COMBINED ALGEBRAIC PROPERTIES OF CENTRAL* SETS

Dibyendu De^{1}
Department of Mathematics, Krishnagar Women's College, Krishnagar, Nadia-741101, West Bengal, India dibyendude@gmail.com

Received: 3/8/07, Revised: 8/6/07, Accepted: 8/20/07, Published: 8/28/07

Abstract

In this work we prove that in the semigroup $(\mathbb{N},+)$ if $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ is a sequence such that $F S\left(\left\langle x_{n}\right\rangle_{n=1}^{\infty}\right)$ is piecewise syndetic, then for any central* set A there exists a sum subsystem $\left\langle y_{n}\right\rangle_{n=1}^{\infty}$ of $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ with the property that $F S\left(\left\langle y_{n}\right\rangle_{n=1}^{\infty}\right) \cup F P\left(\left\langle y_{n}\right\rangle_{n=1}^{\infty}\right) \subseteq A$.

1. Introduction

Given any discrete semigroup $(S, \cdot), \beta S$ is the Stone-Čech compactification of S and the operation • on S has a natural extension to βS making βS a compact right topological semigroup with S contained in its topological center. (By "right topological" we mean that for each $p \in \beta S$, the function $\rho_{p}: \beta S \rightarrow \beta S$ is continuous, where $\rho_{p}(q)=q \cdot p$. By the "topological center" we mean the set of points p such that λ_{p} is continuous, where $\lambda_{p}(q)=p \cdot q$.)

As a compact right topological semigroup, βS has a smallest two sided ideal denoted by $K(\beta S)$. Further, $K(\beta S)$ is the union of all minimal right ideals of βS and is also the union of all minimal left ideals. (See [5], Chapter 2 for these and any other unfamiliar facts about compact right topological semigroups.) Any compact right topological semigroup has an idempotent and one can define a partial ordering of the idempotents by $p \leq q$ if and only if $p=p \cdot q=q \cdot p$. An idempotent p is "minimal" if and only if p is minimal with respect to the order \leq. Equivalently, an idempotent p is minimal if and only if $p \in K(\beta S)$.

The algebraic structure of the smallest ideal of βS has played a significant role in Ramsey Theory. For example, a subset A of (S, \cdot) is defined to be central if it is a member of an idempotent in $K(S)$. It is known that any central subset of $(\mathbb{N},+)$ is guaranteed to have substantial additive structure. But Theorem 16.27 of [5] shows that central sets in ($\mathbb{N},+$) need have no multiplicative structure at all. On the other hand, in [2] we see that sets

[^0]which belong to every minimal idempotent of \mathbb{N}, called central* sets, must have significant multiplicative structure. In fact central* sets in any semigroup (S, \cdot) are defined to be those sets which meet every every central set.

We now present three results that will be useful in this article. Theorem 1.1 is in [5] as Corollary 16.21, Theorem 1.2 is in [2] as Theorem 2.6, and Theorem 1.3 is in [4] as Theorem 2.11.

Theorem 1.1. If A is a central ${ }^{*}$ set in $(\mathbb{N},+)$ then it is central in (\mathbb{N}, \cdot).

In [5], it is also proved that IP^{*} sets in $(\mathbb{N},+)$ are guaranteed to have substantial combined additive and multiplicative structure, where a set $A \subseteq \mathbb{N}$ is called an IP* set if it belongs to every idempotent in \mathbb{N}. Given a sequence $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ in \mathbb{N}, we denote $F S\left(\left\langle x_{n}\right\rangle_{n=1}^{\infty}\right)=\left\{\sum_{n \in F} x_{n}\right.$: $\left.F \in \mathcal{P}_{f}(\mathbb{N})\right\}$, where for any set $X, \mathcal{P}_{f}(X)$ is the set of finite nonempty subsets of X, and $F P\left(\left\langle x_{n}\right\rangle_{n=1}^{\infty}\right)$ is the product analogue of the above. Given a sequence $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ in \mathbb{N}, we say that $\left\langle y_{n}\right\rangle_{n=1}^{\infty}$ is a sum subsystem of $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ provided there is a sequence $\left\langle H_{n}\right\rangle_{n=1}^{\infty}$ of nonempty finite subsets of \mathbb{N} such that $\max H_{n}<\min H_{n+1}$ and $y_{n}=\sum_{t \in H_{n}} x_{t}$ for each $n \in \mathbb{N}$.

Theorem 1.2. Let $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ be a sequence and A be an IP* set in $(\mathbb{N},+)$. Then there exists a sum subsystem $\left\langle y_{n}\right\rangle_{n=1}^{\infty}$ of $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ such that $F S\left(\left\langle y_{n}\right\rangle_{n=1}^{\infty}\right) \cup F P\left(\left\langle y_{n}\right\rangle_{n=1}^{\infty}\right) \subseteq A$

A strongly negative answer to the partition analogue of the above result is presented in [4]. Given a sequence $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ in $\mathbb{N}, P S\left(\left\langle x_{n}\right\rangle_{n=1}^{\infty}\right)=\left\{x_{m}+x_{n}: m, n \in \mathbb{N}\right.$ and $\left.m \neq n\right\}$ and $P P\left(\left\langle x_{n}\right\rangle_{n=1}^{\infty}\right)=\left\{x_{m} \cdot x_{n}: m, n \in \mathbb{N}\right.$ and $\left.m \neq n\right\}$.

Theorem 1.3. There exists a finite partition \mathcal{R} of \mathbb{N} with no one-to-one sequence $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ in \mathbb{N} such that $P S\left(\left\langle x_{n}\right\rangle_{n=1}^{\infty}\right) \cup P P\left(\left\langle x_{n}\right\rangle_{n=1}^{\infty}\right)$ is contained in one cell of the partition \mathcal{R}.

The main aim of this article is to show that central* sets also possess some IP* set-like properties for some specified sequences.

2. The Proof of the Main Theorem

We first introduce the following notion for our purpose.
Definition 2.1. Let (S, \cdot) be a commutative semigroup. A sequence $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ in S is said to be a minimal sequence if $\bigcap_{m=1}^{\infty} \overline{F P\left(\left\langle x_{n}\right\rangle_{n=m}^{\infty}\right)} \bigcap K(\beta S) \neq \emptyset$.

It is already known that $\left\langle 2^{n}\right\rangle_{n=1}^{\infty}$ is a minimal sequence while the sequence $\left\langle 2^{2 n}\right\rangle_{n=1}^{\infty}$ is not a minimal sequence. In [1] it is proved that in the semigroup ($\mathbb{N},+$) minimal sequences are nothing but those for which the set $F S\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ is large enough, i.e., it meets the smallest ideal $K(\beta \mathbb{N})$ of $(\beta \mathbb{N},+)$.

Lemma 2.2. If A is a central set in $(\mathbb{N},+)$ then $n A$ is also central for any $n \in \mathbb{N}$.

Proof. [3], Lemma 3.8.

Given $A \subseteq \mathbb{N}$ and $n \in \mathbb{N}, n^{-1} A=\{m \in \mathbb{N}: n m \in A\}$ and $-n+A=\{m \in \mathbb{N}: n+m \in A\}$.
Lemma 2.3. If A is a central* set in $(\mathbb{N},+)$ then $n^{-1} A$ is also central* for any $n \in \mathbb{N}$.

Proof. Let A be a central* set and $t \in \mathbb{N}$. To prove that $t^{-1} A$ is a central* set it is sufficient to show that for any central set $C, C \cap t^{-1} A \neq \emptyset$. Since C is central $t C$ is also central so that $A \cap t C \neq \emptyset$. Choose $n \in t C \cap A$ and $k \in C$ such that $n=t k$. Therefore $k=n / t \in t^{-1} A$ so that $C \cap t^{-1} A \neq \emptyset$.

We now show that all central* sets have a substantial multiplicative property.
Theorem 2.4. Let $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ be a minimal sequence and A be a central* set in $(\mathbb{N},+)$. Then there exists a sum subsystem $\left\langle y_{n}\right\rangle_{n=1}^{\infty}$ of $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ such that $F S\left(\left\langle y_{n}\right\rangle_{n=1}^{\infty}\right) \cup F P\left(\left\langle y_{n}\right\rangle_{n=1}^{\infty}\right) \subseteq A$.

Proof. Since $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ is a minimal sequence in \mathbb{N} we can find some minimal idempotent $p \in \mathbb{N}$ for which $F S\left(\left\langle x_{n}\right\rangle_{n=1}^{\infty}\right) \in p$. Again, since A is a central* subset of \mathbb{N}, by the previous lemma for every $n \in \mathbb{N}, n^{-1} A \in p$. Let $A^{*}=\{n \in A:-n+A \in p\}$. Then by ([5], Lemma 4.14) $A^{*} \in p$. We can choose $y_{1} \in A^{*} \cap F S\left(\left\langle x_{n}\right\rangle_{n=1}^{\infty}\right)$. Inductively let $m \in \mathbb{N}$ and $\left\langle y_{i}\right\rangle_{i=1}^{m},\left\langle H_{i}\right\rangle_{i=1}^{m}$ in $\mathcal{P}_{f}(\mathbb{N})$ be chosen with the following properties:

1. $i \in\{1,2, \cdots, m-1\} \max H_{i}<\min H_{i+1}$;
2. If $y_{i}=\Sigma_{t \in H_{i}} x_{t}$ then $\Sigma_{t \in H_{m+1}} x_{t} \in A^{*}$ and $F P\left(\left\langle y_{i}\right\rangle_{i=1}^{m}\right) \subseteq A$.

We observe that $\left\{\Sigma_{t \in H} x_{t}: H \in \mathcal{P}_{f}(\mathbb{N}), \min H>\max H_{m}\right\} \in p$. It follows that we can choose $H_{m+1} \in \mathcal{P}_{f}(\mathbb{N})$ such that $\min H_{m+1}>\max H_{m}, \Sigma_{t \in H_{m+1}} x_{t} \in A^{*}, \Sigma_{t \in H_{m+1}} x_{t} \in-n+A^{*}$ for every $n \in F S\left(\left\langle y_{i}\right\rangle_{i=1}^{m}\right)$ and $\Sigma_{t \in H_{m+1}} x_{t} \in n^{-1} A^{*}$ for every $n \in F P\left(\left\langle y_{i}\right\rangle_{i=1}^{m}\right)$. Putting $y_{m+1}=\Sigma_{t \in H_{m+1}} x_{t}$ shows that the induction can be continued and proves the theorem.

Notice that if A is not an IP*-set, then there is a sequence $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ such that $F S\left(\left\langle x_{n}\right\rangle_{n=1}^{\infty}\right) \cap$ $A=\emptyset$ so Theorem 1.2 in fact characterizes IP* sets. We do not know whether Theorem 2.6 similarly characterizes central* sets.

Question 2.5. Given a non-central* set A in $(\mathbb{N},+)$, can we find a minimal sequence $\left\langle y_{n}\right\rangle_{n=1}^{\infty}$ such that for no sum subsystem $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ does one have $F S\left(\left\langle x_{n}\right\rangle_{n=1}^{\infty}\right) \cup F P\left(\left\langle x_{n}\right\rangle_{n=1}^{\infty}\right) \subseteq A$.

In [1] a notion of sequence named nice sequence has been introduced. A sequence $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ in $(\mathbb{N},+)$ is called a nice sequence if it satisfies the uniqueness of finite products and for all $m \in \mathbb{N} \backslash F S\left(\left\langle x_{n}\right\rangle_{n=1}^{\infty}\right)$ there is some $k \in \mathbb{N}$ such that $F S\left(\left\langle x_{n}\right\rangle_{n=1}^{\infty}\right) \cap\left(m+F S\left(\left\langle x_{n}\right\rangle_{n=k}^{\infty}\right)\right)=\emptyset$, where $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ is said to satisfy uniqueness of finite products provided that if $F, G \in \mathcal{P}_{f}(\mathbb{N})$ and $\sum_{k \in F} x_{k}=\sum_{k \in G} x_{k}$, one must have $F=G$. The following theorem follows from Corollary 4.2 of [1].

Theorem 2.6. If $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ is a nice minimal sequence in $(\mathbb{N},+)$ then we have that $F S\left(\left\langle x_{n}\right\rangle_{n=m}^{\infty}\right)$ is syndetic for each $m \in \mathbb{N}$.

In the following theorem we provide a partial answer to the above question by producing a non-central* set for which every nice minimal sequence satisfies the conclusion of Theorem 2.4. The author thanks Prof. Neil Hindman for providing the proof of this theorem.

Theorem 2.7. Let $A=\bigcup_{n=1}^{\infty}\left\{2^{2 n}, 2^{2 n}+1, \ldots, 2^{2 n+1}-1\right\}$ and $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ be a nice minimal sequence in \mathbb{N}. Then there is a sum subsystem $\left\langle y_{n}\right\rangle_{n=1}^{\infty}$ of $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ such that $F S\left(\left\langle y_{n}\right\rangle_{n=1}^{\infty}\right) \cup$ $F P\left(\left\langle y_{n}\right\rangle_{n=1}^{\infty}\right) \subset A$.

Proof. By Theorem 2.6, we have $F S\left(\left\langle x_{n}\right\rangle_{n=m}^{\infty}\right)$ is syndetic for each $m \in \mathbb{N}$. We inductively construct sequences $\left\langle H_{n}\right\rangle_{n=1}^{\infty}$ in $\mathcal{P}_{f}(\mathbb{N})$ and $\left\langle k_{n}\right\rangle_{n=1}^{\infty}$ of integers such that for each $n \in \mathbb{N}$,
(a) $\max H_{n}<\min H_{n+1}$,
(b) $2^{2 k_{n+1}+1}-2^{2 k_{n+1}+1 / 2}>\sum_{r=1} \sum_{t \in H_{r}} x_{t}$,
(c) $2^{2 k_{n}}<\sum_{t \in H_{n}} x_{t}<2^{2 k_{n}+1 / 2^{n}}$.

Having chosen these terms through n, let $m=\max H_{n}+1$ and pick b such that the gaps of $F S\left(\left\langle x_{n}\right\rangle_{n=m}^{\infty}\right)$ are bounded by b. Then pick k_{n+1} satisfying (b) such that $2^{2 k_{n+1}+1 / 2^{n+1}}-$ $2^{2 k_{n+1}}>b$. Then pick H_{n+1} in $\mathcal{P}_{f}(\mathbb{N})$ with $\min H_{n+1} \geq m$ such that $2^{2 k_{n+1}}<\sum_{t \in H_{n+1}} x_{t}<$ $2^{2 k_{n+1}+1 / 2^{n}}+b$. Thus the induction is complete.

Now we take $y_{n}=\sum_{t \in H_{n}}$. Then $\left\langle y_{n}\right\rangle_{n=1}^{\infty}$ becomes a sum subsystem of $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$. Now if $F \in \mathcal{P}_{f}(\mathbb{N})$ and $m=\max F$ then clearly $2^{2 k_{n}} \leq \sum_{t \in F} y_{t} \leq \sum_{t=1}^{m} y_{m} \leq 2^{2 k_{n+1}+1}-1$, so that $F S\left(\left\langle y_{n}\right\rangle_{n=1}^{\infty}\right) \subset A$. Again if $G \in \mathcal{P}_{f}(\mathbb{N})$ from (c) it follows easily that $2^{2}{ }_{t \in G}{ }^{k_{m}} \leq \prod_{t \in G} y_{t}<$ $2^{2}{ }_{t \in G}^{k_{t}+1}$ and hence $F P\left(\left\langle y_{n}\right\rangle_{n=1}^{\infty}\right) \subset A$.

References

[1] C. Adams, N. Hindman, and D. Strauss, Largeness of the set of finite products in a semigroup, to appear in Semigroup Forum ${ }^{2}$

[^1][2] V. Bergelson and N. Hindman, On $I P^{*}$ sets and central sets, Combinatorica 14 (1994), 269-277.
[3] V. Bergelson, N. Hindman, and B. Kra, Iterated spectra of numbers - elementary, dynamical, and algebraic approaches, Trans. Amer. Math. Soc. 73 (1996), 893-912.
[4] N. Hindman, Partitions and pairwise sums and products, J. Comb. Theory (Series A) 37 (1984), 46-60.
[5] N. Hindman and D. Strauss, Algebra in the Stone-Čech Compactification: Theory and Applications, de Gruyter, Berlin, 1998.

[^0]: ${ }^{1}$ The author thanks Neil Hindman for his useful hints and remarks. I also thank the referee for giving a compact proof of Theorem 2.4.

[^1]: ${ }^{2}$ (Currently available at http://members.aol.com/nhindman/)

