MINIMAL ZERO-SUM SEQUENCES OF MAXIMUM LENGTH IN THE GROUP $C_{3} \oplus C_{3 k}$

Fang Chen
Oxford College of Emory University, Oxford, GA 30054, USA

Svetoslav Savchev ${ }^{1}$

Received: 8/1/07, Accepted: 9/17/07, Published: 9/19/07

Abstract

A sequence α in an additively written abelian group G is called a minimal zero-sum sequence if its sum is the zero element of G and none of its proper subsequences has sum zero. This note characterizes the minimal zero-sum sequences of maximum length in the group $C_{3} \oplus C_{3 k}$.

Let α be a sequence in an additively written finite abelian group G; its sum and length will be denoted by $\sigma(\alpha)$ and $|\alpha|$, respectively. We call α a zero-sum sequence or a zero sum if $\sigma(\alpha)=0$, and a minimal zero-sum sequence if $\sigma(\alpha)=0$ and $\sigma(\beta) \neq 0$ for each proper subsequence β of α.

The Davenport constant $D(G)$ of G is defined as the maximum length of a minimal zerosum sequence in G. The value of the Davenport constant for groups of rank 2 was determined independently by Olson [3] and Kruyswijk (see [4]): If $G=C_{m} \oplus C_{n}$ where m divides n, then $D(G)=m+n-1$. Here and further on C_{n} denotes the cyclic group of order n.

We describe the minimal zero-sum sequences of maximum length in the group $C_{3} \oplus C_{3 k}$, for $k \geq 2$. This maximum length is $D\left(C_{3} \oplus C_{3 k}\right)=3 k+2$ by the result of Olson and Kruyswijk. Such an explicit description is known only for the groups of the form $C_{2} \oplus C_{2 k}$ (apart from obvious cases like cyclic groups and elementary 2-groups). It was obtained by Gao and Geroldinger in [1], Theorem 3.3.

The exposition employs the shape of the minimal zero-sum sequences of maximum length in the group $C_{3} \oplus C_{3}$, i. e. $C_{3} \oplus C_{3 k}$ with $k=1$. It is straightforward to derive that they are only of one type: $a^{2} b^{2} c$ where a, b, c are different, nonzero and such that $c=a+b$. (We use

[^0]multiplicative notation for sequences; exponents indicate term multiplicities.) In contrast, the respective sequences in groups $C_{3} \oplus C_{3 k}$ for larger k have several essentially different forms. So we leave $C_{3} \oplus C_{3}$ out of consideration but the Davenport constant $D\left(C_{3} \oplus C_{3}\right)=5$ is used, and also the η-invariant of $C_{3} \oplus C_{3}$. This is the minimum length $\eta\left(C_{3} \oplus C_{3}\right)$ of a sequence α in $C_{3} \oplus C_{3}$ which ensures that α has a short zero-sum subsequence, i. e. a nonempty zero-sum subsequence of length at most 3 . It is well known and easy to verify that $\eta\left(C_{3} \oplus C_{3}\right)=7$. (In general, $\eta\left(C_{m} \oplus C_{n}\right)=2 m+n-2$ for all positive integers m and n such that m divides n; see e. g. [2], Theorem 5.8.3.)

Let $G=C_{3} \oplus C_{3 k}$ where $k \geq 2$. The subgroup $H=3 G=\{3 x \mid x \in G\}$ is cyclic of order k, and the factor group G / H is isomorphic to $C_{3} \oplus C_{3}$. We denote by \bar{x} the image of $x \in G$ under the canonical epimorphism of G onto G / H; and if $\alpha=x_{1} \ldots x_{\ell}$ is a sequence in G then $\bar{\alpha}=\overline{x_{1}} \ldots \overline{x_{\ell}}$ denotes the image of α.

Let α be a minimal zero-sum sequence in G of maximum length $D(G)=3 k+2$. Then $\bar{\alpha}$ is a zero sum of length $3 k+2$ in the group $G / H \cong C_{3} \oplus C_{3}$. Now, because $\eta\left(C_{3} \oplus C_{3}\right)=7$ and $|\bar{\alpha}|=3 k+2=3(k-2)+8$, one can separate $k-1$ pairwise disjoint short zero-sum subsequences $\overline{\alpha_{1}}, \ldots, \overline{\alpha_{k-1}}$ of $\bar{\alpha}$, of length 1,2 or 3 . The remaining part $\overline{\alpha_{k}}=\bar{L}$ of $\bar{\alpha}$ also must be a zero sum in G / H, and its length is at least 5 . Consequently, α is partitioned into k disjoint subsequences $\alpha_{1}, \ldots, \alpha_{k-1}, \alpha_{k}$ with sums $\sigma\left(\alpha_{1}\right), \ldots, \sigma\left(\alpha_{k-1}\right), \sigma\left(\alpha_{k}\right)$ in H. Since $\sigma\left(\alpha_{1}\right)+\cdots+\sigma\left(\alpha_{k-1}\right)+\sigma\left(\alpha_{k}\right)=0$ and α is a minimal zero-sum sequence in G, it follows that $\sigma\left(\alpha_{1}\right) \cdots \sigma\left(\alpha_{k-1}\right) \sigma\left(\alpha_{k}\right)$ is a minimal zero-sum sequence of length k in H, which is a cyclic group of order k. So the sums $\sigma\left(\alpha_{i}\right)$ are all equal to a certain generator of H. Moreover, $\overline{\alpha_{1}}, \ldots, \overline{\alpha_{k-1}}, \overline{\alpha_{k}}=\bar{L}$ are minimal zero-sum sequences in G / H. In particular $|L|=5$ as $D\left(C_{3} \oplus C_{3}\right)=5$. This implies $\left|\overline{\alpha_{i}}\right|=3$ for all $i=1, \ldots, k-1$.

This separation procedure can start out with any short zero-sum subsequence of $\bar{\alpha}$. So we infer from the above that $\bar{\alpha}$ has no zero sums of length 1 or 2 , i. e. no term of α is in H and neither is the sum of two terms of α. Next, for each term t of α there is a partition such that t is in the leftover 5 -tuple L. Indeed, it is possible to choose $k-2$ triples with sums in H without involving t. Apart from t, there remain 7 terms, so one more triple with sum in H can be chosen out of these seven. Hence t is in the leftover of the partition obtained.

Define a numerous coset to be a coset of H which contains at least 3 terms of α. A term of α will be called numerous if it belongs to a numerous coset. In the next lemma, by partition we mean a partition into $k-1$ triples and one 5-tuple like above.

Lemma 1. Let $G=C_{3} \oplus C_{3 k}$ where $k \geq 2$, and let $H=3 G$. Each minimal zero-sum sequence α of maximum length $D(G)=3 k+2$ in G has the following properties:
a) α represents at most 4 proper cosets of H.
b) Three terms of α with sum in H are either from the same coset of H or from three different cosets of H.
c) All terms of α in a numerous coset are equal.
d) Each numerous term of α has order $3 k$.
e) Every partition of α has a leftover of the form $L=a_{1} a_{2} b_{1} b_{2} c$, with $a_{i} \in \bar{a}, b_{i} \in \bar{b}, i=1,2$, and $c \in \bar{c}$, where $\bar{a}, \bar{b}, \bar{c}$ are different proper cosets of H.

Proof. a) The nonzero elements of $G / H \cong C_{3} \oplus C_{3}$ can be partitioned into 4 disjoint pairs of the form $x, 2 x$. Since $x+2 x=0$ in $C_{3} \oplus C_{3}, \bar{\alpha}$ can contain at most one element from each pair (or else it would have a zero sum of length 2).
b) Let $a+b+c \in H$, with a, b in different cosets of H. If $c \in \bar{a}$ or $c \in \bar{b}$, say $c \in \bar{a}$, then $a+a+c \in H$. This implies $b-a \in H$, contrary to the assumption $\bar{a} \neq \bar{b}$.
c) Let \bar{a} be a numerous coset. Consider a partition S in which the leftover L contains at least one term from \bar{a}. Because $3 \bar{a}=0$ in G / H and the coset \bar{a} is numerous, not all terms from \bar{a} are in L (otherwise a proper subsum of L would belong to H). So there exist terms $a, a^{\prime} \in \bar{a}$ such that $a \in L, a^{\prime} \notin L$, and it suffices to prove that $a=a^{\prime}$ for every such pair a, a^{\prime}. Now a^{\prime} is in a triple of S, and all triples in S have sum equal to some generator g of H, as well as the leftover L. Because $a-a^{\prime} \in H$, interchanging a and a^{\prime} yields another partition S^{\prime}, but the respective generator of H for S^{\prime} is the same g. This is clear for $k \geq 3$ where at least one triple of S remains intact after the swap. As for $k=2$, in this case H is a cyclic group of order 2 , hence it has a unique generator. We infer in particular that the sum of the leftover before and after the swap is the same which implies the desired $a=a^{\prime}$.
d) Let a be a numerous term. As $3 a \in H$, there is a partition containing a triple (a, a, a). Hence $3 a=g$ for some generator g of H. Now H has order k, so $\operatorname{ord}(g)=k$. On the other hand $a \notin H$ means that \bar{a} is a nonzero element of $G / H \cong C_{3} \oplus C_{3}$, therefore $\operatorname{ord}(\bar{a})=3$. Because ord (\bar{a}) divides $\operatorname{ord}(a)$, we obtain that $\operatorname{ord}(a)$ is a multiple of 3. Let ord $(a)=3 \ell$, then $3 \ell a=0$ which can be written as $\ell g=0$. So ℓ is divisible by k, implying the claim.
e) If L is the leftover 5 -tuple of a partition, then the 5 -term sequence \bar{L} is a minimal zero-sum sequence of maximum length in $G / H \cong C_{3} \oplus C_{3}$. By the introductory remark about $C_{3} \oplus$ C_{3}, we have $\bar{L}=\bar{a}^{2} \bar{b}^{2} \bar{c}$ where $\bar{a}, \bar{b}, \bar{c} \in G / H$ are different and nonzero. This implies the conclusion.

The characterization below uses a partition S of α defined as follows: All possible triples of equal terms in α are separated first, and then the partition is completed in an arbitrary fashion. We show that in fact each triple in S consists of three equal terms.

Suppose on the contrary that S has a triple (x, y, z) such that x, y, z are not all equal. By Lemma 1(c), x, y and z are not from the same coset of H, hence by Lemma 1 (b) they come from three different cosets of H. By Lemma $1(\mathrm{e})$, the leftover L of S is $L=a_{1} a_{2} b_{1} b_{2} c$, with $a_{i} \in \bar{a}, b_{i} \in \bar{b}, i=1,2$, and $c \in \bar{c}$, where $\bar{a}, \bar{b}, \bar{c}$ are different proper cosets of H. Since by Lemma 1 (a) α represents at most 4 different cosets of H, one of x, y and z belongs to one of the cosets \bar{a} and \bar{b}, say $x \in \bar{a}$. Then \bar{a} is a numerous coset, containing the terms a_{1}, a_{2} and x, and so $a_{1}=a_{2}=x$ by Lemma 1(c). Hence a triple of equal terms of α was not separated while forming the partition S, contrary to its definition.

Therefore S has $k-1$ triples consisting of equal terms and one leftover 5 -tuple L. Since $k \geq 2, \alpha$ has at least one numerous term. It also follows that S is uniquely determined, and we call it the special partition of α.

Lemma 2. Let α be a minimal zero-sum sequence of maximum length $D(G)=3 k+2$ in the group $G=C_{3} \oplus C_{3 k}$ where $k \geq 2$. Denote by S the special partition of α, with a leftover 5 -tuple L, and let a be a numerous term of α. Then L has one of the following forms:
(1) $L=a^{2} b_{1} b_{2} b_{3}$ where b_{1}, b_{2}, b_{3} are in the same proper coset of $\langle a\rangle$ and $b_{1}+b_{2}+b_{3}=a$: the leftover contains two a 's;
(2) $L=a b^{2}(a-b)^{2}$ where $b \notin\langle a\rangle$: the leftover contains one a;
(3) $L=b^{2}(a+b)^{2}(a+2 b)$ where $b \notin\langle a\rangle$ and ord $(b)=3$: the leftover contains no a 's.

Proof. The sum of each triple in S and the sum of L are equal to a certain generator g of H. In particular $3 a=g$ because S contains a triple $T=(a, a, a)$. Recall that ord $(a)=3 k$ by Lemma $1(\mathrm{~d})$ and consider the distinct elements $a, 2 a, \ldots,(3 k-3) a=-3 a$ of $\langle a\rangle$. Each one of them can be expressed by using several a 's from $T(0,1,2$ or 3$)$ and several of the remaining $k-2$ complete triples from S. Hence all elements of $\langle a\rangle$ except $-a$ and $-2 a$ are expressible as subsequence sums of α not intersecting the leftover L. Thus if a proper subsum of L belongs to $\langle a\rangle$, the value of the subsum must equal a or $2 a$, otherwise a contradiction with the minimality of α is obtained.

Furthermore, $\operatorname{ord}(a)=3 k$ implies $G /\langle a\rangle \cong C_{3}$. Observe also that α does not contain elements of $\langle a\rangle$ except a. Indeed, $\langle a\rangle=H \cup(a+H) \cup(2 a+H)$. Now α has no terms in H, and because a is a term in $a+H$, there are no terms in $2 a+H$ either (or else $\bar{\alpha}$ would have a zero sum of length 2). Also, all terms in $a+H$ are equal to a as a is numerous.

By the previous remark, all terms different from a in the leftover L do not belong to $\langle a\rangle$. Since L contains at most two a 's, three cases are possible.

Case 1: L contains two a 's: $L=a^{2} b_{1} b_{2} b_{3}$ where $b_{i} \notin\langle a\rangle, i=1,2,3$. Then $\sigma(L)=g=3 a$ implies $b_{1}+b_{2}+b_{3}=a$. Because $G /\langle a\rangle \cong C_{3}, b_{1}, b_{2}, b_{3}$ must be all in the same coset of $\langle a\rangle$. So L has the form (1).

Case 2: L contains one a; its remaining four terms are not in $\langle a\rangle$. If three of them are in the same coset of $\langle a\rangle$, their sum is in $\langle a\rangle$ as $G /\langle a\rangle \cong C_{3}$. Since $\sigma(L)=3 a$, the remaining term of L is also in $\langle a\rangle$ which is impossible. So $L=a b_{1} b_{2} c_{1} c_{2}$ where b_{1}, b_{2} are in one of the proper cosets of $\langle a\rangle$ and c_{1}, c_{2} are in the other. Then $b_{i}+c_{j} \in\langle a\rangle$ for $i, j=1,2$. Hence $b_{i}+c_{j} \in\{a, 2 a\}, i, j=1,2$. On the other hand $b_{1}+b_{2}+c_{1}+c_{2}=\sigma(L)-a=2 a$, and now the minimality of α implies $b_{i}+c_{j}=a$ for $i, j=1,2$. Therefore $b_{1}=b_{2}=b, c_{1}=c_{2}=c$, with $b+c=a$. So L is of the form (2).

Case 3: L contains no a 's. Suppose each of the two proper cosets of $\langle a\rangle$ contains at least two terms of L. Then the sum of these four terms belongs to $\langle a\rangle$, in view of $G /\langle a\rangle \cong C_{3}$ again.

It follows from $\sigma(L)=3 a$ that the fifth term of L is in $\langle a\rangle$ which is a contradiction. Also, L has a term in each proper coset of $\langle a\rangle$: otherwise $\sigma(L) \notin\langle a\rangle$ which contradicts $\sigma(L)=3 a$. Hence $L=b_{1} b_{2} b_{3} b_{4} c$ where $b_{1}, b_{2}, b_{3}, b_{4}$ are in one of the proper cosets of $\langle a\rangle$ and c is in the other. Now $b_{i}+c \in\langle a\rangle$ for $i=1,2,3,4$, implying $b_{i}+c \in\{a, 2 a\}$. So the b_{i} 's take on at most 2 distinct values, in fact exactly 2 , or else 4 terms of L would be the same. Let these values be b_{1} and b_{2}. If $b_{1}+c=a$ then $b_{2}+c=2 a$ and vice versa, so that $b_{2}=b_{1}+a$ or $b_{1}=b_{2}+a$. In conclusion, $L=b^{2}(b+a)^{2} c$ for some b, c in different proper cosets of $\langle a\rangle$.

Next, $b+b+(b+a) \in\langle a\rangle$, hence $b+b+(b+a)=a$ or $b+b+(b+a)=2 a$. The second equality leads to $a=3 b$ which is false as $b \notin\langle a\rangle$ and $\operatorname{ord}(a)=3 k$. So $b+b+(b+a)=a$, implying $3 b=0$. The remaining two terms $b+a$ and c of L add up to $\sigma(L)-a=2 a$ which gives $b+c=a$. Hence L has the form (3).

Now we characterize the minimal zero-sum sequences of maximum length in $G=C_{3} \oplus C_{3 k}$.
Theorem. Let $G=C_{3} \oplus C_{3 k}$ where $k \geq 2$. A sequence α of length $D(G)=3 k+2$ in G is a minimal zero-sum sequence if and only if it has one of the following forms:
(i) $\alpha=a^{3 k-1} b_{1} b_{2} b_{3}$ where $\operatorname{ord}(a)=3 k, b_{1}, b_{2}, b_{3}$ are in the same proper coset of $\langle a\rangle$ and $b_{1}+b_{2}+b_{3}=a ;$
(ii) $\alpha=a^{3 k-2} b^{2}(a-b)^{2}$ where $\operatorname{ord}(a)=3 k$ and $b \notin\langle a\rangle$;
(iii) $\alpha=a^{u}(b+a)^{v}(b-a)$ where $\operatorname{ord}(a)=3 k, b \notin\langle a\rangle$, ord $(b)=3$ and u, v are nonnegative integers satisfying $u+v=3 k+1, u \equiv v \equiv-1(\bmod 3)$;
(iv) $\alpha=b^{2} a^{u}(b+a)^{v}(2 b+a)^{w}$ where $\operatorname{ord}(a)=3 k, b \notin\langle a\rangle, \operatorname{ord}(b)=3$ and u, v, w are nonnegative integers satisfying $u+v+w=3 k, v+2 w \equiv 1(\bmod 3)$.

Proof. It is straightforward to check that each of the sequences (i)-(iv) is a minimal zero-sum sequence in G, of length $D(G)=3 k+2$. Conversely, let α be a minimum zero-sum sequence in G of (maximum) length $D(G)=3 k+2$. Consider the special partition S of α with leftover 5 -tuple L, and let g be the associated generator of H : the sum of L and the sum of each triple in S are equal to g. For each numerous term a there is a triple (a, a, a) in S, hence $3 a=g=\sigma(L)$.

Case 1: Suppose that α contains a numerous term a and an order 3 term b with multiplicity 2 such that $b \notin\langle a\rangle$. Then (a, b) is a basis of G as $\operatorname{ord}(a)=3 k$; so $G /\langle b\rangle \cong\langle a\rangle \cong C_{3 k}$. Delete the two occurrences of the term b from α to obtain a sequence α^{\prime} of length $3 k$ in G. Let $\varphi: G \rightarrow G /\langle b\rangle$ be the canonical epimorphism. It is immediate that $\varphi\left(\alpha^{\prime}\right)$ is a minimal zerosum sequence of length $3 k$ in $G /\langle b\rangle$, which is a cyclic group of order $3 k$. Hence all terms of $\varphi\left(\alpha^{\prime}\right)$ are equal to some generator of $G /\langle b\rangle$. Equivalently, all terms of α different from b are in the same coset of $\langle b\rangle$ which generates the factor group $G /\langle b\rangle$. This coset can be only $a+\langle b\rangle$. In addition, $\sigma\left(\alpha^{\prime}\right)=\sigma(\alpha)-2 b=0-2 b=b$. One infers that α has the form (iv).

From now on, assume that α is not as in case 1. Then, for any numerous term a, the leftover L of S is not of the form (3) in Lemma 2. So each numerous term of α occurs in L.

Case 2: There exists a numerous term $a \in \alpha$ that occurs in L exactly once. Then by Lemma 2 the leftover has the form (2): $L=a b^{2}(a-b)^{2}$ where $b \notin\langle a\rangle$. We prove that α has the form (ii). Observe that neither b nor $a-b$ is numerous. Indeed, if b is numerous then $3 b=g=3 a$, so that $a-b$ has order 3 . On the other hand, $a-b$ occurs at least twice in α, hence its multiplicity is 2 ; also $a-b \notin\langle a\rangle$ because $b \notin\langle a\rangle$. These conclusions contradict the assumption that α is not as in case 1 . Thus b is not numerous and, by symmetry, $a-b$ is not numerous either. Hence a is the unique numerous term of α, and because every term not in L is numerous, the sequence has the form (ii).

Case 3: Each numerous term $a \in \alpha$ occurs in the leftover of S twice. Then, by Lemma 2, for every numerous term a the leftover has the form (1): $L=a^{2} b_{1} b_{2} b_{3}$ where b_{1}, b_{2}, b_{3} are in the same proper coset of $\langle a\rangle$ and $b_{1}+b_{2}+b_{3}=a$.

If there is a unique numerous term a in α then clearly α has the form (i).
Let α have at least two numerous terms. Since the leftover 5 -tuple L contains two occurrences of each one of them, the numerous terms are exactly two, say a and $c, a \neq c$. Like before, we have $3 a=g=3 c$, yielding ord $(c-a)=3$. Let $L=a^{2} c^{2} b_{1}$ where the term b_{1} is not numerous. Then b_{1} is the only term in α different from a and c as each term outside L is numerous. Furthermore, $\sigma(L)=3 a$ gives $2 c+b_{1}=a$, i. e. $b_{1}=a-2 c$. Finally, the multiplicities u and v of a and c are both 2 modulo 3 . Therefore $\alpha=a^{u} c^{v}(a-2 c)$, with $\operatorname{ord}(c-a)=3$ and $u \equiv v \equiv-1(\bmod 3)$. Now set $b=c-a$. Then $b \notin\langle a\rangle, \operatorname{ord}(b)=3$, $c=b+a$ and $a-2 c=b-a$. So α is of the form (iii) which completes the proof.

Acknowledgement We thank the referee for making precise the reference on the Davenport constant $D\left(C_{m} \oplus C_{n}\right)$.

References

[1] W. D. Gao, A. Geroldinger, On the order of elements in long minimal zero-sum sequences, Period. Math. Hungar. 44 (1) (2002), 63-73.
[2] A. Geroldinger, F. Halter-Koch, Non-unique factorizations. Algebraic, Combinatorial and Analytic Theory, Pure and Applied Mathematics, vol. 278, Chapman \& Hall/CRC, 2006.
[3] J. E. Olson, A combinatorial problem on finite abelian groups II, J. Number Theory 1 (1969), 195-199.
[4] P. van Emde Boas, A combinatorial problem on finite abelian groups II, Reports ZW-1969-007, Math. Centre, Amsterdam, 1969.

[^0]: ${ }^{1}$ No current affiliation

