COMBINED ALGEBRAIC PROPERTIES OF CENTRAL* SETS

Dibyendu De¹

Department of Mathematics, Krishnagar Women's College, Krishnagar, Nadia-741101, West Bengal, India dibyendude@gmail.com

Received: 3/8/07, Revised: 8/6/07, Accepted: 8/20/07, Published: 8/28/07

Abstract

In this work we prove that in the semigroup $(\mathbb{N}, +)$ if $\langle x_n \rangle_{n=1}^{\infty}$ is a sequence such that $FS(\langle x_n \rangle_{n=1}^{\infty})$ is piecewise syndetic, then for any central* set A there exists a sum subsystem $\langle y_n \rangle_{n=1}^{\infty}$ of $\langle x_n \rangle_{n=1}^{\infty}$ with the property that $FS(\langle y_n \rangle_{n=1}^{\infty}) \cup FP(\langle y_n \rangle_{n=1}^{\infty}) \subseteq A$.

1. Introduction

Given any discrete semigroup (S, \cdot) , βS is the Stone-Čech compactification of S and the operation \cdot on S has a natural extension to βS making βS a compact right topological semigroup with S contained in its topological center. (By "right topological" we mean that for each $p \in \beta S$, the function $\rho_p : \beta S \to \beta S$ is continuous, where $\rho_p(q) = q \cdot p$. By the "topological center" we mean the set of points p such that λ_p is continuous, where $\lambda_p(q) = p \cdot q$.)

As a compact right topological semigroup, βS has a smallest two sided ideal denoted by $K(\beta S)$. Further, $K(\beta S)$ is the union of all minimal right ideals of βS and is also the union of all minimal left ideals. (See [5], Chapter 2 for these and any other unfamiliar facts about compact right topological semigroups.) Any compact right topological semigroup has an idempotent and one can define a partial ordering of the idempotents by $p \leq q$ if and only if $p = p \cdot q = q \cdot p$. An idempotent p is "minimal" if and only if p is minimal with respect to the order \leq . Equivalently, an idempotent p is minimal if and only if $p \in K(\beta S)$.

The algebraic structure of the smallest ideal of βS has played a significant role in Ramsey Theory. For example, a subset A of (S, \cdot) is defined to be central if it is a member of an idempotent in K(S). It is known that any central subset of $(\mathbb{N}, +)$ is guaranteed to have substantial additive structure. But Theorem 16.27 of [5] shows that central sets in $(\mathbb{N}, +)$ need have no multiplicative structure at all. On the other hand, in [2] we see that sets

¹The author thanks Neil Hindman for his useful hints and remarks. I also thank the referee for giving a compact proof of Theorem 2.4.

which belong to every minimal idempotent of \mathbb{N} , called central^{*} sets, must have significant multiplicative structure. In fact central^{*} sets in any semigroup (S, \cdot) are defined to be those sets which meet every every central set.

We now present three results that will be useful in this article. Theorem 1.1 is in [5] as Corollary 16.21, Theorem 1.2 is in [2] as Theorem 2.6, and Theorem 1.3 is in [4] as Theorem 2.11.

Theorem 1.1. If A is a central^{*} set in $(\mathbb{N}, +)$ then it is central in (\mathbb{N}, \cdot) .

In [5], it is also proved that IP* sets in $(\mathbb{N}, +)$ are guaranteed to have substantial combined additive and multiplicative structure, where a set $A \subseteq \mathbb{N}$ is called an IP* set if it belongs to every idempotent in \mathbb{N} . Given a sequence $\langle x_n \rangle_{n=1}^{\infty}$ in \mathbb{N} , we denote $FS(\langle x_n \rangle_{n=1}^{\infty}) = \{\sum_{n \in F} x_n :$ $F \in \mathcal{P}_f(\mathbb{N})\}$, where for any set X, $\mathcal{P}_f(X)$ is the set of finite nonempty subsets of X, and $FP(\langle x_n \rangle_{n=1}^{\infty})$ is the product analogue of the above. Given a sequence $\langle x_n \rangle_{n=1}^{\infty}$ in \mathbb{N} , we say that $\langle y_n \rangle_{n=1}^{\infty}$ is a *sum subsystem* of $\langle x_n \rangle_{n=1}^{\infty}$ provided there is a sequence $\langle H_n \rangle_{n=1}^{\infty}$ of nonempty finite subsets of \mathbb{N} such that max $H_n < \min H_{n+1}$ and $y_n = \sum_{t \in H_n} x_t$ for each $n \in \mathbb{N}$.

Theorem 1.2. Let $\langle x_n \rangle_{n=1}^{\infty}$ be a sequence and A be an IP^* set in $(\mathbb{N}, +)$. Then there exists a sum subsystem $\langle y_n \rangle_{n=1}^{\infty}$ of $\langle x_n \rangle_{n=1}^{\infty}$ such that $FS(\langle y_n \rangle_{n=1}^{\infty}) \cup FP(\langle y_n \rangle_{n=1}^{\infty}) \subseteq A$

A strongly negative answer to the partition analogue of the above result is presented in [4]. Given a sequence $\langle x_n \rangle_{n=1}^{\infty}$ in \mathbb{N} , $PS(\langle x_n \rangle_{n=1}^{\infty}) = \{x_m + x_n : m, n \in \mathbb{N} \text{ and } m \neq n\}$ and $PP(\langle x_n \rangle_{n=1}^{\infty}) = \{x_m \cdot x_n : m, n \in \mathbb{N} \text{ and } m \neq n\}.$

Theorem 1.3. There exists a finite partition \mathcal{R} of \mathbb{N} with no one-to-one sequence $\langle x_n \rangle_{n=1}^{\infty}$ in \mathbb{N} such that $PS(\langle x_n \rangle_{n=1}^{\infty}) \cup PP(\langle x_n \rangle_{n=1}^{\infty})$ is contained in one cell of the partition \mathcal{R} .

The main aim of this article is to show that central^{*} sets also possess some IP^{*} set-like properties for some specified sequences.

2. The Proof of the Main Theorem

We first introduce the following notion for our purpose.

Definition 2.1. Let (S, \cdot) be a commutative semigroup. A sequence $\langle x_n \rangle_{n=1}^{\infty}$ in S is said to be a *minimal* sequence if $\bigcap_{m=1}^{\infty} \overline{FP(\langle x_n \rangle_{n=m}^{\infty})} \bigcap K(\beta S) \neq \emptyset$.

It is already known that $\langle 2^n \rangle_{n=1}^{\infty}$ is a minimal sequence while the sequence $\langle 2^{2n} \rangle_{n=1}^{\infty}$ is not a minimal sequence. In [1] it is proved that in the semigroup $(\mathbb{N}, +)$ minimal sequences are nothing but those for which the set $FS\langle x_n \rangle_{n=1}^{\infty}$ is large enough, i.e., it meets the smallest ideal $K(\beta \mathbb{N})$ of $(\beta \mathbb{N}, +)$. **Lemma 2.2.** If A is a central set in $(\mathbb{N}, +)$ then nA is also central for any $n \in \mathbb{N}$.

Proof. [3], Lemma 3.8.

Given $A \subseteq \mathbb{N}$ and $n \in \mathbb{N}$, $n^{-1}A = \{m \in \mathbb{N} : nm \in A\}$ and $-n+A = \{m \in \mathbb{N} : n+m \in A\}$.

Lemma 2.3. If A is a central* set in $(\mathbb{N}, +)$ then $n^{-1}A$ is also central* for any $n \in \mathbb{N}$.

Proof. Let A be a central^{*} set and $t \in \mathbb{N}$. To prove that $t^{-1}A$ is a central^{*} set it is sufficient to show that for any central set C, $C \cap t^{-1}A \neq \emptyset$. Since C is central tC is also central so that $A \cap tC \neq \emptyset$. Choose $n \in tC \cap A$ and $k \in C$ such that n = tk. Therefore $k = n/t \in t^{-1}A$ so that $C \cap t^{-1}A \neq \emptyset$.

We now show that all central^{*} sets have a substantial multiplicative property.

Theorem 2.4. Let $\langle x_n \rangle_{n=1}^{\infty}$ be a minimal sequence and A be a central^{*} set in $(\mathbb{N}, +)$. Then there exists a sum subsystem $\langle y_n \rangle_{n=1}^{\infty}$ of $\langle x_n \rangle_{n=1}^{\infty}$ such that $FS(\langle y_n \rangle_{n=1}^{\infty}) \cup FP(\langle y_n \rangle_{n=1}^{\infty}) \subseteq A$.

Proof. Since $\langle x_n \rangle_{n=1}^{\infty}$ is a minimal sequence in \mathbb{N} we can find some minimal idempotent $p \in \mathbb{N}$ for which $FS(\langle x_n \rangle_{n=1}^{\infty}) \in p$. Again, since A is a central* subset of \mathbb{N} , by the previous lemma for every $n \in \mathbb{N}$, $n^{-1}A \in p$. Let $A^* = \{n \in A : -n + A \in p\}$. Then by ([5], Lemma 4.14) $A^* \in p$. We can choose $y_1 \in A^* \cap FS(\langle x_n \rangle_{n=1}^{\infty})$. Inductively let $m \in \mathbb{N}$ and $\langle y_i \rangle_{i=1}^m$, $\langle H_i \rangle_{i=1}^m$ in $\mathcal{P}_f(\mathbb{N})$ be chosen with the following properties:

1.
$$i \in \{1, 2, \cdots, m-1\} \max H_i < \min H_{i+1};$$

2. If $y_i = \sum_{t \in H_i} x_t$ then $\sum_{t \in H_{m+1}} x_t \in A^*$ and $FP(\langle y_i \rangle_{i=1}^m) \subseteq A$.

We observe that $\{\Sigma_{t\in H}x_t : H \in \mathcal{P}_f(\mathbb{N}), \min H > \max H_m\} \in p$. It follows that we can choose $H_{m+1} \in \mathcal{P}_f(\mathbb{N})$ such that $\min H_{m+1} > \max H_m$, $\Sigma_{t\in H_{m+1}}x_t \in A^*$, $\Sigma_{t\in H_{m+1}}x_t \in -n + A^*$ for every $n \in FS(\langle y_i \rangle_{i=1}^m)$ and $\Sigma_{t\in H_{m+1}}x_t \in n^{-1}A^*$ for every $n \in FP(\langle y_i \rangle_{i=1}^m)$. Putting $y_{m+1} = \Sigma_{t\in H_{m+1}}x_t$ shows that the induction can be continued and proves the theorem. \Box

Notice that if A is not an IP*-set, then there is a sequence $\langle x_n \rangle_{n=1}^{\infty}$ such that $FS(\langle x_n \rangle_{n=1}^{\infty}) \cap A = \emptyset$ so Theorem 1.2 in fact characterizes IP* sets. We do not know whether Theorem 2.6 similarly characterizes central* sets.

Question 2.5. Given a non-central* set A in $(\mathbb{N}, +)$, can we find a minimal sequence $\langle y_n \rangle_{n=1}^{\infty}$ such that for no sum subsystem $\langle x_n \rangle_{n=1}^{\infty}$ does one have $FS(\langle x_n \rangle_{n=1}^{\infty}) \cup FP(\langle x_n \rangle_{n=1}^{\infty}) \subseteq A$.

In [1] a notion of sequence named *nice* sequence has been introduced. A sequence $\langle x_n \rangle_{n=1}^{\infty}$ in $(\mathbb{N}, +)$ is called a *nice* sequence if it satisfies the uniqueness of finite products and for all $m \in \mathbb{N} \setminus FS(\langle x_n \rangle_{n=1}^{\infty})$ there is some $k \in \mathbb{N}$ such that $FS(\langle x_n \rangle_{n=1}^{\infty}) \cap (m + FS(\langle x_n \rangle_{n=k}^{\infty})) = \emptyset$, where $\langle x_n \rangle_{n=1}^{\infty}$ is said to satisfy uniqueness of finite products provided that if $F, G \in \mathcal{P}_f(\mathbb{N})$ and $\sum_{k \in F} x_k = \sum_{k \in G} x_k$, one must have F = G. The following theorem follows from Corollary 4.2 of [1].

Theorem 2.6. If $\langle x_n \rangle_{n=1}^{\infty}$ is a nice minimal sequence in $(\mathbb{N}, +)$ then we have that $FS(\langle x_n \rangle_{n=m}^{\infty})$ is syndetic for each $m \in \mathbb{N}$.

In the following theorem we provide a partial answer to the above question by producing a non-central^{*} set for which every nice minimal sequence satisfies the conclusion of Theorem 2.4. The author thanks Prof. Neil Hindman for providing the proof of this theorem.

Theorem 2.7. Let $A = \bigcup_{n=1}^{\infty} \{2^{2n}, 2^{2n} + 1, \dots, 2^{2n+1} - 1\}$ and $\langle x_n \rangle_{n=1}^{\infty}$ be a nice minimal sequence in \mathbb{N} . Then there is a sum subsystem $\langle y_n \rangle_{n=1}^{\infty}$ of $\langle x_n \rangle_{n=1}^{\infty}$ such that $FS(\langle y_n \rangle_{n=1}^{\infty}) \cup FP(\langle y_n \rangle_{n=1}^{\infty}) \subset A$.

Proof. By Theorem 2.6, we have $FS(\langle x_n \rangle_{n=m}^{\infty})$ is syndetic for each $m \in \mathbb{N}$. We inductively construct sequences $\langle H_n \rangle_{n=1}^{\infty}$ in $\mathcal{P}_f(\mathbb{N})$ and $\langle k_n \rangle_{n=1}^{\infty}$ of integers such that for each $n \in \mathbb{N}$,

(a)
$$\max H_n < \min H_{n+1}$$

- (b) $2^{2k_{n+1}+1} 2^{2k_{n+1}+1/2} > \sum_{r=1} \sum_{t \in H_r} x_t$
- (c) $2^{2k_n} < \sum_{t \in H_n} x_t < 2^{2k_n + 1/2^n}$.

Having chosen these terms through n, let $m = \max H_n + 1$ and pick b such that the gaps of $FS(\langle x_n \rangle_{n=m}^{\infty})$ are bounded by b. Then pick k_{n+1} satisfying (b) such that $2^{2k_{n+1}+1/2^{n+1}} - 2^{2k_{n+1}} > b$. Then pick H_{n+1} in $\mathcal{P}_f(\mathbb{N})$ with $\min H_{n+1} \ge m$ such that $2^{2k_{n+1}} < \sum_{t \in H_{n+1}} x_t < 2^{2k_{n+1}+1/2^n} + b$. Thus the induction is complete.

Now we take $y_n = \sum_{t \in H_n}$. Then $\langle y_n \rangle_{n=1}^{\infty}$ becomes a sum subsystem of $\langle x_n \rangle_{n=1}^{\infty}$. Now if $F \in \mathcal{P}_f(\mathbb{N})$ and $m = \max F$ then clearly $2^{2k_n} \leq \sum_{t \in F} y_t \leq \sum_{t=1}^m y_m \leq 2^{2k_{n+1}+1} - 1$, so that $FS(\langle y_n \rangle_{n=1}^{\infty}) \subset A$. Again if $G \in \mathcal{P}_f(\mathbb{N})$ from (c) it follows easily that $2^{2} \underset{t \in G}{\overset{k_m}{}} \leq \prod_{t \in G} y_t < 2^2 \underset{t \in G}{\overset{k_t+1}{}}$ and hence $FP(\langle y_n \rangle_{n=1}^{\infty}) \subset A$.

References

 C. Adams, N. Hindman, and D. Strauss, Largeness of the set of finite products in a semigroup, to appear in Semigroup Forum²

²(Currently available at http://members.aol.com/nhindman/)

- [2] V. Bergelson and N. Hindman, On IP* sets and central sets, Combinatorica 14 (1994), 269-277.
- [3] V. Bergelson, N. Hindman, and B. Kra, Iterated spectra of numbers elementary, dynamical, and algebraic approaches, Trans. Amer. Math. Soc. 73 (1996), 893-912.
- [4] N. Hindman, Partitions and pairwise sums and products, J. Comb. Theory (Series A) 37 (1984), 46-60.
- [5] N. Hindman and D. Strauss, Algebra in the Stone-Čech Compactification: Theory and Applications, de Gruyter, Berlin, 1998.