ON DIVISIBILITY OF SOME POWER SUMS

Tamás Lengyel

Department of Mathematics, Occidental College, 1600 Campus Road, Los Angeles, USA lengyel@oxy.edu

Received: 5/4/07, Accepted: 9/17/07, Published: 9/19/07

Abstract

We determine the exact power of a prime p which divides the power sum $1^n + 2^n + \cdots + (b^m - 1)^n$ provided that m and b are positive integers, p divides b, and m is large enough.

1. Introduction

Let n and k be positive integers, p be a prime, and let $d_2(k)$ and $\rho_p(k)$ denote the number of ones in the binary representation of k and the highest power of p dividing k, respectively. The latter one is often referred to as the p-adic order of k. For rational n/k we set $\rho_p(n/k) = \rho_p(n) - \rho_p(k)$.

Let b and m be positive integers. In this paper we determine the p-adic order of $1^n + 2^n + \cdots + (b^m - 1)^n$ for any positive integer n in the exponent, provided that p divides b.

Our original motivation was to find the 2-adic order of the power sum $O_n(2^m - 1) = 1^n + 3^n + \dots + (2^m - 1)^n$ in order to prove the congruence $S(c2^n, 2^m - 1) \equiv 3 \cdot 2^{m-1} \mod 2^{m+1}$ for Stirling numbers of the second kind, with integer c so that $c2^n > 2^m - 1$ and $m \ge 2$. Thus we first consider the case with p = 2. We observe that $\rho_2(O_n(2^m - 1)) \ge m - 1$ by an easy induction proof on m. In fact, more can be said. For $n \ge 2$ even, the same proof yields $\rho_2(O_n(2^m - 1)) = m - 1$, too. Clearly, $O_1(2^m - 1) = 2^{2(m-1)}$ but in general, the odd case seems more difficult.

We set

$$S_n(x) = \sum_{k=0}^x k^n$$

and determine the exact 2-adic order of $S_n(2^m - 1)$ by using Bernoulli polynomials in Theorem 1 in Section 3. We generalize Theorem 1 and its proof in Theorem 3 in Section 4 for any prime p. We also obtain Theorem 4 in order to get a lower bound on the p-adic order of $S_n(b^m - 1)$ and Theorem 5 to determine the exact order for any large enough m.

2. An Odd Divisibility Property

There is a general divisibility property that we can apply here to prove that $S_1(b^m - 1) \mid S_n(b^m - 1)$ for $n \ge 1$ odd. Of course, this already implies that $\rho_p(S_n(b^m - 1)) \ge m$.

So, in general, we write $S_n = S_n(c)$ where c is an arbitrary odd positive integer. We can easily prove that S_n is divisible by S_1 . Note that $S_1 = \binom{c+1}{2}$. Then, by two different grouping of the terms in S_n we get

$$c \mid (1^{n} + (c-1)^{n}) + (2^{n} + (c-2)^{n}) + \dots + \left(\left(\frac{c-1}{2}\right)^{n} + \left(\frac{c+1}{2}\right)^{n}\right) + c^{n}, \text{ and}$$
$$\frac{c+1}{2} \mid (1^{n} + c^{n}) + (2^{n} + (c-1)^{n}) + \dots + \left(\left(\frac{c-1}{2}\right)^{n} + \left(\frac{c+3}{2}\right)^{n}\right) + \left(\frac{c+1}{2}\right)^{n},$$

and the proof is complete since c and c+1 are relatively prime.

We note that Faulhaber had already known in 1631 (cf. [2]) that $S_n(c)$ can be expressed as a polynomial in $S_1(c)$ and $S_2(c)$, although with fractional coefficients. In fact, $S_n(c)$ can be written as a polynomial in c(c+1) or $(c(c+1))^2$, if *n* is even or odd, respectively. This gives rise to the appearance of factors such as b^m and b^{2m} in $S_n(b^m - 1)$, depending on whether *n* is even or odd.

3. The Exact 2-adic Order

Now we discuss the case with p = 2.

Theorem 1 For $m \ge 1$ and $n \ge 1$, we have that

$$\rho_2(S_n(2^m - 1)) = \begin{cases} m - 1, & \text{if } n \text{ is even or } n = 1, \\ 2(m - 1), & \text{if } n \ge 3 \text{ odd.} \end{cases}$$

We note that clearly, $S_1(2^m - 1) = 2^{m-1}(2^m - 1)$. For m = 1, we have $O_n(1) = S_n(1) = 1$, and in general, for $n \ge 2$, the 2-adic order of $O_n(2^m - 1)$ and $S_n(2^m - 1)$ are the same, as it easily follows from $O_n(2^m - 1) = S_n(2^m - 1) - 2^n S_n(2^{m-1} - 1)$; thus $\rho_2(O_n(2^m - 1)) = \rho_2(S_n(2^m - 1))$. Proof of Theorem 1. The statement is true for n = 1 or m = 1 so we assume that $n \ge 2$ and $m \ge 2$ from now on. The Bernoulli polynomials [3] are defined by

$$B_m(x) = \sum_{i=0}^m \frac{1}{i+1} \sum_{k=0}^i (-1)^k \binom{i}{k} (x+k)^m.$$
 (1)

It is well known [1] that

$$\sum_{k=0}^{x} k^{n} = \frac{B_{n+1}(x+1) - B_{n+1}(0)}{n+1}.$$
(2)

The usual Bernoulli numbers can be defined as $B_n = B_n(0)$, and the initial values are $B_0 = 1, B_1 = -1/2, B_2 = 1/6, B_3 = 0, B_4 = -1/30, B_5 = 0$, etc. Note that $B_n=0$ for every odd integer $n \ge 3$. We form the difference in the numerator of (2) and then, for $B_{n+1}(x+1)$, we use the binomial expansion of $(x+1+k)^{n+1}$ and focus on terms with $(x+1)^j$ with small exponents. We have

$$B_{n+1}(x+1) - B_{n+1}(0) = \sum_{i=0}^{n+1} \frac{1}{i+1} \sum_{k=0}^{i} (-1)^k \binom{i}{k} \left(\sum_{j=0}^{n+1} \binom{n+1}{j} (x+1)^j k^{n+1-j} - k^{n+1} \right)$$

$$= \sum_{i=0}^{n+1} \frac{1}{i+1} \sum_{k=0}^{i} (-1)^k \binom{i}{k} \left((n+1)(x+1)k^n + \binom{n+1}{2} (x+1)^2 k^{n-1} + \sum_{j=3}^{n+1} \binom{n+1}{j} (x+1)^j k^{n+1-j} \right),$$

so that

$$\frac{B_{n+1}(x+1) - B_{n+1}(0)}{n+1} = \sum_{i=0}^{n+1} \frac{1}{i+1} \sum_{k=0}^{i} (-1)^k \binom{i}{k} \left((x+1)k^n + \frac{n}{2}(x+1)^2 k^{n-1} + \sum_{j=3}^{n+1} \frac{\binom{n}{j-1}}{j} (x+1)^j k^{n+1-j} \right).$$

Now we rewrite this with $x = 2^m - 1$ and get that

$$S_n(2^m - 1) = \sum_{i=0}^{n+1} \frac{1}{i+1} \sum_{k=0}^{i} (-1)^k \binom{i}{k} \left(2^m k^n + \frac{n}{2} 2^{2m} k^{n-1} + \sum_{j=3}^{n+1} \frac{\binom{n}{j-1}}{j} 2^{jm} k^{n+1-j} \right).$$
(3)

If $n \ge 2$ is even then we only need the first term in the last parenthetical expression, otherwise we need the first two terms.

Let $n \ge 2$ be even, then the term with j = 1 contributes

$$2^{m} \sum_{i=0}^{n+1} \frac{1}{i+1} \sum_{k=0}^{i} (-1)^{k} \binom{i}{k} k^{n} = 2^{m} B_{n}(0) = 2^{m} \sum_{i=0}^{n} \frac{1}{i+1} (-1)^{i} i! S(n,i)$$
(4)

by identity (1), a standard formula for the Stirling numbers of the second kind, and S(n, n + 1) = 0. The other terms are all divisible by 2^m .

Clearly, $\rho_2(\frac{i!}{i+1}) \ge 0$ if $i \ge 4$. Indeed, in this case $i - d_2(i) - \rho_2(i+1) \ge 0$ since $i \ge 2\lfloor \log_2(i+1) \rfloor$. Therefore, we need only the 2-adic order of

$$\sum_{i=0}^{3} \frac{(-1)^{i}}{i+1} i! S(n,i) = -\frac{1}{2} S(n,1) + \frac{2}{3} S(n,2) - \frac{3}{2} S(n,3),$$

which yields $\rho_2(S_n(2^m-1)) = \rho_2\left(2^m\frac{1}{2}\left(3S(n,3)+7\right)\right) = \rho_2\left(2^m\frac{1}{2}\frac{3^{n+1}+23}{2}\right) = m-1$, by the identity $S(n,3) = \frac{1}{2}(3^{n-1}-2^n+1), n \ge 1$. Note that $\rho_2(S_n(2^m-1)) = \rho_2(2^mB_n(0)) = m-1$ also follows by simply noting the well-known fact about the Bernoulli numbers that $\rho_2(B_n(0)) = -1$ for even $n \ge 2$ by a theorem by von Staudt [5]. \Box

Theorem 2 (von Staudt, [5]) For n = 1 and $n \ge 2$ even, we have $-B_n \equiv \sum_{\substack{p \text{ prime} \\ p-1|n}} \frac{1}{p} \mod 1$.

Proof. Clearly, for n even, the denominator of B_n is the product of the primes p with $(p-1) \mid n$, and thus, it must be square-free. It follows that $\rho_p(B_n) \geq -1$ for all primes p, and it is nonnegative unless $(p-1) \mid n$.

Now assume that $n \ge 3$ is odd. The first two terms in the parenthesis of (3) contribute

$$2^{m} \sum_{i=0}^{n+1} \frac{1}{i+1} \sum_{k=0}^{i} (-1)^{k} {i \choose k} k^{n} + 2^{2m} \frac{n}{2} \sum_{i=0}^{n+1} \frac{1}{i+1} \sum_{k=0}^{i} (-1)^{k} {i \choose k} k^{n-1}$$
$$= 2^{m} B_{n} + 2^{2m} \frac{n}{2} \sum_{i=0}^{n+1} \frac{(-1)^{i}}{i+1} i! S(n-1,i) = 2^{m} B_{n} + 2^{2m-1} n B_{n-1}.$$

The 2-adic order is 2(m-1) since $B_n = 0$ and $\rho_2(B_{n-1}) = -1$ since $n \ge 3$ is odd. The other terms of (3) with $j \ge 3$ are all divisible by 2^{2m} since $jm - \rho_2(j) > 2m$ for $m \ge 2$, as $\frac{j-2}{\log_2 j} > \frac{1}{m}$ in this case.

Remark 1. The above proof can be generalized to the case in which 2^m is replaced by $(2c)^m$ with any odd integer $c \ge 1$.

4. The General Case: The Exact *p*-adic Order

We note that $S_n(2^m - 1) = \sum_{j=1}^{n+1} 2^{mj} B_{n+1-j} \frac{\binom{n}{j-1}}{j}$ by (3) with an observation similar to (4), and in general, for any positive integer b,

$$S_n(b^m - 1) = \sum_{j=1}^{n+1} b^{mj} B_{n+1-j} \frac{\binom{n}{j-1}}{j}.$$
(5)

We now prove the generalized version of Theorem 1.

Theorem 3 For m, n, and b positive integers with $p \mid b$, p prime, and $m' = m \rho_p(b)$, we have that

$$\rho_p(S_n(b^m - 1)) = \begin{cases} m' + \rho_p(B_n), & \text{if } n = 1, \\ m' + \rho_p(B_n), & \text{if } n \text{ is even and } \rho_p(B_n) = 0 \text{ or } -1, \\ 2m' + \rho_p(B_{n-1}) + \rho_p(n/2), & \text{if } n \ge 3 \text{ odd and } \rho_p(B_{n-1}) = 0 \text{ or } -1. \end{cases}$$

$$\tag{6}$$

Proof. We have already proved the statement for p = 2 in Theorem 1 and Remark 1. If $p \ge 3$ then the case with n = 1 is easy to check. Thus, we can also assume that $n \ge 2$. We now prove the theorem with $\rho_p(b) = 1$, i.e., if m' = m. The general case with $\rho_p(b) \ge 1$ easily follows by replacing m by m' in the proof below.

First, if n is even then all terms with $j \ge 5$ on the right hand side of (5) are divisible by p^{m+1} since $jm - 1 - \rho_p(j) \ge m + 1$ as $\frac{j-1}{2 + \log_p j} \ge \frac{1}{m}$ for $m \ge 1$. If j = 3 and p = 3 then $3m + \rho_3(B_{n-2}) - \rho_3(3) \ge m + \rho_3(B_n) + 1$ for $m \ge 1$ and $n \ge 2$ even. If j = 3 and $p \ge 5$ then clearly $3m - 1 - \rho_p(3) \ge m + 1$. The term with j = 2 works since $B_{n-1} = 0$ except for n = 2when $2m - \rho_p(2) \ge m + 1$. The term with j = 4 also works for $n \ge 4$ since $B_{n-3} = 0$ except for n = 4 when $4m - \rho_p(4) \ge m + 1$.

Next, if n is odd then we have two cases.

Case 1. If n = 3 then for j = 3 and 4 we have either p = 3 and thus, $jm + \rho_3(B_{4-j}) - 1 \ge 2m + \rho_3(B_2) + 1$, i.e., $jm - 1 \ge 2m$ for $m \ge 1$; or $p \ge 5$ and thus, $jm + \rho_p(B_{4-j}) \ge 2m + \rho_p(B_2) + 1$, i.e., $jm \ge 2m + 1$ again.

Case 2. If $n \ge 5$ odd then we rewrite $\binom{n}{j-1}$ as $\frac{n}{j-1}\binom{n-1}{j-2}$ for $j \ge 2$. All terms with $j \ge 5$ on the right hand side of (5) are divisible by $p^{2m+\rho_p(n/2)+1}$ since $jm-1+\rho_p(n)-\rho_p(j(j-1))\ge 2m+\rho_p(n/2)+1$ as $\frac{j-2}{2+\rho_p(j(j-1))}\ge \frac{1}{m}$ for $m\ge 1$. If p=3 then for the term with j=4, we get that $4m+\rho_3(B_{n-3})+\rho_3(n)-\rho_3(4\cdot 3)\ge 2m+\rho_3(B_{n-1})+\rho_3(n/2)+1$ since $4m-2\ge 2m$ for $m\ge 1$ and $\rho_3(B_k)=-1$ for $k\ge 2$ even. If $p\ge 5$ then for the term with j=4, we get that $4m-1+\rho_p(n)\ge 2m+\rho_p(n/2)+1$ since $4m-1\ge 2m+1$ for $m\ge 1$. The term with j=3 makes no contribution to (5) as $B_{n-2}=0$.

We obtain a lower bound and the exact *p*-adic order of $S_n(b^m - 1)$ in the next two theorems.

Theorem 4 For m, n, and b positive integers with $p \mid b$, p prime, and $m' = m \rho_p(b)$, we have that

$$\rho_p(S_n(b^m - 1)) \ge \begin{cases} m' - 1, & \text{if } n \text{ is even or } n = 1, \\ 2m' + \rho_p(n/2) - 1, & \text{if } n \ge 3 \text{ odd.} \end{cases}$$

Theorem 5 For m, n, and b positive integers so that m is sufficiently large and $p \mid b$, p prime, and $m' = m \rho_p(b)$, we have that

$$\rho_p(S_n(b^m - 1)) = \begin{cases} m' + \rho_p(B_n), & \text{if } n \text{ is even or } n = 1, \\ 2m' + \rho_p(B_{n-1}) + \rho_p(n/2), & \text{if } n \ge 3 \text{ odd.} \end{cases}$$

The proof of Theorem 3 shows how to extend it to those of Theorems 4 and 5. A result by Andrews [6] implies that $\rho_p(B_n)$ can be arbitrary large. For example, if $(p-1) \nmid n$ and $\rho_p(n) = l > 0$ then $\rho_p(B_n) \ge l$, and this suggests that it might be difficult to get the exact order of $\rho_p(S_n(b^m - 1))$ with a formula, similar to (6), which is uniformly valid in all m.

Remark 2. We intended to find the *p*-adic order of $S_n(x)$ for special integers of the form $x = b^m - 1$ with $p \mid b$, however, the above theorems remain true for $x = c b^m - 1$ with $p \mid b$ and $p \nmid c$, by adjusting identity (5). In this case, $S_n(c b^m + 1) \equiv 1 \mod p$ also follows if *m* is sufficiently large.

We note that if p divides b for some prime p, and we calculate $B_{n+1-j}\binom{n}{j-1}/j$ in (5) p-adically, such as by using a theorem discovered independently by Anton, Stickelberger, and Hensel [4] on binomial coefficients modulo powers of p, then we can find further and more refined congruential properties of $S_n(b^m - 1)$.

Acknowledgment The author wishes to thank Gregory Tollisen for making helpful suggestions and comments that improved the presentation of this paper.

References

- [1] L. Comtet, Advanced Combinatorics, D. Reidel Publishing Co., Dordrecht, 1974.
- [2] A. W. F. Edwards, A quick route to sums of powers, Amer. Math. Monthly, 93(6):451-455, 1986.
- [3] R. L. Graham, D. E. Knuth, and O. Patashnik, *Concrete Mathematics*, Addison-Wesley Publishing Company, Reading, MA, second edition, 1994.
- [4] A. Granville, Arithmetic properties of binomial coefficients I, Binomial coefficients modulo prime powers, In Organic Mathematics (Burnaby, BC, 1995), volume 20 of CMS Conf. Proc., pages 253-276. Amer. Math. Soc., Providence, RI, 1997. Electronic version (a dynamic survey): http://www.dms.umontreal.ca/~andrew/Binomial/.
- [5] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, The Clarendon Press Oxford University Press, New York, fifth edition, 1979.
- [6] R. Thangadurai, Adams theorem on Bernoulli numbers revisited, J. Number Theory, 106(1):169–177, 2004.