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Abstract

In this paper we study the k-fixed-points statistic over the symmetric group. We will give
some combinatorial interpretations to the relations defining them as well as their generating
functions. A combinatorial interpretation directly on derangements of the famous relation
on derangement numbers dn = ndn−1 + (−1)n will be given.

1. Introduction

Euler (see [1] and [4]) introduced the difference table (ek
n)0≤k≤n, where ek

n are defined by

en
n = n! and ek−1

n = ek
n − ek−1

n−1 for 1 ≤ k ≤ n,

without giving their combinatorial interpretation. In our previous paper [11], we studied
these numbers, which generalize the derangement theory, through the study of k-successions.
The first values of the numbers ek

n are given in the following table:

ek
n

k = 0 1 2 3 4 5
n = 0 0!

1 0 1!
2 1 1 2!
3 2 3 4 3!
4 9 11 14 18 4!
5 44 53 64 78 96 5!
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and their generating functions are defined by





E(k)(u) =
∑

n≥0

ek
n+k

un

n!
= k!

exp(−u)

(1− u)k+1

E(x, u) =
∑

k≥0

∑

n≥0

ek
n+k

xk

k!

un

n!
=

exp(−u)

1− x− u
.

The motivation of this paper is to study the numbers dk
n which are obtained from the numbers

ek
n by dividing them by k!. It follows straightforwardly that their generating functions are

defined by 




D(k)(u) =
∑

n≥0

dk
n+k

un

n!
=

exp(−u)

(1− u)k+1

D(x, u) =
∑

k≥0

∑

n≥0

dk
n+kx

k un

n!
=

exp(−u)

1− x− u
.

We then obtain the following table for some first values of the numbers dk
n:

dk
n

k = 0 1 2 3 4 5
n = 0 1

1 0 1
2 1 1 1
3 2 3 2 1
4 9 11 7 3 1
5 44 53 32 13 4 1

.

By a simple computation, we can find that the numbers dk
n satisfy the following recurrences:

{
dk

k = 1

dk
n = (n− 1)dk

n−1 + (n− k − 1)dk
n−2 for n > k ≥ 0.

The aims of this paper are to give combinatorial interpretations of these numbers. We will
give a combinatorial bijection to the unexpected relation

dk
n + dk−1

n−2 = ndk
n−1

which is a generalization of the famous recurrence on derangement numbers (see, e.g., [2],
[5], [14]):

dn = ndn−1 + (−1)n.

The derangement case corresponds to k = 0, if we set

d−1
−1 = 1 and d−1

n−1 + d−1
n = 0d0

n,

that is, d−1
n−1 + d−1

n = 0, then we obtain

d−1
n = (−1)n+1.
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Désarmenien [2], Remmel [12] and Wilf [16] each gave a combinatorial proof of this last
relation with other objects which are in bijection with derangements, but never directly on
derangements. Many authors (see, e.g., [3], [6], [7], [8], [9], [10], [15]) have studied in depth
the numbers dn. A bijective proof directly over derangements, or permutations without fixed
points, for this last relation of derangement numbers will be given in a separate section. Let
us denote by [n] the interval {1, 2, · · · , n}, and by σ a permutation of the symmetric group
Sn. In this paper, we will use the linear notation σ = σ(1)σ(2) · · ·σ(n), as well as the
notation of the decomposition into a product of disjoint cycles, to represent a permutation.

Definition 1.1. We say that an integer i is a fixed point of a permutation σ if σ(i) = i. We
will denote by Fix(σ) the set of fixed points of the permutation σ.

Definition 1.2. We say that a permutation σ is a k-fixed-points-permutation if for all inte-
gers i in the interval [k], σp(i) /∈ [k] \ {i} for all integers p and Fix(σ) ⊆ [k].

We will denote by Dk
n the set of k-fixed-points-permutations of the symmetric group Sn.

Example 1.3. We have

D0
1 = {}, D1

1 = {1},

D0
2 = D1

2 = {21}, D2
2 = {12}.

D0
3 = {231, 312}, D1

3 = {132, 231, 312}, D2
3 = {132, 312}, D3

3 = {123}

Remark 1.4. The permutation 12 · · · k is the only k-fixed-points-permutation of the symmet-
ric group Sk.

2. Numbers dk
n

2.1. First Relation for the Numbers dk
n

Theorem 2.1. For 0 ≤ k ≤ n− 1, we have

dk
n = (n− 1)dk

n−1 + (n− k − 1)dk
n−2.

To prove this theorem, let us consider the following definition.

Definition 2.2. Let the map ϕ : Dk
n → [n−1]×Dk

n−1∪ [n−k−1]×Dk
n−2, which associates

to each permutation σ a pair (m,σ′) = ϕ(σ), be defined as follows:
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1. If the integer n is in a cycle of length greater than or equal to 3, or the length of
the cycle which contains the integer n is equal to 2 and σ(n) ≤ k, then the integer
m is equal to σ−1(n) and the permutation σ′ is obtained from the permutation σ by
removing the integer n from his cycle. (Note that the permutation σ′ is indeed an
element of the set Dk

n−1.)

2. If the length of the cycle which contains the integer n is equal to 2 and σ(n) > k, then
the integer m is equal to σ(n) and the permutation σ′ is obtained from the permutation
σ by removing the cycle (σ(n), n) and then decreasing by 1 all integers between σ(n)+1
and n− 1 in each cycle. (Note that the permutation σ′ is indeed an element of the set
Dk

n−2.)

Remark 2.3. If the integer n is greater than k and σ ∈ Dk
n, then σ′(n) )= n.

Proposition 2.4. The map ϕ is bijective.

Proof. Notice that a pair (m,σ′) in the image ϕ(Dk
n) is contained either in the set of all pairs

of [n − 1] ×Dk
n−1 if the integer n lies in a cycle of length greater than 2 or equal to 2 and

σ′(n) ≤ k , or in the set of all pairs of [n − k − 1] ×Dk
n−2 if the integer n lies in a cycle of

length equal to 2 and σ′(n) > k. Define a map ϕ̃ : [n− 1]×Dk
n−1 ∪ [n− k− 1]×Dk

n−2 → Dk
n

so that the permutation σ′ = ϕ̃(m,σ) is obtained as follows:

• either by inserting the integer n in a cycle of the permutation σ after the integer
m ∈ [n−1] if σ is an element of the set Dk

n−1. In such case, the integer n lies in a cycle
of length greater to 2 or in a transposition and σ(n) ≤ k.

• or by creating the transposition (m,n) with k < m ≤ n− 2 and then increasing by 1
all integers between m and n−2 in each cycle of the permutation σ if the permutation
σ is an element of the set Dk

n−2. In such case, the integer n is in a transposition and
σ(n) > k.

The map ϕ̃ is the inverse of the map ϕ.

Corollary 2.5. The number dk
n equals the cardinality of the set of k-fixed-points-permutations

in the symmetric group Sn.

Proposition 2.6. For all integers k, we have dk
k = 1.

Proof. The permutation 12 . . . k is the only k-fixed-points permutation of the symmetric
group Sk.
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2.2. Second Relation for the Numbers dk
n

Another relation satisfied by the numbers dk
n can be easily deduced from the generating

function, but we will give its combinatorial interpretation.

Definition 2.7. Let the map ϑ : Dk−1
n−1∪Dk−1

n → [k]×Dk
n, which associates to a permutation

σ a pair (m,σ′) = ϑ(σ), be defined as below:

1. If σ ∈ Dk−1
n−1, then the integer m is equal to k and the permutation σ′ is obtained

from the permutation σ by creating the cycle (k) and then increasing by 1 all integers
greater than or equal to k in each cycle of the permutation σ.

2. If σ ∈ Dk−1
n , then the integer m is equal to the smallest integer in the cycle that

contains the integer k, and the permutation σ′ is obtained from the permutation σ
by removing the word kσ(k) · · ·σ−1(m) from that cycle and then creating the cycle
(kσ(k) · · ·σ−1(m)).

Proposition 2.8. The map ϑ is a bijection.

Proof. The map ϑ is injective. It suffices to show that ϑ is surjective. Let us look at various
cases of the pair (m,σ′).

1. If m = k and σ′(k) = k, then we define the permutation σ by deleting the cycle
(k) and then decreasing by 1 all integers greater than k in each cycle. It follows
straightforwardly that the permutation σ is an element of the set Dk−1

n−1.

2. If m = k and σ′(k) )= k, then σ = σ′ and σ ∈ Dk−1
n .

3. If m )= k, then the permutation σ is obtained from the permutation σ′ by removing the
cycle which contains k and then inserting the word kσ′(k)σ′2(k) · · · in the cycle which
contains the integer m just before the integer σ′−1(m). The permutation σ is indeed
an element of the set Dk−1

n .

It is impossible by construction of the map ϑ that m = k and the integer k is in the same
cycle as an integer smaller than k.

Theorem 2.9. For all integers 1 ≤ k ≤ n, we have

kdk
n = dk−1

n−1 + dk−1
n .

Proof. By the bijection ϑ, we have

#Dk−1
n−1 + #Dk−1

n = #[k]×Dk
n,

that is,
kdk

n = dk−1
n−1 + dk−1

n .
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2.3. Third Relation for the Numbers dk
n

The following unexpected relation is a generalization of the famous relation on derangement
numbers and we will give a bijective proof of it.

Theorem 2.10. For all integers 0 ≤ k ≤ n− 1, one has

ndk
n−1 = dk

n + dk−1
n−2.

Proof. Let us consider the map ς : [n]×Dk
n−1 → Dk

n∪Dk−1
n−2, which associates to a pair (m,σ)

a permutation σ′ = ς((m,σ)), defined in the following way:

1. If m < n, then the permutation σ′ is obtained from the permutation σ by inserting
the integer n in the cycle which contains m just before the integer m itself. The
permutation σ′ is indeed an element of the set Dk

n.

2. If m = n and σ(1) )= 1, then the permutation σ′ = ς((n,σ)) is obtained from the
permutation σ by removing the integer σ(1) and then creating the cycle (n σ(1)).
The permutation σ′ is indeed an element of the set Dk

n and σ′(n) > k.

3. If m = n and σ(1) = 1, then the permutation σ′ = ς((n,σ)) is obtained from the
permutation σ by removing the cycle (1) and then by decreasing by 1 all integers in
each cycle. It follows straightforwardly that the permutation σ′ is an element of the
set Dk

n−2.

It is clear that the map ς is injective. Hence, to show it is bijective, it suffices to show that
ς is surjective. Let us look at the various cases of the permutation σ′.

1. If the permutation σ′ is an element of the set Dk
n and the cycle that contains n is

different from the transposition (n σ′(n)) where σ′(n) > k, then the pair (m,σ) is
defined by m = σ′−1(n), and the permutation σ is obtained by removing the integer n
from the cycle containing it.

2. If the permutation σ′ is an element of the set Dk
n and the c ycle that contains n is a

transposition (n σ′(n)) where σ′(n) > k, then the pair (m,σ) is defined by m = n
and the permutation σ is obtained by removing the cycle (n σ′(n)) and inserting the
integer σ′(n) in the cycle that contains the integer 1 just after 1.

3. If the permutation σ′ is an element of the set Dk−1
n−2, then the pair (m,σ) is defined by

m = n and the permutation σ is obtained by increasing by 1 all the integers in each
cycle of the permutation σ′ and then creating the new cycle (1).
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Remark 2.11. Theorems 2.1 and 2.9 together imply Theorem 2.10 as follows. Let

F (n, k) = ndk
n−1 − dk

n − dk−1
n−2

G(n, k) = kdk
n − dk−1

n−1 − dk−1
n .

Then the identity in Theorem 2.1 can be rewritten as

F (n, k) + F (n− 1, k) = G(n− 2, k).

So, since G(n, k) = 0 for all n ≥ k ≥ 0, by Theorem 2.9, we get

F (n, k) = (−1)n−k−1F k
k+1 = 0 (from Theorem 2.1) for all n ≥ k ≥ 0.

It seems worth considering whether or not the sieve method can also be generalized using
the above relation between F and G.

3. The Famous dn = ndn−1 + (−1)n

Notice that the set Dn of derangements or permutations without fixed points is equal to the
set D0

n.

Definition 3.1. Let us define the critical derangement ∆n = (1 2)(3 4) · · · (n− 1 n) if the
integer n is even, and the sets

• En = {∆n} if the integer n is even, and En = ∅ otherwise,

• Fn = {(n,∆n−1)} if the integer n is odd, and Fn = ∅ otherwise.

Let τ : [n]×Dn−1 \Fn → Dn \En be the map which associates to a pair (i, δ) a permutation
δ′ = τ((i, δ)) defined as follows:

1. If the integer i < n, then the permutation δ′ = δ(i n). In other words, the permuta-
tion δ′ is obtained from the permutation δ by inserting the integer n in the cycle that
contains the integer i just after the integer i.

2. If the integer i = n, then let p be the smallest integer such that the transpositions
(1 2), (3 4), . . . , (2p − 1 2p) are cycles of the permutation δ and the transposition
(2p + 1 2p + 2) is not.

(a) If δ(2p+1) = 2p+2, then the permutation δ′ is obtained from the permutation δ
by removing the integer 2p + 1 from the cycle that contains it, and then creating
the new cycle (2p + 1 n).



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7 (2007), #A36 8

(b) If δ(2p + 1) )= 2p + 2, then we have to distinguish the following two cases:

i. If the length of the cycle that contains the integer 2p + 1 is equal to 2, then
the permutation δ′ is obtained from the permutation δ by removing the cycle
(2p + 1 δ(2p + 1)), and then inserting the integer 2p + 1 in the cycle that
contains the integer 2p+2 just before the integer 2p+2 and creating the new
cycle (δ(2p + 1) n).

ii. If the length of the cycle that contains the integer 2p + 1 is greater than 2,
then the permutation δ′ is obtained from the permutation δ by removing the
integer δ(2p + 1) and then creating the new cycle (δ(2p + 1) n).

Proposition 3.2. The map τ is bijective.

Proof. Notice that the only pair (i, δ) which is not defined by the map τ is the pair (n,∆n−1)
if the integer n− 1 is even. Notice also that the image τ([n− 1]×Dn−1) is contained in the
set of all derangements Dn where the integer n lies in a cycle of length greater than or equal
to 3, and the image τ({n}×Dn−1 \Fn) is contained in the set of all derangements Dn where
the integer n lies in a cycle of length 2. So we need only show that there exists a map ζ such
that

• associates an element of [n − 1] × Dn−1 with every derangement of Dn in which the
integer n lies in a cycle of length greater or equal to 3.

• associates an element of {n}×Dn−1 \ Fn with every derangement of Dn in which the
integer n lies in a cycle of length 2.

• is the inverse of τ .

It is straightforward to verify that the map ζ is defined as follows:

1. If the integer n lies in a cycle of length greater or equal to 3, then ζ(δ) is the pair (i, δ′)
where i = δ−1(n), and the permutation δ′ is obtained by removing the integer n from
the derangement δ. The permutation δ′ is a derangement of Dn−1 and the integer i is
smaller than n.

2. If the integer n lies in a cycle of length 2, then let p the smallest nonnegative integer such
that (1 2), (3 4), . . . , (2p−1 2p) are cycles of the derangement δ while the transposition
(2p + 1 2p + 2) is not.

(a) If δ(n) = 2p+1, then ζ(δ) is the pair (n, δ′) where the permutation δ′ is obtained
from the derangement δ by deleting the cycle (n 2p + 1) and then inserting the
integer 2p+1 in the cycle which contains the integer 2p+2 just before the integer
2p + 2. In other words, we have δ = (12)(34) · · · (2p − 1 2p)(2p + 1 n)(2p +
2 . . .) · · · and δ′ = (12)(34) · · · (2p− 1 2p)(2p + 1 2p + 2 . . .) · · · .
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(b) If δ(2p + 1) )= n, then we have to distinguish the following two cases:

i. If δ(2p + 1) )= 2p + 2, then ζ(δ) is the pair (n, δ′) where the permutation δ′

is obtained from the derangement δ by deleting the cycle (n δ(n)) and then
inserting the integer δ(n) in the cycle which contains the integer 2p + 1 just
before the integer 2p + 1. In other words, we have δ = (12)(34) · · · (2p −
1 2p)(2p + 1 . . .) · · · (δ(n) n) · · · and δ′ = (12)(34) · · · (2p − 1 2p)(2p +
1 . . . δ(n)) · · · .

ii. If δ(2p + 1) = 2p + 2, then ζ(δ) is the pair (n, δ′) where the permutation δ′

is obtained from the derangement δ by deleting the cycle (n δ(n)) and the
integer 2p+1 and then creating the new cycle (2p+1 δ(n)). In other words,
we have δ = (12)(34) · · · (2p−1 2p)(2p+1 2p+2 . . .) · · · (δ(n) n) · · · and
δ′ = (12)(34) · · · (2p− 1 2p)(2p + 1 δ(n))(2p + 2 . . .) · · · .

Notice that the derangement ∆n, if the integer n is even, is the only derangement which is
not defined by the map ζ.

Corollary 3.3. If the integer n is even, then we have dn = ndn−1 + 1. If the integer n is
odd, then we have dn + 1 = ndn−1.

Acknowledgements. The author is very grateful to the referree for his/her kind suggestions
and for his/her additional reference.
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