− k).

Thus, in all cases we have the following general result.

Corollary 2. If n and k are positive integers and p is a prime, then
(

pn
pk

)
≡

(
n
k

)
(mod pr),

where r is the largest power of p dividing pnk(n− k).
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The remainder of this study focuses on the simplification of binomial coefficients modulo
composites. Certainly, one could apply Lucas’ Theorem and prime power generalizations
for each prime power dividing n then combine these results using the Chinese Remainder
Theorem. However, this approach does not easily lend itself to closed form evaluations. Here
we focus on closed form methods for evaluating these binomial coefficients in hopes to build
on the general theory.

By combining the prime power results we get the main result. But first, we need some
definitions.

Definition 1. For positive integers n and k, define

An,k = {p prime : p|(n, k)}.

For any set A, define
O(A) = {B ⊆ A : |B| is odd}, and

E(A) = {B ⊆ A : |B| is even}.
Finally, for a set of primes B, define

dB =
∏

p∈B

p

In addition, define d∅ = 1.

Note that if (n, k) = 1, then E(An,k) contain one element (the empty set), while O(An,k)
contains no elements, and the product on the right below is defined to be zero. Thus, when
(n, k) = 1, Theorem 8 reduces to Theorem 1.

Theorem 8. If n, m, and k are positive integers, then

∏

B∈E(An,k)

(
mn/dB

k/dB

)
≡

∏

B∈O(An,k)

(
mn/dB

k/dB

)
(mod n).

Proof. Let pa||n, where a > 0. Consider the two cases where p ! (n, k) and p|(n, k).

If p does not divide (n, k), then p does not divide k, so (pa, k/dB) = 1 for all B ⊆ An,k.

Thus,

(
mn/dB

k/dB

)
≡ 0 (mod pa) by Theorem 4. Thus, the congruence holds modulo pa.

If pb||(n, k) for some b, 0 < b ≤ a, then we can use Corollary 2 to give a correspondence
between each binomial coefficient on the left-hand side of the congruence and a binomial
coefficient on the right-hand side of the congruence modulo pa.

If B ⊆ An,k and p $∈ B, then, letting B′ = B ∪ {p}, we obtain

(
mn/dB

k/dB

)
≡

(
mn/dB′

k/dB′

)
(mod pa). To justify this last congruence, write mn/dB = αp and k/dB = βp
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and note that pa divides pαβ (in particular pa−1 divides α) so Corollary 2 ensures that the
congruence holds. Finally, note that one of the cardinalities of B and B′ is odd and the
other is even.

Similarly, if B ⊆ An,k and p ∈ B, then, letting B′ = B\{p}, we obtain

(
mn/dB

k/dB

)
≡

(
mn/dB′

k/dB′

)
(mod pa) in the same manner. Thus, there is a one-to-one correspondence for

each binomial coefficient from a set B on the left-hand side yielding a congruent binomial
coefficient from a set B′ on the right-hand side.

Therefore, for all pa||n, we have
∏

B∈E(A)

(
mn/dB

k/dB

)
≡

∏
B∈O(A)

(
mn/dB

k/dB

)
(mod pa).

Hence, the congruence holds modulo n.

Note that dB is always square-free as defined. That is, in the theorem above we only
‘cancel’ one factor of each prime p when pa|(n, k). We may be able to prove more in special
cases by using generalizations of Jacobsthal’s result. We leave such an investigation for a
different study. Such results would likely lack the elegance and generality of Theorem 8.

As a quick illustration of the usefulness of Theorem 8, consider the following.

Corollary 3. If p, q and r are primes and m is a positive integer, then

mr

(
mpqr
pq

)
≡

(
mqr
q

)(
mpr
p

)
(mod pqr).

Proof. Note that
∏

B∈E(Apqr,pq)

(
mpqr/dB

pq/dB

)
=

(
mr
1

)(
mpqr
pq

)

and ∏

B∈O(Apqr,pq)

(
mpqr/dB

pq/dB

)
=

(
mpr
p

)(
mqr
q

)
.

Letting n = pqr and k = pq in Theorem 8, we have the result.

3. Special Cases and Examples

Here we consider special forms for the prime factorization of n. For these special forms we
simplify the corresponding binomial coefficients for all k values.
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Corollary 4. If n = paqb is the product of two odd prime powers and m is a positive integer,
then

(
mn
k

)
≡






0 (mod n) , if (k, n) = 1;(
mn/p
k/p

)
(mod n) , if (n, k) = pj, 1 ≤ j ≤ a;

(
mn/q
k/q

)
(mod n) , if (n, k) = qj, 1 ≤ j ≤ b;


 mn/p

k/p





 mn/q

k/q





 mn/(pq)

k/(pq)




(mod n) , if pq|(n, k).

Proof. The first case follows from Theorem 4, the second and third cases follow from Corol-
lary 2, and the fourth case follows from Theorem 8.

We must be careful when using formulas such as the fourth case of Corollary 4. It is
understood that the evaluation and simplification of the binomial coefficients occurs before

the expression is evaluated modulo n. This comment is essential since

(
mn/(pq)
k/(pq)

)
is not

guaranteed to have an inverse modulo n. Similar evaluations can be given when n has more
than two prime factors.

To illustrate these ideas we give the following examples:

(1) Consider the following binomial coefficient modulo 323. Here, m = 1, n = 323, k = 85,
p = 17. (

323
85

)
=

(
17 · 19
5 · 17

)
≡

(
19
5

)
(mod 323).

(2) Consider the following binomial coefficient modulo 30.

(
30
15

)
=

(
2 · 3 · 5
3 · 5

)
≡

(
2 · 5
5

)(
2 · 3
3

)

(
2
1

) =
1

2

(
10
5

)(
6
3

)
(mod 30).

In general, Theorem 8 allows for the evaluation of
(

mn
k

)
in terms of binomial coefficients

involving smaller numbers modulo n as is given below.
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Theorem 9. If n, m and k are positive integers, then

(
mn
k

)
≡






0 (mod n) , if (n, k) = 1
∏

B∈O(A)


 mn/nB

k/nB




∏
B∈E(A)\{∅}


 mn/nB

k/nB




(mod n) , if (n, k) > 1.

4. Composite Moduli and General Binomial Coefficients

The study so far has only focused on binomial coefficients of the form
(

mn
k

)
modulo n. Now

we show how these results can be extended to general coefficients of the form
(

a
b

)
modulo n.

By using the following lemma, we will be able to attack binomial coefficients in general.

Lemma 1. If a, b, and k are positive integers, then

(
a
b

)
=

∑k
j=0

(
k
j

)(
a− k
b− j

)
.

Proof. This result is given by repeated application of the identity
(

a
b

)
=

(
a−1

b

)
+

(
a−1
b−1

)
.

Thus, given a binomial coefficient
(

a
b

)
with a ≥ n we can use Lemma 1 in combination

with our previous results by writing a = mn + k.

Corollary 5. If n, a and b are positive integers such that a = mn + k, then

(
a
b

)
=

(
mn + k

b

)
=

k∑

j=0

(
k
j

)(
mn
b− j

)
.

When evaluating this sum modulo n, Theorem 4 guarantees that the only nonzero terms
are those where (b− j, n) > 1.

Theorem 10. If n, a and b are positive integers such that a = mn + k, then

(
a
b

)
=

k∑

j = 0
(b− j, n) > 1

(
k
j

)(
mn
b− j

)
(mod n).

We can draw several conclusions from this. Here is one such result.

Corollary 6. If n, a and b are positive integer such that a = mn+k, b ≥ k, and ( b!
(b−k)! , n) =

1, then
(

a
b

)
≡

(
mn
b−k

)
(mod n).
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Proof. Since ( b!
(b−k)! , n) = 1, we have (b− j, n) = 1 for j = 0, 1, . . . k − 1. Hence,

(
a
b

)
=

(
mn
b−k

)

+
∑k−1

j=0

(
k
j

)(
mn
b−j

)
≡

(
mn
b−k

)
+0 (mod n), by Theorem 4.

As a summary example, letting n = 35 we evaluate the binomial coefficient:
(

38
13

)
≡

(
35
10

)
, by Corollary 5, since (35, 13 · 12 · 11) = 1.

=

(
5 · 7
2 · 5

)
≡

(
7
2

)
, by Theorem 8 or Corollary 2.

= 21 (mod 35).

5. Conclusions

Hopefully, these results give added insight into the properties of these important numbers.
Thank you to my advisor Prof. William Webb who introduced me to the interesting divis-
ibility properties of binomial coefficients. I also sincerely thank the referee who corrected
several small typos and greatly improved the presentation and clarity of this article.
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