k-FIXED-POINTS-PERMUTATIONS

Fanja Rakotondrajao
Département de Mathématiques et Informatique, Université d'Antananarivo, 101 Antananarivo, Madagascar
frakoton@univ-antananarivo.mg

Received: 11/15/06, Revised: 7/18/07, Accepted: 8/3/07, Published: 8/28/07

Abstract

In this paper we study the k-fixed-points statistic over the symmetric group. We will give some combinatorial interpretations to the relations defining them as well as their generating functions. A combinatorial interpretation directly on derangements of the famous relation on derangement numbers $d_{n}=n d_{n-1}+(-1)^{n}$ will be given.

1. Introduction

Euler (see [1] and [4]) introduced the difference table $\left(e_{n}^{k}\right)_{0 \leq k \leq n}$, where e_{n}^{k} are defined by

$$
e_{n}^{n}=n!\text { and } e_{n}^{k-1}=e_{n}^{k}-e_{n-1}^{k-1} \text { for } 1 \leq k \leq n \text {, }
$$

without giving their combinatorial interpretation. In our previous paper [11], we studied these numbers, which generalize the derangement theory, through the study of k-successions. The first values of the numbers e_{n}^{k} are given in the following table:

e_{n}^{k}						
$n=0$	$k=0$	1	2	3	4	5
1	$0!$					
2	0	$1!$				
3	1	1	$2!$			
4	2	3	4	$3!$		
5	9	11	14	18	$4!$	
44	53	64	78	96	$5!$	

and their generating functions are defined by

$$
\left\{\begin{array}{l}
E^{(k)}(u)=\sum_{n \geq 0} e_{n+k}^{k} \frac{u^{n}}{n!}=k!\frac{\exp (-u)}{(1-u)^{k+1}} \\
E(x, u)=\sum_{k \geq 0} \sum_{n \geq 0} e_{n+k}^{k} \frac{x^{k}}{k!} \frac{u^{n}}{n!}=\frac{\exp (-u)}{1-x-u}
\end{array}\right.
$$

The motivation of this paper is to study the numbers d_{n}^{k} which are obtained from the numbers e_{n}^{k} by dividing them by $k!$. It follows straightforwardly that their generating functions are defined by

$$
\left\{\begin{aligned}
D^{(k)}(u) & =\sum_{n \geq 0} d_{n+k}^{k} \frac{u^{n}}{n!}=\frac{\exp (-u)}{(1-u)^{k+1}} \\
D(x, u) & =\sum_{k \geq 0} \sum_{n \geq 0} d_{n+k}^{k} x^{k} \frac{u^{n}}{n!}=\frac{\exp (-u)}{1-x-u}
\end{aligned}\right.
$$

We then obtain the following table for some first values of the numbers d_{n}^{k} :

d_{n}^{k}						
	$k=0$	1	2	3	4	5
$n=0$	1					
1	0	1				
2	1	1	1			
3	2	3	2	1		
4	9	11	7	3	1	
5	44	53	32	13	4	1

By a simple computation, we can find that the numbers d_{n}^{k} satisfy the following recurrences:

$$
\left\{\begin{array}{l}
d_{k}^{k}=1 \\
d_{n}^{k}=(n-1) d_{n-1}^{k}+(n-k-1) d_{n-2}^{k} \text { for } n>k \geq 0
\end{array}\right.
$$

The aims of this paper are to give combinatorial interpretations of these numbers. We will give a combinatorial bijection to the unexpected relation

$$
d_{n}^{k}+d_{n-2}^{k-1}=n d_{n-1}^{k}
$$

which is a generalization of the famous recurrence on derangement numbers (see, e.g., [2], [5], [14]):

$$
d_{n}=n d_{n-1}+(-1)^{n}
$$

The derangement case corresponds to $k=0$, if we set

$$
d_{-1}^{-1}=1 \text { and } d_{n-1}^{-1}+d_{n}^{-1}=0 d_{n}^{0}
$$

that is, $d_{n-1}^{-1}+d_{n}^{-1}=0$, then we obtain

$$
d_{n}^{-1}=(-1)^{n+1}
$$

Désarmenien [2], Remmel [12] and Wilf [16] each gave a combinatorial proof of this last relation with other objects which are in bijection with derangements, but never directly on derangements. Many authors (see, e.g., [3], [6], [7], [8], [9], [10], [15]) have studied in depth the numbers d_{n}. A bijective proof directly over derangements, or permutations without fixed points, for this last relation of derangement numbers will be given in a separate section. Let us denote by $[n]$ the interval $\{1,2, \cdots, n\}$, and by σ a permutation of the symmetric group \mathfrak{S}_{n}. In this paper, we will use the linear notation $\sigma=\sigma(1) \sigma(2) \cdots \sigma(n)$, as well as the notation of the decomposition into a product of disjoint cycles, to represent a permutation.

Definition 1.1. We say that an integer i is a fixed point of a permutation σ if $\sigma(i)=i$. We will denote by $\operatorname{Fix}(\sigma)$ the set of fixed points of the permutation σ.

Definition 1.2. We say that a permutation σ is a k-fixed-points-permutation if for all integers i in the interval $[k], \sigma^{p}(i) \notin[k] \backslash\{i\}$ for all integers p and $\operatorname{Fix}(\sigma) \subseteq[k]$.

We will denote by D_{n}^{k} the set of k-fixed-points-permutations of the symmetric group \mathfrak{S}_{n}. Example 1.3. We have

$$
\begin{aligned}
& D_{1}^{0}=\{ \}, D_{1}^{1}=\{1\} \\
& D_{2}^{0}=D_{2}^{1}=\{21\}, D_{2}^{2}=\{12\} \\
& D_{3}^{0}=\{231,312\}, D_{3}^{1}=\{132,231,312\}, D_{3}^{2}=\{132,312\}, D_{3}^{3}=\{123\}
\end{aligned}
$$

Remark 1.4. The permutation $12 \cdots k$ is the only k-fixed-points-permutation of the symmetric group \mathfrak{S}_{k}.

2. Numbers d_{n}^{k}

2.1. First Relation for the Numbers d_{n}^{k}

Theorem 2.1. For $0 \leq k \leq n-1$, we have

$$
d_{n}^{k}=(n-1) d_{n-1}^{k}+(n-k-1) d_{n-2}^{k} .
$$

To prove this theorem, let us consider the following definition.
Definition 2.2. Let the $\operatorname{map} \varphi: D_{n}^{k} \rightarrow[n-1] \times D_{n-1}^{k} \cup[n-k-1] \times D_{n-2}^{k}$, which associates to each permutation σ a pair $\left(m, \sigma^{\prime}\right)=\varphi(\sigma)$, be defined as follows:

1. If the integer n is in a cycle of length greater than or equal to 3 , or the length of the cycle which contains the integer n is equal to 2 and $\sigma(n) \leq k$, then the integer m is equal to $\sigma^{-1}(n)$ and the permutation σ^{\prime} is obtained from the permutation σ by removing the integer n from his cycle. (Note that the permutation σ^{\prime} is indeed an element of the set D_{n-1}^{k}.)
2. If the length of the cycle which contains the integer n is equal to 2 and $\sigma(n)>k$, then the integer m is equal to $\sigma(n)$ and the permutation σ^{\prime} is obtained from the permutation σ by removing the cycle $(\sigma(n), n)$ and then decreasing by 1 all integers between $\sigma(n)+1$ and $n-1$ in each cycle. (Note that the permutation σ^{\prime} is indeed an element of the set D_{n-2}^{k}.)

Remark 2.3. If the integer n is greater than k and $\sigma \in D_{n}^{k}$, then $\sigma^{\prime}(n) \neq n$.
Proposition 2.4. The map φ is bijective.

Proof. Notice that a pair $\left(m, \sigma^{\prime}\right)$ in the image $\varphi\left(D_{n}^{k}\right)$ is contained either in the set of all pairs of $[n-1] \times D_{n-1}^{k}$ if the integer n lies in a cycle of length greater than 2 or equal to 2 and $\sigma^{\prime}(n) \leq k$, or in the set of all pairs of $[n-k-1] \times D_{n-2}^{k}$ if the integer n lies in a cycle of length equal to 2 and $\sigma^{\prime}(n)>k$. Define a map $\tilde{\varphi}:[n-1] \times D_{n-1}^{k} \cup[n-k-1] \times D_{n-2}^{k} \rightarrow D_{n}^{k}$ so that the permutation $\sigma^{\prime}=\tilde{\varphi}(m, \sigma)$ is obtained as follows:

- either by inserting the integer n in a cycle of the permutation σ after the integer $m \in[n-1]$ if σ is an element of the set D_{n-1}^{k}. In such case, the integer n lies in a cycle of length greater to 2 or in a transposition and $\sigma(n) \leq k$.
- or by creating the transposition (m, n) with $k<m \leq n-2$ and then increasing by 1 all integers between m and $n-2$ in each cycle of the permutation σ if the permutation σ is an element of the set D_{n-2}^{k}. In such case, the integer n is in a transposition and $\sigma(n)>k$.

The map $\tilde{\varphi}$ is the inverse of the map φ.
Corollary 2.5. The number d_{n}^{k} equals the cardinality of the set of k-fixed-points-permutations in the symmetric group \mathfrak{S}_{n}.

Proposition 2.6. For all integers k, we have $d_{k}^{k}=1$.

Proof. The permutation $12 \ldots k$ is the only k-fixed-points permutation of the symmetric group \mathfrak{S}_{k}.

2.2. Second Relation for the Numbers d_{n}^{k}

Another relation satisfied by the numbers d_{n}^{k} can be easily deduced from the generating function, but we will give its combinatorial interpretation.

Definition 2.7. Let the map $\vartheta: D_{n-1}^{k-1} \cup D_{n}^{k-1} \rightarrow[k] \times D_{n}^{k}$, which associates to a permutation σ a pair $\left(m, \sigma^{\prime}\right)=\vartheta(\sigma)$, be defined as below:

1. If $\sigma \in D_{n-1}^{k-1}$, then the integer m is equal to k and the permutation σ^{\prime} is obtained from the permutation σ by creating the cycle (k) and then increasing by 1 all integers greater than or equal to k in each cycle of the permutation σ.
2. If $\sigma \in D_{n}^{k-1}$, then the integer m is equal to the smallest integer in the cycle that contains the integer k, and the permutation σ^{\prime} is obtained from the permutation σ by removing the word $k \sigma(k) \cdots \sigma^{-1}(m)$ from that cycle and then creating the cycle $\left(k \sigma(k) \cdots \sigma^{-1}(m)\right)$.

Proposition 2.8. The map ϑ is a bijection.

Proof. The map ϑ is injective. It suffices to show that ϑ is surjective. Let us look at various cases of the pair $\left(m, \sigma^{\prime}\right)$.

1. If $m=k$ and $\sigma^{\prime}(k)=k$, then we define the permutation σ by deleting the cycle (k) and then decreasing by 1 all integers greater than k in each cycle. It follows straightforwardly that the permutation σ is an element of the set D_{n-1}^{k-1}.
2. If $m=k$ and $\sigma^{\prime}(k) \neq k$, then $\sigma=\sigma^{\prime}$ and $\sigma \in D_{n}^{k-1}$.
3. If $m \neq k$, then the permutation σ is obtained from the permutation σ^{\prime} by removing the cycle which contains k and then inserting the word $k \sigma^{\prime}(k) \sigma^{\prime 2}(k) \cdots$ in the cycle which contains the integer m just before the integer $\sigma^{\prime-1}(m)$. The permutation σ is indeed an element of the set D_{n}^{k-1}.

It is impossible by construction of the map ϑ that $m=k$ and the integer k is in the same cycle as an integer smaller than k.
Theorem 2.9. For all integers $1 \leq k \leq n$, we have

$$
k d_{n}^{k}=d_{n-1}^{k-1}+d_{n}^{k-1} .
$$

Proof. By the bijection ϑ, we have

$$
\# D_{n-1}^{k-1}+\# D_{n}^{k-1}=\#[k] \times D_{n}^{k}
$$

that is,

$$
k d_{n}^{k}=d_{n-1}^{k-1}+d_{n}^{k-1} .
$$

2.3. Third Relation for the Numbers d_{n}^{k}

The following unexpected relation is a generalization of the famous relation on derangement numbers and we will give a bijective proof of it.

Theorem 2.10. For all integers $0 \leq k \leq n-1$, one has

$$
n d_{n-1}^{k}=d_{n}^{k}+d_{n-2}^{k-1} .
$$

Proof. Let us consider the map $\varsigma:[n] \times D_{n-1}^{k} \rightarrow D_{n}^{k} \cup D_{n-2}^{k-1}$, which associates to a pair (m, σ) a permutation $\sigma^{\prime}=\varsigma((m, \sigma))$, defined in the following way:

1. If $m<n$, then the permutation σ^{\prime} is obtained from the permutation σ by inserting the integer n in the cycle which contains m just before the integer m itself. The permutation σ^{\prime} is indeed an element of the set D_{n}^{k}.
2. If $m=n$ and $\sigma(1) \neq 1$, then the permutation $\sigma^{\prime}=\varsigma((n, \sigma))$ is obtained from the permutation σ by removing the integer $\sigma(1)$ and then creating the cycle ($n \sigma(1)$). The permutation σ^{\prime} is indeed an element of the set D_{n}^{k} and $\sigma^{\prime}(n)>k$.
3. If $m=n$ and $\sigma(1)=1$, then the permutation $\sigma^{\prime}=\varsigma((n, \sigma))$ is obtained from the permutation σ by removing the cycle (1) and then by decreasing by 1 all integers in each cycle. It follows straightforwardly that the permutation σ^{\prime} is an element of the set D_{n-2}^{k}.

It is clear that the map ς is injective. Hence, to show it is bijective, it suffices to show that ς is surjective. Let us look at the various cases of the permutation σ^{\prime}.

1. If the permutation σ^{\prime} is an element of the set D_{n}^{k} and the cycle that contains n is different from the transposition ($n \quad \sigma^{\prime}(n)$) where $\sigma^{\prime}(n)>k$, then the pair (m, σ) is defined by $m=\sigma^{\prime-1}(n)$, and the permutation σ is obtained by removing the integer n from the cycle containing it.
2. If the permutation σ^{\prime} is an element of the set D_{n}^{k} and the c ycle that contains n is a transposition $\left(n \quad \sigma^{\prime}(n)\right)$ where $\sigma^{\prime}(n)>k$, then the pair (m, σ) is defined by $m=n$ and the permutation σ is obtained by removing the cycle ($n \quad \sigma^{\prime}(n)$) and inserting the integer $\sigma^{\prime}(n)$ in the cycle that contains the integer 1 just after 1.
3. If the permutation σ^{\prime} is an element of the set D_{n-2}^{k-1}, then the pair (m, σ) is defined by $m=n$ and the permutation σ is obtained by increasing by 1 all the integers in each cycle of the permutation σ^{\prime} and then creating the new cycle (1).

Remark 2.11. Theorems 2.1 and 2.9 together imply Theorem 2.10 as follows. Let

$$
\begin{aligned}
& F(n, k)=n d_{n-1}^{k}-d_{n}^{k}-d_{n-2}^{k-1} \\
& G(n, k)=k d_{n}^{k}-d_{n-1}^{k-1}-d_{n}^{k-1}
\end{aligned}
$$

Then the identity in Theorem 2.1 can be rewritten as

$$
F(n, k)+F(n-1, k)=G(n-2, k) .
$$

So, since $G(n, k)=0$ for all $n \geq k \geq 0$, by Theorem 2.9 , we get

$$
F(n, k)=(-1)^{n-k-1} F_{k+1}^{k}=0 \text { (from Theorem 2.1) for all } n \geq k \geq 0
$$

It seems worth considering whether or not the sieve method can also be generalized using the above relation between F and G .

3. The Famous $d_{n}=n d_{n-1}+(-1)^{n}$

Notice that the set D_{n} of derangements or permutations without fixed points is equal to the set D_{n}^{0}.

Definition 3.1. Let us define the critical derangement $\Delta_{n}=(12)(34) \cdots(n-1 \quad n)$ if the integer n is even, and the sets

- $E_{n}=\left\{\Delta_{n}\right\}$ if the integer n is even, and $E_{n}=\emptyset$ otherwise,
- $F_{n}=\left\{\left(n, \Delta_{n-1}\right)\right\}$ if the integer n is odd, and $F_{n}=\emptyset$ otherwise.

Let $\tau:[n] \times D_{n-1} \backslash F_{n} \rightarrow D_{n} \backslash E_{n}$ be the map which associates to a pair (i, δ) a permutation $\delta^{\prime}=\tau((i, \delta))$ defined as follows:

1. If the integer $i<n$, then the permutation $\delta^{\prime}=\delta\left(\begin{array}{ll}i & n\end{array}\right)$. In other words, the permutation δ^{\prime} is obtained from the permutation δ by inserting the integer n in the cycle that contains the integer i just after the integer i.
2. If the integer $i=n$, then let p be the smallest integer such that the transpositions $(12),(34), \ldots,(2 p-12 p)$ are cycles of the permutation δ and the transposition $(2 p+1 \quad 2 p+2)$ is not.
(a) If $\delta(2 p+1)=2 p+2$, then the permutation δ^{\prime} is obtained from the permutation δ by removing the integer $2 p+1$ from the cycle that contains it, and then creating the new cycle $(2 p+1 \quad n)$.
(b) If $\delta(2 p+1) \neq 2 p+2$, then we have to distinguish the following two cases:
i. If the length of the cycle that contains the integer $2 p+1$ is equal to 2 , then the permutation δ^{\prime} is obtained from the permutation δ by removing the cycle $(2 p+1 \delta(2 p+1))$, and then inserting the integer $2 p+1$ in the cycle that contains the integer $2 p+2$ just before the integer $2 p+2$ and creating the new cycle $(\delta(2 p+1) \quad n)$.
ii. If the length of the cycle that contains the integer $2 p+1$ is greater than 2 , then the permutation δ^{\prime} is obtained from the permutation δ by removing the integer $\delta(2 p+1)$ and then creating the new cycle $(\delta(2 p+1) \quad n)$.

Proposition 3.2. The map τ is bijective.

Proof. Notice that the only pair (i, δ) which is not defined by the map τ is the pair (n, Δ_{n-1}) if the integer $n-1$ is even. Notice also that the image $\tau\left([n-1] \times D_{n-1}\right)$ is contained in the set of all derangements D_{n} where the integer n lies in a cycle of length greater than or equal to 3 , and the image $\tau\left(\{n\} \times D_{n-1} \backslash F_{n}\right)$ is contained in the set of all derangements D_{n} where the integer n lies in a cycle of length 2 . So we need only show that there exists a map ζ such that

- associates an element of $[n-1] \times D_{n-1}$ with every derangement of D_{n} in which the integer n lies in a cycle of length greater or equal to 3 .
- associates an element of $\{n\} \times D_{n-1} \backslash F_{n}$ with every derangement of D_{n} in which the integer n lies in a cycle of length 2 .
- is the inverse of τ.

It is straightforward to verify that the map ζ is defined as follows:

1. If the integer n lies in a cycle of length greater or equal to 3 , then $\zeta(\delta)$ is the pair $\left(i, \delta^{\prime}\right)$ where $i=\delta^{-1}(n)$, and the permutation δ^{\prime} is obtained by removing the integer n from the derangement δ. The permutation δ^{\prime} is a derangement of D_{n-1} and the integer i is smaller than n.
2. If the integer n lies in a cycle of length 2 , then let p the smallest nonnegative integer such that (12), (34),.,$(2 p-1 \quad 2 p)$ are cycles of the derangement δ while the transposition ($2 p+1 \quad 2 p+2$) is not.
(a) If $\delta(n)=2 p+1$, then $\zeta(\delta)$ is the pair $\left(n, \delta^{\prime}\right)$ where the permutation δ^{\prime} is obtained from the derangement δ by deleting the cycle ($n 2 p+1$) and then inserting the integer $2 p+1$ in the cycle which contains the integer $2 p+2$ just before the integer $2 p+2$. In other words, we have $\delta=(12)(34) \cdots(2 p-1 \quad 2 p)(2 p+1 \quad n)(2 p+$ $2 \ldots) \cdots$ and $\delta^{\prime}=(12)(34) \cdots(2 p-1 \quad 2 p)(2 p+1 \quad 2 p+2 \ldots) \cdots$.
(b) If $\delta(2 p+1) \neq n$, then we have to distinguish the following two cases:
i. If $\delta(2 p+1) \neq 2 p+2$, then $\zeta(\delta)$ is the pair $\left(n, \delta^{\prime}\right)$ where the permutation δ^{\prime} is obtained from the derangement δ by deleting the cycle $(n \delta(n))$ and then inserting the integer $\delta(n)$ in the cycle which contains the integer $2 p+1$ just before the integer $2 p+1$. In other words, we have $\delta=(12)(34) \cdots(2 p-$ $12 p)(2 p+1 \ldots) \cdots(\delta(n) \quad n) \cdots$ and $\delta^{\prime}=(12)(34) \cdots(2 p-1 \quad 2 p)(2 p+$ $1 \ldots \delta(n)) \cdots$.
ii. If $\delta(2 p+1)=2 p+2$, then $\zeta(\delta)$ is the pair $\left(n, \delta^{\prime}\right)$ where the permutation δ^{\prime} is obtained from the derangement δ by deleting the cycle ($n \quad \delta(n)$) and the integer $2 p+1$ and then creating the new cycle $(2 p+1 \quad \delta(n))$. In other words, we have $\delta=(12)(34) \cdots(2 p-1 \quad 2 p)(2 p+1 \quad 2 p+2 \cdots) \cdots(\delta(n) \quad n) \cdots$ and $\delta^{\prime}=(12)(34) \cdots(2 p-1 \quad 2 p)(2 p+1 \quad \delta(n))(2 p+2 \ldots) \cdots$.

Notice that the derangement Δ_{n}, if the integer n is even, is the only derangement which is not defined by the map ζ.

Corollary 3.3. If the integer n is even, then we have $d_{n}=n d_{n-1}+1$. If the integer n is odd, then we have $d_{n}+1=n d_{n-1}$.

Acknowledgements. The author is very grateful to the referree for his/her kind suggestions and for his/her additional reference.

References

[1] R. J. Clarke, G. N. Han, J. Zeng, A combinatorial interpretation of the Seidel generation of q derangement numbers, Annals of combinatorics 1 (1997), pp. 313-327.
[2] J. Désarmenien, Une autre interprétation du nombre de dérangements, Actes 8e Sém. Lothar. Comb., IRMA Strasbourg (1984), pp. 11-16.
[3] J. Désarménien, M. Wachs, Descentes des dérangements et Mots circulaires, Actes 19e Sém. Lothar. Comb., IRMA Strasbourg (1988), pp. 3-21.
[4] D. Dumont, A. Randrianarivony, Dérangements et nombres de Genocchi, Discrete Math. 132 (1990), pp. 37-49.
[5] D. Foata, M. P. Schützenberger, Théorie Géométrique des Polynômes Eulériens, Lect. Notes in Math. 138, Springer-Verlag, Berlin, (1970).
[6] R. Mantaci, F. Rakotondrajao, A permutation representation that knows what "Eulerian" means, Discrete Mathematics and Theoretical Computer Science 4 (2001), pp. 101-108.
[7] R. Mantaci, F. Rakotondrajao, Exceedingly deranging!, Advances in Applied Mathematics, Volume 30 Issue 1 / 2 (January 2003), pp. 177-188.
[8] F. Rakotondrajao, Ph.D thesis, Université d' Antananarivo, Antananarivo, Madagascar, (1999).
[9] F. Rakotondrajao, Magic squares, rook polynomials and permutations, Séminaire Lotharingien de Combinatoire B54A (2006). http://www.mat.univie.ac.at
[10] F. Rakotondrajao, Permutations by numbers of anti-excedances and fixed points, Proc. FPSAC'02, University of Melbourne, Australia (July 2002).
[11] F. Rakotondrajao, On Euler's difference table, Proc. FPSAC'07, Nankai University, Tianjin, China (July 2007).
[12] J. Remmel, A note on a recursion for the number of derangements, Europ. J. Combin. 4 (1983), no. 4, pp. 371-373.
[13] J. Riordan, An Introduction to Combinatorial Analysis, John Wiley \& Sons, New York, (1958).
[14] R. P. Stanley, Enumerative Combinatorics, Vol 1, Cambridge, (1997).
[15] M. Wachs, On q-derangement numbers, Proc. Amer. Math. Soc. 106 (1989), no. 1, pp. 273-278.
[16] H. S. Wilf, A bijection in the theory of derangements, Mathematics Magazine 57 (1984), no.1, pp. 37-40.

