k-FIXED-POINTS-PERMUTATIONS

Fanja Rakotondrajao

Département de Mathématiques et Informatique, Université d'Antananarivo, 101 Antananarivo, Madagascar frakoton@univ-antananarivo.mg

Received: 11/15/06, Revised: 7/18/07, Accepted: 8/3/07, Published: 8/28/07

Abstract

In this paper we study the *k*-fixed-points statistic over the symmetric group. We will give some combinatorial interpretations to the relations defining them as well as their generating functions. A combinatorial interpretation directly on derangements of the famous relation on derangement numbers $d_n = nd_{n-1} + (-1)^n$ will be given.

1. Introduction

Euler (see [1] and [4]) introduced the difference table $(e_n^k)_{0 \le k \le n}$, where e_n^k are defined by

$$e_n^n = n!$$
 and $e_n^{k-1} = e_n^k - e_{n-1}^{k-1}$ for $1 \le k \le n$,

without giving their combinatorial interpretation. In our previous paper [11], we studied these numbers, which generalize the derangement theory, through the study of k-successions. The first values of the numbers e_n^k are given in the following table:

		e	${k \over n}$				
	k = 0	1	2	3	4	5	
n = 0	0!						
1	0	1!					
2	1	1	2!				
3	2	3	4	3!			
4	9	11	14	18	4!		
5	44	53	64	78	96	5!	

and their generating functions are defined by

$$\begin{cases} E^{(k)}(u) = \sum_{n \ge 0} e^k_{n+k} \frac{u^n}{n!} = k! \frac{\exp(-u)}{(1-u)^{k+1}} \\ E(x,u) = \sum_{k \ge 0} \sum_{n \ge 0} e^k_{n+k} \frac{x^k}{k!} \frac{u^n}{n!} = \frac{\exp(-u)}{1-x-u} \end{cases}$$

The motivation of this paper is to study the numbers d_n^k which are obtained from the numbers e_n^k by dividing them by k!. It follows straightforwardly that their generating functions are defined by

$$\begin{cases} D^{(k)}(u) = \sum_{n \ge 0} d^k_{n+k} \frac{u^n}{n!} = \frac{\exp(-u)}{(1-u)^{k+1}} \\ D(x,u) = \sum_{k \ge 0} \sum_{n \ge 0} d^k_{n+k} x^k \frac{u^n}{n!} = \frac{\exp(-u)}{1-x-u}. \end{cases}$$

We then obtain the following table for some first values of the numbers d_n^k :

		d_n^k	:			
	k = 0	1	2	3	4	5
n = 0	1					
1	0	1				
2	1	1	1			
3	2	3	2	1		
4	9	11	7	3	1	
5	44	53	32	13	4	1

By a simple computation, we can find that the numbers d_n^k satisfy the following recurrences:

$$\begin{cases} d_k^k = 1\\ d_n^k = (n-1)d_{n-1}^k + (n-k-1)d_{n-2}^k \text{ for } n > k \ge 0. \end{cases}$$

The aims of this paper are to give combinatorial interpretations of these numbers. We will give a combinatorial bijection to the unexpected relation

$$d_n^k + d_{n-2}^{k-1} = nd_{n-1}^k$$

which is a generalization of the famous recurrence on derangement numbers (see, e.g., [2], [5], [14]):

$$d_n = nd_{n-1} + (-1)^n.$$

The derangement case corresponds to k = 0, if we set

$$d_{-1}^{-1} = 1$$
 and $d_{n-1}^{-1} + d_n^{-1} = 0d_n^0$,

that is, $d_{n-1}^{-1} + d_n^{-1} = 0$, then we obtain

$$d_n^{-1} = (-1)^{n+1}.$$

Désarmenien [2], Remmel [12] and Wilf [16] each gave a combinatorial proof of this last relation with other objects which are in bijection with derangements, but never directly on derangements. Many authors (see, e.g., [3], [6], [7], [8], [9], [10], [15]) have studied in depth the numbers d_n . A bijective proof directly over derangements, or permutations without fixed points, for this last relation of derangement numbers will be given in a separate section. Let us denote by [n] the interval $\{1, 2, \dots, n\}$, and by σ a permutation of the symmetric group \mathfrak{S}_n . In this paper, we will use the linear notation $\sigma = \sigma(1)\sigma(2)\cdots\sigma(n)$, as well as the notation of the decomposition into a product of disjoint cycles, to represent a permutation.

Definition 1.1. We say that an integer *i* is a *fixed point* of a permutation σ if $\sigma(i) = i$. We will denote by $Fix(\sigma)$ the set of fixed points of the permutation σ .

Definition 1.2. We say that a permutation σ is a *k*-fixed-points-permutation if for all integers *i* in the interval $[k], \sigma^p(i) \notin [k] \setminus \{i\}$ for all integers *p* and $\operatorname{Fix}(\sigma) \subseteq [k]$.

We will denote by D_n^k the set of k-fixed-points-permutations of the symmetric group \mathfrak{S}_n .

Example 1.3. We have

$$\begin{split} D_1^0 &= \{\}, \ D_1^1 &= \{1\}, \\ D_2^0 &= D_2^1 &= \{21\}, \ D_2^2 &= \{12\}. \\ D_3^0 &= \{231, 312\}, \ D_3^1 &= \{132, 231, 312\}, \ D_3^2 &= \{132, 312\}, \ D_3^3 &= \{123\}. \end{split}$$

Remark 1.4. The permutation $12 \cdots k$ is the only k-fixed-points-permutation of the symmetric group \mathfrak{S}_k .

2. Numbers d_n^k

2.1. First Relation for the Numbers d_n^k

Theorem 2.1. For $0 \le k \le n-1$, we have

$$d_n^k = (n-1)d_{n-1}^k + (n-k-1)d_{n-2}^k.$$

To prove this theorem, let us consider the following definition.

Definition 2.2. Let the map $\varphi : D_n^k \to [n-1] \times D_{n-1}^k \cup [n-k-1] \times D_{n-2}^k$, which associates to each permutation σ a pair $(m, \sigma') = \varphi(\sigma)$, be defined as follows:

- 1. If the integer n is in a cycle of length greater than or equal to 3, or the length of the cycle which contains the integer n is equal to 2 and $\sigma(n) \leq k$, then the integer m is equal to $\sigma^{-1}(n)$ and the permutation σ' is obtained from the permutation σ by removing the integer n from his cycle. (Note that the permutation σ' is indeed an element of the set D_{n-1}^k .)
- 2. If the length of the cycle which contains the integer n is equal to 2 and $\sigma(n) > k$, then the integer m is equal to $\sigma(n)$ and the permutation σ' is obtained from the permutation σ by removing the cycle ($\sigma(n), n$) and then decreasing by 1 all integers between $\sigma(n)+1$ and n-1 in each cycle. (Note that the permutation σ' is indeed an element of the set D_{n-2}^k .)

Remark 2.3. If the integer n is greater than k and $\sigma \in D_n^k$, then $\sigma'(n) \neq n$.

Proposition 2.4. The map φ is bijective.

Proof. Notice that a pair (m, σ') in the image $\varphi(D_n^k)$ is contained either in the set of all pairs of $[n-1] \times D_{n-1}^k$ if the integer n lies in a cycle of length greater than 2 or equal to 2 and $\sigma'(n) \leq k$, or in the set of all pairs of $[n-k-1] \times D_{n-2}^k$ if the integer n lies in a cycle of length equal to 2 and $\sigma'(n) > k$. Define a map $\tilde{\varphi} : [n-1] \times D_{n-1}^k \cup [n-k-1] \times D_{n-2}^k \to D_n^k$ so that the permutation $\sigma' = \tilde{\varphi}(m, \sigma)$ is obtained as follows:

- either by inserting the integer n in a cycle of the permutation σ after the integer $m \in [n-1]$ if σ is an element of the set D_{n-1}^k . In such case, the integer n lies in a cycle of length greater to 2 or in a transposition and $\sigma(n) \leq k$.
- or by creating the transposition (m, n) with $k < m \le n 2$ and then increasing by 1 all integers between m and n-2 in each cycle of the permutation σ if the permutation σ is an element of the set D_{n-2}^k . In such case, the integer n is in a transposition and $\sigma(n) > k$.

The map $\tilde{\varphi}$ is the inverse of the map φ .

Corollary 2.5. The number d_n^k equals the cardinality of the set of k-fixed-points-permutations in the symmetric group \mathfrak{S}_n .

Proposition 2.6. For all integers k, we have $d_k^k = 1$.

Proof. The permutation 12...k is the only k-fixed-points permutation of the symmetric group \mathfrak{S}_k .

2.2. Second Relation for the Numbers d_n^k

Another relation satisfied by the numbers d_n^k can be easily deduced from the generating function, but we will give its combinatorial interpretation.

Definition 2.7. Let the map $\vartheta : D_{n-1}^{k-1} \cup D_n^{k-1} \to [k] \times D_n^k$, which associates to a permutation σ a pair $(m, \sigma') = \vartheta(\sigma)$, be defined as below:

- 1. If $\sigma \in D_{n-1}^{k-1}$, then the integer *m* is equal to *k* and the permutation σ' is obtained from the permutation σ by creating the cycle (*k*) and then increasing by 1 all integers greater than or equal to *k* in each cycle of the permutation σ .
- 2. If $\sigma \in D_n^{k-1}$, then the integer *m* is equal to the smallest integer in the cycle that contains the integer *k*, and the permutation σ' is obtained from the permutation σ by removing the word $k\sigma(k)\cdots\sigma^{-1}(m)$ from that cycle and then creating the cycle $(k\sigma(k)\cdots\sigma^{-1}(m))$.

Proposition 2.8. The map ϑ is a bijection.

Proof. The map ϑ is injective. It suffices to show that ϑ is surjective. Let us look at various cases of the pair (m, σ') .

- 1. If m = k and $\sigma'(k) = k$, then we define the permutation σ by deleting the cycle (k) and then decreasing by 1 all integers greater than k in each cycle. It follows straightforwardly that the permutation σ is an element of the set D_{n-1}^{k-1} .
- 2. If m = k and $\sigma'(k) \neq k$, then $\sigma = \sigma'$ and $\sigma \in D_n^{k-1}$.
- 3. If $m \neq k$, then the permutation σ is obtained from the permutation σ' by removing the cycle which contains k and then inserting the word $k\sigma'(k)\sigma'^2(k)\cdots$ in the cycle which contains the integer m just before the integer $\sigma'^{-1}(m)$. The permutation σ is indeed an element of the set D_n^{k-1} .

It is impossible by construction of the map ϑ that m = k and the integer k is in the same cycle as an integer smaller than k.

Theorem 2.9. For all integers $1 \le k \le n$, we have

$$kd_n^k = d_{n-1}^{k-1} + d_n^{k-1}.$$

Proof. By the bijection ϑ , we have

$$#D_{n-1}^{k-1} + #D_n^{k-1} = #[k] \times D_n^k,$$

that is,

$$kd_n^k = d_{n-1}^{k-1} + d_n^{k-1}$$

L		
_		

2.3. Third Relation for the Numbers d_n^k

The following unexpected relation is a generalization of the famous relation on derangement numbers and we will give a bijective proof of it.

Theorem 2.10. For all integers $0 \le k \le n-1$, one has

$$nd_{n-1}^k = d_n^k + d_{n-2}^{k-1}.$$

Proof. Let us consider the map $\varsigma : [n] \times D_{n-1}^k \to D_n^k \cup D_{n-2}^{k-1}$, which associates to a pair (m, σ) a permutation $\sigma' = \varsigma((m, \sigma))$, defined in the following way:

- 1. If m < n, then the permutation σ' is obtained from the permutation σ by inserting the integer n in the cycle which contains m just before the integer m itself. The permutation σ' is indeed an element of the set D_n^k .
- 2. If m = n and $\sigma(1) \neq 1$, then the permutation $\sigma' = \varsigma((n, \sigma))$ is obtained from the permutation σ by removing the integer $\sigma(1)$ and then creating the cycle $(n \sigma(1))$. The permutation σ' is indeed an element of the set D_n^k and $\sigma'(n) > k$.
- 3. If m = n and $\sigma(1) = 1$, then the permutation $\sigma' = \varsigma((n, \sigma))$ is obtained from the permutation σ by removing the cycle (1) and then by decreasing by 1 all integers in each cycle. It follows straightforwardly that the permutation σ' is an element of the set D_{n-2}^k .

It is clear that the map ς is injective. Hence, to show it is bijective, it suffices to show that ς is surjective. Let us look at the various cases of the permutation σ' .

- 1. If the permutation σ' is an element of the set D_n^k and the cycle that contains n is different from the transposition $(n \ \sigma'(n))$ where $\sigma'(n) > k$, then the pair (m, σ) is defined by $m = \sigma'^{-1}(n)$, and the permutation σ is obtained by removing the integer n from the cycle containing it.
- 2. If the permutation σ' is an element of the set D_n^k and the c ycle that contains n is a transposition $(n \ \sigma'(n))$ where $\sigma'(n) > k$, then the pair (m, σ) is defined by m = n and the permutation σ is obtained by removing the cycle $(n \ \sigma'(n))$ and inserting the integer $\sigma'(n)$ in the cycle that contains the integer 1 just after 1.
- 3. If the permutation σ' is an element of the set D_{n-2}^{k-1} , then the pair (m, σ) is defined by m = n and the permutation σ is obtained by increasing by 1 all the integers in each cycle of the permutation σ' and then creating the new cycle (1).

Remark 2.11. Theorems 2.1 and 2.9 together imply Theorem 2.10 as follows. Let

$$F(n,k) = nd_{n-1}^{k} - d_{n}^{k} - d_{n-2}^{k-1}$$
$$G(n,k) = kd_{n}^{k} - d_{n-1}^{k-1} - d_{n}^{k-1}.$$

Then the identity in Theorem 2.1 can be rewritten as

$$F(n,k) + F(n-1,k) = G(n-2,k).$$

So, since G(n,k) = 0 for all $n \ge k \ge 0$, by Theorem 2.9, we get

$$F(n,k) = (-1)^{n-k-1} F_{k+1}^k = 0$$
 (from Theorem 2.1) for all $n \ge k \ge 0$.

It seems worth considering whether or not the sieve method can also be generalized using the above relation between F and G.

3. The Famous $d_n = nd_{n-1} + (-1)^n$

Notice that the set D_n of derangements or permutations without fixed points is equal to the set D_n^0 .

Definition 3.1. Let us define the *critical derangement* $\Delta_n = (1 \ 2)(3 \ 4) \cdots (n - 1 \ n)$ if the integer n is even, and the sets

- $E_n = \{\Delta_n\}$ if the integer *n* is even, and $E_n = \emptyset$ otherwise,
- $F_n = \{(n, \Delta_{n-1})\}$ if the integer n is odd, and $F_n = \emptyset$ otherwise.

Let $\tau : [n] \times D_{n-1} \setminus F_n \to D_n \setminus E_n$ be the map which associates to a pair (i, δ) a permutation $\delta' = \tau((i, \delta))$ defined as follows:

- 1. If the integer i < n, then the permutation $\delta' = \delta(i n)$. In other words, the permutation δ' is obtained from the permutation δ by inserting the integer n in the cycle that contains the integer i just after the integer i.
- 2. If the integer i = n, then let p be the smallest integer such that the transpositions $(12), (34), \ldots, (2p-1 \ 2p)$ are cycles of the permutation δ and the transposition $(2p+1 \ 2p+2)$ is not.
 - (a) If $\delta(2p+1) = 2p+2$, then the permutation δ' is obtained from the permutation δ by removing the integer 2p+1 from the cycle that contains it, and then creating the new cycle $(2p+1 \ n)$.

- (b) If $\delta(2p+1) \neq 2p+2$, then we have to distinguish the following two cases:
 - i. If the length of the cycle that contains the integer 2p + 1 is equal to 2, then the permutation δ' is obtained from the permutation δ by removing the cycle $(2p + 1 \delta(2p + 1))$, and then inserting the integer 2p + 1 in the cycle that contains the integer 2p + 2 just before the integer 2p + 2 and creating the new cycle $(\delta(2p + 1) - n)$.
 - ii. If the length of the cycle that contains the integer 2p + 1 is greater than 2, then the permutation δ' is obtained from the permutation δ by removing the integer $\delta(2p+1)$ and then creating the new cycle $(\delta(2p+1) n)$.

Proposition 3.2. The map τ is bijective.

Proof. Notice that the only pair (i, δ) which is not defined by the map τ is the pair (n, Δ_{n-1}) if the integer n-1 is even. Notice also that the image $\tau([n-1] \times D_{n-1})$ is contained in the set of all derangements D_n where the integer n lies in a cycle of length greater than or equal to 3, and the image $\tau(\{n\} \times D_{n-1} \setminus F_n)$ is contained in the set of all derangements D_n where the integer n lies in a cycle of all derangements D_n where the integer n lies in a cycle of show that there exists a map ζ such that

- associates an element of $[n-1] \times D_{n-1}$ with every derangement of D_n in which the integer n lies in a cycle of length greater or equal to 3.
- associates an element of $\{n\} \times D_{n-1} \setminus F_n$ with every derangement of D_n in which the integer n lies in a cycle of length 2.
- is the inverse of τ .

It is straightforward to verify that the map ζ is defined as follows:

- 1. If the integer n lies in a cycle of length greater or equal to 3, then $\zeta(\delta)$ is the pair (i, δ') where $i = \delta^{-1}(n)$, and the permutation δ' is obtained by removing the integer n from the derangement δ . The permutation δ' is a derangement of D_{n-1} and the integer i is smaller than n.
- 2. If the integer n lies in a cycle of length 2, then let p the smallest nonnegative integer such that $(12), (34), \ldots, (2p-1 \quad 2p)$ are cycles of the derangement δ while the transposition $(2p+1 \quad 2p+2)$ is not.
 - (a) If $\delta(n) = 2p + 1$, then $\zeta(\delta)$ is the pair (n, δ') where the permutation δ' is obtained from the derangement δ by deleting the cycle (n - 2p + 1) and then inserting the integer 2p + 1 in the cycle which contains the integer 2p + 2 just before the integer 2p + 2. In other words, we have $\delta = (12)(34)\cdots(2p - 1 - 2p)(2p + 1 - n)(2p + 2 \dots)\cdots$ and $\delta' = (12)(34)\cdots(2p - 1 - 2p)(2p + 1 - 2p + 2 \dots)\cdots$.

- (b) If $\delta(2p+1) \neq n$, then we have to distinguish the following two cases:
 - i. If $\delta(2p+1) \neq 2p+2$, then $\zeta(\delta)$ is the pair (n, δ') where the permutation δ' is obtained from the derangement δ by deleting the cycle $(n \, \delta(n))$ and then inserting the integer $\delta(n)$ in the cycle which contains the integer 2p+1 just before the integer 2p+1. In other words, we have $\delta = (12)(34)\cdots(2p-1 \ 2p)(2p+1\ldots)\cdots(\delta(n) \ n)\cdots$ and $\delta' = (12)(34)\cdots(2p-1 \ 2p)(2p+1\ldots)(2p+1\ldots)(2p-1 \ 2p)(2p+1\ldots)\cdots(2p-1 \ 2p)(2p+1\ldots)\cdots(2p-1)\cdots(2p-$
 - ii. If $\delta(2p+1) = 2p+2$, then $\zeta(\delta)$ is the pair (n, δ') where the permutation δ' is obtained from the derangement δ by deleting the cycle $(n \quad \delta(n))$ and the integer 2p+1 and then creating the new cycle $(2p+1 \quad \delta(n))$. In other words, we have $\delta = (12)(34)\cdots(2p-1 \quad 2p)(2p+1 \quad 2p+2\ldots)\cdots(\delta(n) \quad n)\cdots$ and $\delta' = (12)(34)\cdots(2p-1 \quad 2p)(2p+1 \quad \delta(n))(2p+2\ldots)\cdots$.

Notice that the derangement Δ_n , if the integer *n* is even, is the only derangement which is not defined by the map ζ .

Corollary 3.3. If the integer n is even, then we have $d_n = nd_{n-1} + 1$. If the integer n is odd, then we have $d_n + 1 = nd_{n-1}$.

Acknowledgements. The author is very grateful to the referree for his/her kind suggestions and for his/her additional reference.

References

- R. J. Clarke, G. N. Han, J. Zeng, A combinatorial interpretation of the Seidel generation of qderangement numbers, Annals of combinatorics 1 (1997), pp. 313–327.
- [2] J. Désarmenien, Une autre interprétation du nombre de dérangements, Actes 8e Sém. Lothar. Comb., IRMA Strasbourg (1984), pp. 11–16.
- [3] J. Désarménien, M. Wachs, Descentes des dérangements et Mots circulaires, Actes 19e Sém. Lothar. Comb., IRMA Strasbourg (1988), pp. 3–21.
- [4] D. Dumont, A. Randrianarivony, Dérangements et nombres de Genocchi, Discrete Math. 132 (1990), pp. 37–49.
- [5] D. Foata, M. P. Schützenberger, *Théorie Géométrique des Polynômes Eulériens*, Lect. Notes in Math. 138, Springer-Verlag, Berlin, (1970).
- [6] R. Mantaci, F. Rakotondrajao, A permutation representation that knows what "Eulerian" means, Discrete Mathematics and Theoretical Computer Science 4 (2001), pp. 101–108.
- [7] R. Mantaci, F. Rakotondrajao, Exceedingly deranging!, Advances in Applied Mathematics, Volume 30 Issue 1 / 2 (January 2003), pp. 177–188.
- [8] F. Rakotondrajao, Ph.D thesis, Université d'Antananarivo, Antananarivo, Madagascar, (1999).
- [9] F. Rakotondrajao, Magic squares, rook polynomials and permutations, Séminaire Lotharingien de Combinatoire B54A (2006). http://www.mat.univie.ac.at

- [10] F. Rakotondrajao, Permutations by numbers of anti-excedances and fixed points, Proc. FPSAC'02, University of Melbourne, Australia (July 2002).
- [11] F. Rakotondrajao, On Euler's difference table, Proc. FPSAC'07, Nankai University, Tianjin, China (July 2007).
- [12] J. Remmel, A note on a recursion for the number of derangements, Europ. J. Combin. 4 (1983), no. 4, pp. 371–373.
- [13] J. Riordan, An Introduction to Combinatorial Analysis, John Wiley & Sons, New York, (1958).
- [14] R. P. Stanley, *Enumerative Combinatorics*, Vol 1, Cambridge, (1997).
- [15] M. Wachs, On *q*-derangement numbers, Proc. Amer. Math. Soc. **106** (1989), no. 1, pp. 273–278.
- [16] H. S. Wilf, A bijection in the theory of derangements, Mathematics Magazine 57 (1984), no.1, pp. 37–40.