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Abstract

We determine the exact power of a prime p which divides the power sum 1n+2n+· · ·+(bm−1)n

provided that m and b are positive integers, p divides b, and m is large enough.

1. Introduction

Let n and k be positive integers, p be a prime, and let d2(k) and ρp(k) denote the number
of ones in the binary representation of k and the highest power of p dividing k, respectively.
The latter one is often referred to as the p-adic order of k. For rational n/k we set ρp(n/k) =
ρp(n)− ρp(k).

Let b and m be positive integers. In this paper we determine the p-adic order of 1n +
2n + · · · + (bm − 1)n for any positive integer n in the exponent, provided that p divides b.

Our original motivation was to find the 2-adic order of the power sum On(2m − 1) =
1n +3n + · · ·+(2m−1)n in order to prove the congruence S(c2n, 2m−1) ≡ 3 ·2m−1 mod 2m+1

for Stirling numbers of the second kind, with integer c so that c2n > 2m − 1 and m ≥ 2.
Thus we first consider the case with p = 2. We observe that ρ2(On(2m − 1)) ≥ m− 1 by an
easy induction proof on m. In fact, more can be said. For n ≥ 2 even, the same proof yields
ρ2(On(2m − 1)) = m − 1, too. Clearly, O1(2m − 1) = 22(m−1) but in general, the odd case
seems more difficult.

We set

Sn(x) =
x∑

k=0

kn

and determine the exact 2-adic order of Sn(2m − 1) by using Bernoulli polynomials in The-
orem 1 in Section 3.



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY (2007), #A41 2

We generalize Theorem 1 and its proof in Theorem 3 in Section 4 for any prime p. We
also obtain Theorem 4 in order to get a lower bound on the p-adic order of Sn(bm − 1) and
Theorem 5 to determine the exact order for any large enough m.

2. An Odd Divisibility Property

There is a general divisibility property that we can apply here to prove that S1(bm − 1) |
Sn(bm − 1) for n ≥ 1 odd. Of course, this already implies that ρp(Sn(bm − 1)) ≥ m.

So, in general, we write Sn = Sn(c) where c is an arbitrary odd positive integer. We
can easily prove that Sn is divisible by S1. Note that S1 =

(
c+1
2

)
. Then, by two different

grouping of the terms in Sn we get

c | (1n + (c− 1)n) + (2n + (c− 2)n) + · · · +

((
c− 1

2

)n

+

(
c + 1

2

)n)
+ cn, and

c + 1

2
| (1n + cn) + (2n + (c− 1)n) + · · · +

((
c− 1

2

)n

+

(
c + 3

2

)n)
+

(
c + 1

2

)n

,

and the proof is complete since c and c + 1 are relatively prime.

We note that Faulhaber had already known in 1631 (cf. [2]) that Sn(c) can be expressed
as a polynomial in S1(c) and S2(c), although with fractional coefficients. In fact, Sn(c) can be

written as a polynomial in c(c+1) or
(
c(c+1)

)2
, if n is even or odd, respectively. This gives

rise to the appearance of factors such as bm and b2m in Sn(bm − 1), depending on whether n
is even or odd.

3. The Exact 2-adic Order

Now we discuss the case with p = 2.

Theorem 1 For m ≥ 1 and n ≥ 1, we have that

ρ2(Sn(2m − 1)) =

{
m− 1, if n is even or n = 1,

2(m− 1), if n ≥ 3 odd.

We note that clearly, S1(2m−1) = 2m−1(2m−1). For m = 1, we have On(1) = Sn(1) = 1, and
in general, for n ≥ 2, the 2-adic order of On(2m−1) and Sn(2m−1) are the same, as it easily
follows from On(2m−1) = Sn(2m−1)−2nSn(2m−1−1); thus ρ2(On(2m−1)) = ρ2(Sn(2m−1)).
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Proof of Theorem 1. The statement is true for n = 1 or m = 1 so we assume that n ≥ 2
and m ≥ 2 from now on. The Bernoulli polynomials [3] are defined by

Bm(x) =
m∑

i=0

1

i + 1

i∑

k=0

(−1)k

(
i

k

)
(x + k)m. (1)

It is well known [1] that
x∑

k=0

kn =
Bn+1(x + 1)−Bn+1(0)

n + 1
. (2)

The usual Bernoulli numbers can be defined as Bn = Bn(0), and the initial values are
B0 = 1, B1 = −1/2, B2 = 1/6, B3 = 0, B4 = −1/30, B5 = 0, etc. Note that Bn=0 for every
odd integer n ≥ 3. We form the difference in the numerator of (2) and then, for Bn+1(x+1),
we use the binomial expansion of (x+1+ k)n+1 and focus on terms with (x+1)j with small
exponents. We have

Bn+1(x + 1)−Bn+1(0) =
n+1∑

i=0

1

i + 1

i∑

k=0

(−1)k

(
i

k

)(
n+1∑

j=0

(
n + 1

j

)
(x + 1)jkn+1−j − kn+1

)

=
n+1∑

i=0

1

i + 1

i∑

k=0

(−1)k

(
i

k

)(
(n + 1)(x + 1)kn

+

(
n + 1

2

)
(x + 1)2kn−1 +

n+1∑

j=3

(
n + 1

j

)
(x + 1)jkn+1−j

)
,

so that

Bn+1(x + 1)−Bn+1(0)

n + 1
=

n+1∑

i=0

1

i + 1

i∑

k=0

(−1)k

(
i

k

)(
(x + 1)kn +

n

2
(x + 1)2kn−1

+
n+1∑

j=3

(
n

j−1

)

j
(x + 1)jkn+1−j

)
.

Now we rewrite this with x = 2m − 1 and get that

Sn(2m − 1) =
n+1∑

i=0

1

i + 1

i∑

k=0

(−1)k

(
i

k

)(
2mkn +

n

2
22mkn−1 +

n+1∑

j=3

(
n

j−1

)

j
2jmkn+1−j

)
. (3)

If n ≥ 2 is even then we only need the first term in the last parenthetical expression, otherwise
we need the first two terms.

Let n ≥ 2 be even, then the term with j = 1 contributes

2m
n+1∑

i=0

1

i + 1

i∑

k=0

(−1)k

(
i

k

)
kn = 2mBn(0) = 2m

n∑

i=0

1

i + 1
(−1)ii!S(n, i) (4)
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by identity (1), a standard formula for the Stirling numbers of the second kind, and S(n, n+
1) = 0. The other terms are all divisible by 2m.

Clearly, ρ2

(
i!

i+1

)
≥ 0 if i ≥ 4. Indeed, in this case i − d2(i) − ρ2(i + 1) ≥ 0 since

i ≥ 2$log2(i + 1)%. Therefore, we need only the 2-adic order of

3∑

i=0

(−1)i

i + 1
i!S(n, i) = −1

2
S(n, 1) +

2

3
S(n, 2)− 3

2
S(n, 3),

which yields ρ2(Sn(2m − 1)) = ρ2

(
2m 1

2 (3S(n, 3) + 7)
)

= ρ2

(
2m 1

2
3n+1+23

2

)
= m− 1, by the

identity S(n, 3) = 1
2(3

n−1 − 2n + 1), n ≥ 1. Note that ρ2(Sn(2m − 1)) = ρ2(2mBn(0)) =
m− 1 also follows by simply noting the well-known fact about the Bernoulli numbers that
ρ2(Bn(0)) = −1 for even n ≥ 2 by a theorem by von Staudt [5]. !

Theorem 2 (von Staudt, [5]) For n = 1 and n ≥ 2 even, we have −Bn ≡
∑

p prime
p−1|n

1

p
mod 1.

Proof. Clearly, for n even, the denominator of Bn is the product of the primes p with
(p − 1) | n, and thus, it must be square-free. It follows that ρp(Bn) ≥ −1 for all primes p,
and it is nonnegative unless (p− 1) | n.

Now assume that n ≥ 3 is odd. The first two terms in the parenthesis of (3) contribute

2m
∑n+1

i=0
1

i+1

∑i
k=0(−1)k

(
i
k

)
kn + 22m n

2

∑n+1
i=0

1
i+1

∑i
k=0(−1)k

(
i
k

)
kn−1

= 2mBn + 22m n
2

∑n+1
i=0

(−1)i

i+1 i!S(n− 1, i) = 2mBn + 22m−1nBn−1.

The 2-adic order is 2(m − 1) since Bn = 0 and ρ2(Bn−1) = −1 since n ≥ 3 is odd. The
other terms of (3) with j ≥ 3 are all divisible by 22m since jm − ρ2(j) > 2m for m ≥ 2, as
j−2

log2 j > 1
m in this case. !

Remark 1. The above proof can be generalized to the case in which 2m is replaced by (2c)m

with any odd integer c ≥ 1.

4. The General Case: The Exact p-adic Order

We note that Sn(2m − 1) =
∑n+1

j=1 2mjBn+1−j
( n

j−1)
j by (3) with an observation similar to (4),

and in general, for any positive integer b,

Sn(bm − 1) =
n+1∑

j=1

bmjBn+1−j

(
n

j−1

)

j
. (5)

We now prove the generalized version of Theorem 1.
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Theorem 3 For m,n, and b positive integers with p | b, p prime, and m′ = m ρp(b), we
have that

ρp(Sn(bm − 1)) =






m′ + ρp(Bn), if n = 1,

m′ + ρp(Bn), if n is even and ρp(Bn) = 0 or − 1,

2m′ + ρp(Bn−1) + ρp(n/2), if n ≥ 3 odd and ρp(Bn−1) = 0 or − 1.
(6)

Proof. We have already proved the statement for p = 2 in Theorem 1 and Remark 1. If
p ≥ 3 then the case with n = 1 is easy to check. Thus, we can also assume that n ≥ 2.
We now prove the theorem with ρp(b) = 1, i.e., if m′ = m. The general case with ρp(b) ≥ 1
easily follows by replacing m by m′ in the proof below.

First, if n is even then all terms with j ≥ 5 on the right hand side of (5) are divisible
by pm+1 since jm − 1 − ρp(j) ≥ m + 1 as j−1

2+logp j ≥
1
m for m ≥ 1. If j = 3 and p = 3 then

3m + ρ3(Bn−2)− ρ3(3) ≥ m + ρ3(Bn) + 1 for m ≥ 1 and n ≥ 2 even. If j = 3 and p ≥ 5 then
clearly 3m− 1− ρp(3) ≥ m + 1. The term with j = 2 works since Bn−1 = 0 except for n = 2
when 2m− ρp(2) ≥ m + 1. The term with j = 4 also works for n ≥ 4 since Bn−3 = 0 except
for n = 4 when 4m− ρp(4) ≥ m + 1.

Next, if n is odd then we have two cases.

Case 1. If n = 3 then for j = 3 and 4 we have either p = 3 and thus, jm + ρ3(B4−j)− 1 ≥
2m + ρ3(B2) + 1, i.e., jm − 1 ≥ 2m for m ≥ 1; or p ≥ 5 and thus, jm + ρp(B4−j) ≥
2m + ρp(B2) + 1, i.e., jm ≥ 2m + 1 again.

Case 2. If n ≥ 5 odd then we rewrite
(

n
j−1

)
as n

j−1

(
n−1
j−2

)
for j ≥ 2. All terms with j ≥ 5 on

the right hand side of (5) are divisible by p2m+ρp(n/2)+1 since jm− 1+ ρp(n)− ρp(j(j− 1)) ≥
2m + ρp(n/2) + 1 as j−2

2+ρp(j(j−1)) ≥
1
m for m ≥ 1. If p = 3 then for the term with j = 4, we

get that 4m+ρ3(Bn−3)+ρ3(n)−ρ3(4 · 3) ≥ 2m+ρ3(Bn−1)+ρ3(n/2)+1 since 4m− 2 ≥ 2m
for m ≥ 1 and ρ3(Bk) = −1 for k ≥ 2 even. If p ≥ 5 then for the term with j = 4, we get
that 4m− 1 + ρp(n) ≥ 2m + ρp(n/2) + 1 since 4m− 1 ≥ 2m + 1 for m ≥ 1. The term with
j = 3 makes no contribution to (5) as Bn−2 = 0. !

We obtain a lower bound and the exact p-adic order of Sn(bm − 1) in the next two
theorems.

Theorem 4 For m,n, and b positive integers with p | b, p prime, and m′ = m ρp(b), we
have that

ρp(Sn(bm − 1)) ≥
{

m′ − 1, if n is even or n = 1,

2m′ + ρp(n/2)− 1, if n ≥ 3 odd.
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Theorem 5 For m,n, and b positive integers so that m is sufficiently large and p | b, p
prime, and m′ = m ρp(b), we have that

ρp(Sn(bm − 1)) =

{
m′ + ρp(Bn), if n is even or n = 1,

2m′ + ρp(Bn−1) + ρp(n/2), if n ≥ 3 odd.

The proof of Theorem 3 shows how to extend it to those of Theorems 4 and 5. A result
by Andrews [6] implies that ρp(Bn) can be arbitrary large. For example, if (p − 1) ! n and
ρp(n) = l > 0 then ρp(Bn) ≥ l, and this suggests that it might be difficult to get the exact
order of ρp(Sn(bm − 1)) with a formula, similar to (6), which is uniformly valid in all m.

Remark 2. We intended to find the p-adic order of Sn(x) for special integers of the form
x = bm − 1 with p | b, however, the above theorems remain true for x = c bm − 1 with p | b
and p ! c, by adjusting identity (5). In this case, Sn(c bm + 1) ≡ 1 mod p also follows if m is
sufficiently large.

We note that if p divides b for some prime p, and we calculate Bn+1−j

(
n

j−1

)
/j in (5) p-

adically, such as by using a theorem discovered independently by Anton, Stickelberger, and
Hensel [4] on binomial coefficients modulo powers of p, then we can find further and more
refined congruential properties of Sn(bm − 1).
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