ON DIVISIBILITY OF SOME POWER SUMS

Tamás Lengyel
Department of Mathematics, Occidental College, 1600 Campus Road, Los Angeles, USA
lengyel@oxy.edu

Received: 5/4/07, Accepted: 9/17/07, Published: 9/19/07

Abstract

We determine the exact power of a prime p which divides the power sum $1^{n}+2^{n}+\cdots+\left(b^{m}-1\right)^{n}$ provided that m and b are positive integers, p divides b, and m is large enough.

1. Introduction

Let n and k be positive integers, p be a prime, and let $d_{2}(k)$ and $\rho_{p}(k)$ denote the number of ones in the binary representation of k and the highest power of p dividing k, respectively. The latter one is often referred to as the p-adic order of k. For rational n / k we set $\rho_{p}(n / k)=$ $\rho_{p}(n)-\rho_{p}(k)$.

Let b and m be positive integers. In this paper we determine the p-adic order of $1^{n}+$ $2^{n}+\cdots+\left(b^{m}-1\right)^{n}$ for any positive integer n in the exponent, provided that p divides b.

Our original motivation was to find the 2-adic order of the power sum $O_{n}\left(2^{m}-1\right)=$ $1^{n}+3^{n}+\cdots+\left(2^{m}-1\right)^{n}$ in order to prove the congruence $S\left(c 2^{n}, 2^{m}-1\right) \equiv 3 \cdot 2^{m-1} \bmod 2^{m+1}$ for Stirling numbers of the second kind, with integer c so that $c 2^{n}>2^{m}-1$ and $m \geq 2$. Thus we first consider the case with $p=2$. We observe that $\rho_{2}\left(O_{n}\left(2^{m}-1\right)\right) \geq m-1$ by an easy induction proof on m. In fact, more can be said. For $n \geq 2$ even, the same proof yields $\rho_{2}\left(O_{n}\left(2^{m}-1\right)\right)=m-1$, too. Clearly, $O_{1}\left(2^{m}-1\right)=2^{2(m-1)}$ but in general, the odd case seems more difficult.

We set

$$
S_{n}(x)=\sum_{k=0}^{x} k^{n}
$$

and determine the exact 2-adic order of $S_{n}\left(2^{m}-1\right)$ by using Bernoulli polynomials in Theorem 1 in Section 3.

We generalize Theorem 1 and its proof in Theorem 3 in Section 4 for any prime p. We also obtain Theorem 4 in order to get a lower bound on the p-adic order of $S_{n}\left(b^{m}-1\right)$ and Theorem 5 to determine the exact order for any large enough m.

2. An Odd Divisibility Property

There is a general divisibility property that we can apply here to prove that $S_{1}\left(b^{m}-1\right) \mid$ $S_{n}\left(b^{m}-1\right)$ for $n \geq 1$ odd. Of course, this already implies that $\rho_{p}\left(S_{n}\left(b^{m}-1\right)\right) \geq m$.

So, in general, we write $S_{n}=S_{n}(c)$ where c is an arbitrary odd positive integer. We can easily prove that S_{n} is divisible by S_{1}. Note that $S_{1}=\binom{c+1}{2}$. Then, by two different grouping of the terms in S_{n} we get

$$
\begin{aligned}
& c \left\lvert\,\left(1^{n}+(c-1)^{n}\right)+\left(2^{n}+(c-2)^{n}\right)+\cdots+\left(\left(\frac{c-1}{2}\right)^{n}+\left(\frac{c+1}{2}\right)^{n}\right)+c^{n}\right., \text { and } \\
& \frac{c+1}{2} \left\lvert\,\left(1^{n}+c^{n}\right)+\left(2^{n}+(c-1)^{n}\right)+\cdots+\left(\left(\frac{c-1}{2}\right)^{n}+\left(\frac{c+3}{2}\right)^{n}\right)+\left(\frac{c+1}{2}\right)^{n}\right.,
\end{aligned}
$$

and the proof is complete since c and $c+1$ are relatively prime.

We note that Faulhaber had already known in 1631 (cf. [2]) that $S_{n}(c)$ can be expressed as a polynomial in $S_{1}(c)$ and $S_{2}(c)$, although with fractional coefficients. In fact, $S_{n}(c)$ can be written as a polynomial in $c(c+1)$ or $(c(c+1))^{2}$, if n is even or odd, respectively. This gives rise to the appearance of factors such as b^{m} and $b^{2 m}$ in $S_{n}\left(b^{m}-1\right)$, depending on whether n is even or odd.

3. The Exact 2-adic Order

Now we discuss the case with $p=2$.

Theorem 1 For $m \geq 1$ and $n \geq 1$, we have that

$$
\rho_{2}\left(S_{n}\left(2^{m}-1\right)\right)= \begin{cases}m-1, & \text { if } n \text { is even or } n=1, \\ 2(m-1), & \text { if } n \geq 3 \text { odd } .\end{cases}
$$

We note that clearly, $S_{1}\left(2^{m}-1\right)=2^{m-1}\left(2^{m}-1\right)$. For $m=1$, we have $O_{n}(1)=S_{n}(1)=1$, and in general, for $n \geq 2$, the 2 -adic order of $O_{n}\left(2^{m}-1\right)$ and $S_{n}\left(2^{m}-1\right)$ are the same, as it easily follows from $O_{n}\left(2^{m}-1\right)=S_{n}\left(2^{m}-1\right)-2^{n} S_{n}\left(2^{m-1}-1\right)$; thus $\rho_{2}\left(O_{n}\left(2^{m}-1\right)\right)=\rho_{2}\left(S_{n}\left(2^{m}-1\right)\right)$.

Proof of Theorem 1. The statement is true for $n=1$ or $m=1$ so we assume that $n \geq 2$ and $m \geq 2$ from now on. The Bernoulli polynomials [3] are defined by

$$
\begin{equation*}
B_{m}(x)=\sum_{i=0}^{m} \frac{1}{i+1} \sum_{k=0}^{i}(-1)^{k}\binom{i}{k}(x+k)^{m} . \tag{1}
\end{equation*}
$$

It is well known [1] that

$$
\begin{equation*}
\sum_{k=0}^{x} k^{n}=\frac{B_{n+1}(x+1)-B_{n+1}(0)}{n+1} \tag{2}
\end{equation*}
$$

The usual Bernoulli numbers can be defined as $B_{n}=B_{n}(0)$, and the initial values are $B_{0}=1, B_{1}=-1 / 2, B_{2}=1 / 6, B_{3}=0, B_{4}=-1 / 30, B_{5}=0$, etc. Note that $B_{n}=0$ for every odd integer $n \geq 3$. We form the difference in the numerator of (2) and then, for $B_{n+1}(x+1)$, we use the binomial expansion of $(x+1+k)^{n+1}$ and focus on terms with $(x+1)^{j}$ with small exponents. We have

$$
\begin{aligned}
& B_{n+1}(x+1)-B_{n+1}(0)= \sum_{i=0}^{n+1} \frac{1}{i+1} \sum_{k=0}^{i}(-1)^{k}\binom{i}{k}\left(\sum_{j=0}^{n+1}\binom{n+1}{j}(x+1)^{j} k^{n+1-j}-k^{n+1}\right) \\
&= \sum_{i=0}^{n+1} \frac{1}{i+1} \sum_{k=0}^{i}(-1)^{k}\binom{i}{k}\left((n+1)(x+1) k^{n}\right. \\
&\left.\quad \quad\binom{n+1}{2}(x+1)^{2} k^{n-1}+\sum_{j=3}^{n+1}\binom{n+1}{j}(x+1)^{j} k^{n+1-j}\right),
\end{aligned}
$$

so that

$$
\begin{aligned}
\frac{B_{n+1}(x+1)-B_{n+1}(0)}{n+1}=\sum_{i=0}^{n+1} \frac{1}{i+1} \sum_{k=0}^{i}(-1)^{k}\binom{i}{k} & \left((x+1) k^{n}+\frac{n}{2}(x+1)^{2} k^{n-1}\right. \\
& \left.+\sum_{j=3}^{n+1} \frac{\binom{n}{j-1}}{j}(x+1)^{j} k^{n+1-j}\right)
\end{aligned}
$$

Now we rewrite this with $x=2^{m}-1$ and get that

$$
\begin{equation*}
S_{n}\left(2^{m}-1\right)=\sum_{i=0}^{n+1} \frac{1}{i+1} \sum_{k=0}^{i}(-1)^{k}\binom{i}{k}\left(2^{m} k^{n}+\frac{n}{2} 2^{2 m} k^{n-1}+\sum_{j=3}^{n+1} \frac{\binom{n}{j-1}}{j} 2^{j m} k^{n+1-j}\right) \tag{3}
\end{equation*}
$$

If $n \geq 2$ is even then we only need the first term in the last parenthetical expression, otherwise we need the first two terms.

Let $n \geq 2$ be even, then the term with $j=1$ contributes

$$
\begin{equation*}
2^{m} \sum_{i=0}^{n+1} \frac{1}{i+1} \sum_{k=0}^{i}(-1)^{k}\binom{i}{k} k^{n}=2^{m} B_{n}(0)=2^{m} \sum_{i=0}^{n} \frac{1}{i+1}(-1)^{i} i!S(n, i) \tag{4}
\end{equation*}
$$

by identity (1), a standard formula for the Stirling numbers of the second kind, and $S(n, n+$ $1)=0$. The other terms are all divisible by 2^{m}.

Clearly, $\rho_{2}\left(\frac{i!}{i+1}\right) \geq 0$ if $i \geq 4$. Indeed, in this case $i-d_{2}(i)-\rho_{2}(i+1) \geq 0$ since $i \geq 2\left\lfloor\log _{2}(i+1)\right\rfloor$. Therefore, we need only the 2 -adic order of

$$
\sum_{i=0}^{3} \frac{(-1)^{i}}{i+1} i!S(n, i)=-\frac{1}{2} S(n, 1)+\frac{2}{3} S(n, 2)-\frac{3}{2} S(n, 3),
$$

which yields $\rho_{2}\left(S_{n}\left(2^{m}-1\right)\right)=\rho_{2}\left(2^{m} \frac{1}{2}(3 S(n, 3)+7)\right)=\rho_{2}\left(2^{m} \frac{1}{2} \frac{3^{n+1}+23}{2}\right)=m-1$, by the identity $S(n, 3)=\frac{1}{2}\left(3^{n-1}-2^{n}+1\right), n \geq 1$. Note that $\rho_{2}\left(S_{n}\left(2^{m}-1\right)\right)=\rho_{2}\left(2^{m} B_{n}(0)\right)=$ $m-1$ also follows by simply noting the well-known fact about the Bernoulli numbers that $\rho_{2}\left(B_{n}(0)\right)=-1$ for even $n \geq 2$ by a theorem by von Staudt [5].

Theorem 2 (von Staudt, [5]) For $n=1$ and $n \geq 2$ even, we have $-B_{n} \equiv \sum_{\substack{p \text { prime } \\ p-1 \mid n}} \frac{1}{p} \bmod 1$.
Proof. Clearly, for n even, the denominator of B_{n} is the product of the primes p with $(p-1) \mid n$, and thus, it must be square-free. It follows that $\rho_{p}\left(B_{n}\right) \geq-1$ for all primes p, and it is nonnegative unless $(p-1) \mid n$.

Now assume that $n \geq 3$ is odd. The first two terms in the parenthesis of (3) contribute

$$
\begin{aligned}
& 2^{m} \sum_{i=0}^{n+1} \frac{1}{i+1} \sum_{k=0}^{i}(-1)^{k}\binom{i}{k} k^{n}+2^{2 m} \frac{n}{2} \sum_{i=0}^{n+1} \frac{1}{i+1} \sum_{k=0}^{i}(-1)^{k}\binom{i}{k} k^{n-1} \\
& =2^{m} B_{n}+2^{2 m} \frac{n}{2} \sum_{i=0}^{n+1} \frac{(-1)^{i}}{i+1} i!S(n-1, i)=2^{m} B_{n}+2^{2 m-1} n B_{n-1} .
\end{aligned}
$$

The 2 -adic order is $2(m-1)$ since $B_{n}=0$ and $\rho_{2}\left(B_{n-1}\right)=-1$ since $n \geq 3$ is odd. The other terms of (3) with $j \geq 3$ are all divisible by $2^{2 m}$ since $j m-\rho_{2}(j)>2 m$ for $m \geq 2$, as $\frac{j-2}{\log _{2} j}>\frac{1}{m}$ in this case.

Remark 1. The above proof can be generalized to the case in which 2^{m} is replaced by $(2 c)^{m}$ with any odd integer $c \geq 1$.

4. The General Case: The Exact p-adic Order

We note that $S_{n}\left(2^{m}-1\right)=\sum_{j=1}^{n+1} 2^{m j} B_{n+1-j} \frac{\binom{n}{j-1}}{j}$ by (3) with an observation similar to (4), and in general, for any positive integer b,

$$
\begin{equation*}
S_{n}\left(b^{m}-1\right)=\sum_{j=1}^{n+1} b^{m j} B_{n+1-j} \frac{\binom{n}{j-1}}{j} \tag{5}
\end{equation*}
$$

We now prove the generalized version of Theorem 1.

Theorem 3 For m, n, and b positive integers with $p \mid b, p$ prime, and $m^{\prime}=m \rho_{p}(b)$, we have that

$$
\rho_{p}\left(S_{n}\left(b^{m}-1\right)\right)= \begin{cases}m^{\prime}+\rho_{p}\left(B_{n}\right), & \text { if } n=1, \tag{6}\\ m^{\prime}+\rho_{p}\left(B_{n}\right), & \text { if } n \text { is even and } \rho_{p}\left(B_{n}\right)=0 \text { or }-1, \\ 2 m^{\prime}+\rho_{p}\left(B_{n-1}\right)+\rho_{p}(n / 2), & \text { if } n \geq 3 \text { odd and } \rho_{p}\left(B_{n-1}\right)=0 \text { or }-1 .\end{cases}
$$

Proof. We have already proved the statement for $p=2$ in Theorem 1 and Remark 1. If $p \geq 3$ then the case with $n=1$ is easy to check. Thus, we can also assume that $n \geq 2$. We now prove the theorem with $\rho_{p}(b)=1$, i.e., if $m^{\prime}=m$. The general case with $\rho_{p}(b) \geq 1$ easily follows by replacing m by m^{\prime} in the proof below.

First, if n is even then all terms with $j \geq 5$ on the right hand side of (5) are divisible by p^{m+1} since $j m-1-\rho_{p}(j) \geq m+1$ as $\frac{j-1}{2+\log _{p} j} \geq \frac{1}{m}$ for $m \geq 1$. If $j=3$ and $p=3$ then $3 m+\rho_{3}\left(B_{n-2}\right)-\rho_{3}(3) \geq m+\rho_{3}\left(B_{n}\right)+1$ for $m \geq 1$ and $n \geq 2$ even. If $j=3$ and $p \geq 5$ then clearly $3 m-1-\rho_{p}(3) \geq m+1$. The term with $j=2$ works since $B_{n-1}=0$ except for $n=2$ when $2 m-\rho_{p}(2) \geq m+1$. The term with $j=4$ also works for $n \geq 4$ since $B_{n-3}=0$ except for $n=4$ when $4 m-\rho_{p}(4) \geq m+1$.

Next, if n is odd then we have two cases.
Case 1. If $n=3$ then for $j=3$ and 4 we have either $p=3$ and thus, $j m+\rho_{3}\left(B_{4-j}\right)-1 \geq$ $2 m+\rho_{3}\left(B_{2}\right)+1$, i.e., $j m-1 \geq 2 m$ for $m \geq 1$; or $p \geq 5$ and thus, $j m+\rho_{p}\left(B_{4-j}\right) \geq$ $2 m+\rho_{p}\left(B_{2}\right)+1$, i.e., $j m \geq 2 m+1$ again.

Case 2. If $n \geq 5$ odd then we rewrite $\binom{n}{j-1}$ as $\frac{n}{j-1}\binom{n-1}{j-2}$ for $j \geq 2$. All terms with $j \geq 5$ on the right hand side of (5) are divisible by $p^{2 m+\rho_{p}(n / 2)+1}$ since $j m-1+\rho_{p}(n)-\rho_{p}(j(j-1)) \geq$ $2 m+\rho_{p}(n / 2)+1$ as $\frac{j-2}{2+\rho_{p}(j(j-1))} \geq \frac{1}{m}$ for $m \geq 1$. If $p=3$ then for the term with $j=4$, we get that $4 m+\rho_{3}\left(B_{n-3}\right)+\rho_{3}(n)-\rho_{3}(4 \cdot 3) \geq 2 m+\rho_{3}\left(B_{n-1}\right)+\rho_{3}(n / 2)+1$ since $4 m-2 \geq 2 m$ for $m \geq 1$ and $\rho_{3}\left(B_{k}\right)=-1$ for $k \geq 2$ even. If $p \geq 5$ then for the term with $j=4$, we get that $4 m-1+\rho_{p}(n) \geq 2 m+\rho_{p}(n / 2)+1$ since $4 m-1 \geq 2 m+1$ for $m \geq 1$. The term with $j=3$ makes no contribution to (5) as $B_{n-2}=0$.

We obtain a lower bound and the exact p-adic order of $S_{n}\left(b^{m}-1\right)$ in the next two theorems.

Theorem 4 For m, n, and b positive integers with $p \mid b$, p prime, and $m^{\prime}=m \rho_{p}(b)$, we have that

$$
\rho_{p}\left(S_{n}\left(b^{m}-1\right)\right) \geq \begin{cases}m^{\prime}-1, & \text { if } n \text { is even or } n=1, \\ 2 m^{\prime}+\rho_{p}(n / 2)-1, & \text { if } n \geq 3 \text { odd } .\end{cases}
$$

Theorem 5 For m, n, and b positive integers so that m is sufficiently large and $p \mid b, p$ prime, and $m^{\prime}=m \rho_{p}(b)$, we have that

$$
\rho_{p}\left(S_{n}\left(b^{m}-1\right)\right)= \begin{cases}m^{\prime}+\rho_{p}\left(B_{n}\right), & \text { if } n \text { is even or } n=1, \\ 2 m^{\prime}+\rho_{p}\left(B_{n-1}\right)+\rho_{p}(n / 2), & \text { if } n \geq 3 \text { odd } .\end{cases}
$$

The proof of Theorem 3 shows how to extend it to those of Theorems 4 and 5. A result by Andrews [6] implies that $\rho_{p}\left(B_{n}\right)$ can be arbitrary large. For example, if $(p-1) \nmid n$ and $\rho_{p}(n)=l>0$ then $\rho_{p}\left(B_{n}\right) \geq l$, and this suggests that it might be difficult to get the exact order of $\rho_{p}\left(S_{n}\left(b^{m}-1\right)\right)$ with a formula, similar to (6), which is uniformly valid in all m.

Remark 2. We intended to find the p-adic order of $S_{n}(x)$ for special integers of the form $x=b^{m}-1$ with $p \mid b$, however, the above theorems remain true for $x=c b^{m}-1$ with $p \mid b$ and $p \nmid c$, by adjusting identity (5). In this case, $S_{n}\left(c b^{m}+1\right) \equiv 1 \bmod p$ also follows if m is sufficiently large.

We note that if p divides b for some prime p, and we calculate $B_{n+1-j}\binom{n}{j-1} / j$ in (5) p adically, such as by using a theorem discovered independently by Anton, Stickelberger, and Hensel [4] on binomial coefficients modulo powers of p, then we can find further and more refined congruential properties of $S_{n}\left(b^{m}-1\right)$.

Acknowledgment The author wishes to thank Gregory Tollisen for making helpful suggestions and comments that improved the presentation of this paper.

References

[1] L. Comtet, Advanced Combinatorics, D. Reidel Publishing Co., Dordrecht, 1974.
[2] A. W. F. Edwards, A quick route to sums of powers, Amer. Math. Monthly, 93(6):451-455, 1986.
[3] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics, Addison-Wesley Publishing Company, Reading, MA, second edition, 1994.
[4] A. Granville, Arithmetic properties of binomial coefficients I, Binomial coefficients modulo prime powers, In Organic Mathematics (Burnaby, BC, 1995), volume 20 of CMS Conf. Proc., pages 253-276. Amer. Math. Soc., Providence, RI, 1997. Electronic version (a dynamic survey): http://www.dms.umontreal.ca/~ andrew/Binomial/.
[5] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, The Clarendon Press Oxford University Press, New York, fifth edition, 1979.
[6] R. Thangadurai, Adams theorem on Bernoulli numbers revisited, J. Number Theory, 106(1):169-177, 2004.

