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Abstract

We determine a threshold function for Bh and additive basis properties in Zn.

1. Introduction

We use the following notations: Z denotes the integers 0,±1,±2, . . . ; N is the set of
positive integers; Zn is the additive cyclic group of order n. Members of a set S are
referred to as {s1, s2, . . . }. The cardinality of a finite set S is denoted by |S|. A multiset
q = {q1, . . . , qk}m can be formally defined as a pair (Q, m), where Q is the set of distinct
elements of q and m : Q → N, where m(q) is the multiplicity of q ∈ q for each q ∈ Q.
The number of distinct elements of q is denoted by |q|d. The usual set operations such
as union, intersection and Cartesian product can be easily generalized for multisets. In
this paper we use the intersection: suppose that (A, m) and (B, n) are multisets, then
the intersection can be defined as (A ∩ B, f), where f(x) = min{m(x), n(x)}.

For a given S ⊂ Zn and x ∈ Zn denote by rS,h(x) the number of different representa-
tions x = s1 + · · · + sh with si ∈ S, that is

rS,h(x) = |{{s1, . . . , sh}m : s1 + · · · + sh = x, si ∈ S}|.

A set S ⊂ Zn is called Bh set if the number of distinct representation of x as s1 + · · ·+sh,
si ∈ S is at most 1, that is rS,h(x) ≤ 1 for all x ∈ Zn. A set S ⊂ Zn is called additive
h-basis if every element in Zn can be represented as the sum of not necessarily distinct
h elements of the set S, that is rS,h(x) ≥ 1 for every x ∈ Zn.

For n a positive integer, let 0 ≤ pn ≤ 1. The random subset S(n, pn) is a probabilistic
space over the set of subsets of Zn determined by Pr(k ∈ Sn) = pn for every k ∈ Zn,
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with these events being mutually independent. This model is often used for proving the
existence of certain sequences. Given any combinatorial number theoretic property P ,
there is a probability that S(n, pn) satisfies P , which we write Pr{S(n, pn) |= P}. The
function r(n) is called a threshold function for a combinatorial number theoretic property
P if

(i) When pn = o(r(n)), limn→∞ Pr{S(n, pn) |= P} = 0,

(ii) When r(n) = o(p(n)), limn→∞ Pr{S(n, pn) |= P} = 1,

or visa versa.

The goal of this paper is to determine a threshold function for Bh sets and additive
h-bases in Zn. We use the typical notation exp (x) = ex

Theorem 1.1. Let c > 0 be arbitrary. Let us suppose that pn = c

n
2h−1
2h

and the random

set An ⊂ Zn is defined the following way: For every k ∈ Zn we have Pr(k ∈ An) = pn.

Then lim
n→∞

Pr{An is a Bh set} = exp

(
− c2h

2(h!)2

)
.

Theorem 1.2. Let c be an arbitrary real number. Suppose that pn =
(h!nlogn)1/h(1+ c

hlogn )

n

and the random set An ⊂ Zn is defined the following way: For every k ∈ Zn we have
Pr{k ∈ An} = pn. Then lim

n→∞
Pr(An is an additive h-basis) = exp (− exp (−c)).

2. Proofs

In order to prove the theorems we need two lemmas from probability theory (see e.g. [1]
p. 41, 95-98.). In many instances, we would like to bound the probability that none of the
bad events Bi, i ∈ I, occur. If the events are mutually independent, then Pr(∩i∈IBi) =∏

i∈I Pr(Bi). When the Bi are ”mostly” independent, the Janson’s inequality allows us,
sometimes, to say that these two quantities are ”nearly” equal. Let Ω be a finite universal
set and R be a random subset of Ω given by Pr(r ∈ R) = pr, these events being mutually
independent over r ∈ Ω. Let Ei, i ∈ I be subsets of Ω, where I a finite index set. Let Bi

be the event Ei ⊂ R. Let Xi be the indicator random variable for Bi and X =
∑

i∈I Xi

be the number of Eis contained in R. The event ∩i∈IBi and X = 0 are then identical.
For i, j ∈ I, we write i ∼ j if i )= j and Ei ∩ Ej )= ∅. We define ∆ =

∑
i∼j Pr(Bi ∩ Bj),

here the sum is over ordered pairs. We set M =
∏

i∈I Pr(Bi).

Lemma 1.3 (Janson’s inequality). Let Bi, i ∈ I, ∆, M be as above and assume that
Pr(Bi) ≤ ε for all i. Then

M ≤ Pr

(
⋂

i∈I

Bi

)
≤ M exp

(
1

1 − ε
· ∆

2

)
.
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The more traditional approach to the Poisson paradigm is called Brun’s sieve, for its
use by the number theorist T. Brun. Let F1, . . . , Fm be events, Xi the indicator random
variable for Fi, and X = X1 + · · · + Xm the number of Bi that hold. Let there be a
hidden parameter n (so that actually m = m(n), Bi = B(n)

i , X = X(n)) which will define
our O notations. Define

S(r) =
∑

Pr{Bi1 ∧ · · · ∧ Bir},

where the sum is over all sets {i1, . . . , ir} ⊆ {1, . . . , m}. The inclusion-exclusion principle
gives that Pr{X = 0} = Pr{B1 ∧ · · · ∧ Bm} = 1 − S(1) + S(2) − · · · + (−1)rS(r) · · · .

Lemma 1.4. Suppose there is a constant µ so that E(X) = S(1) → µ and such that for
every fixed r,

E

(
X(r)

r!

)
= S(r) → µr

r!
.

Then Pr{X = 0} → exp (−µ) and, for every t, we have Pr(X = t) → µt

t!
exp (−µ).

In order to prove the theorems we need two lemmas. In the sequel, for the sake of
brevity, we write u = {u1, . . . , uh}m and v = {v1, . . . , vh}m with u )= v. For every a ∈ Zn

and h, t ∈ N, 0 < t ≤ h, let

Sa,h,t = |{u : ui ∈ Zn

h∑

i=1

ui = a, |u|d = t}|

and for every a1, a2 ∈ Zn and h, t, s, k ∈ N with 0 < k ≤ min{s, t} let

Ca1,a2,h,t,s,k =

∣∣∣∣∣{{u,v} :
h∑

i=1

ui = a1,
h∑

i=1

vi = a2, |u|d = s, |v|d = t, |u ∩ v|d = k}

∣∣∣∣∣ .

Lemma 1.5. For every a ∈ Zn and h ≥ 2 we have

1. Sa,h,h = nh−1

h! + Oh(nh−2);

2. Sa,h,t = Oh(nt−1) for 1 ≤ t ≤ h − 1.

Proof. Case (1): By the definition of Sa,h,h

h!Sa,h,h =

∣∣∣∣∣{(u1, . . . , uh) : ui ∈ Zn,
h∑

i=1

ui = a, and ui )= uj for i )= j}

∣∣∣∣∣ . (1)

An upper bound for (1) is n(n− 1) . . . (n− h + 2) and a lower bound is n(n− 1) . . . (n−
h + 3)(n − (h − 2) − (h − 2) − 2) because we have n(n − 1) . . . (n − (h − 3)) possibilities
for u1, . . . , uh−2 and the conditions uh−1 )= ui, uh )= ui for 1 ≤ i ≤ h − 2 and uh−1 )= uh

exclude at most h − 2 + h − 2 + 2 choices for uh−1.
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Case (2): The condition |u|d = t implies that there is a partition {1, . . . , h} =
t⋃

i=1

Ai

such that ui = uj if and only if 1 ≤ i, j ≤ h are in the same Al. Fix such a partition.
Then there are n choices for the elements ui, i ∈ A1, then (n − 1) possibilities for the
elements ui, i ∈ A2 etc. and finally (n − (t − 2)) choices for the elements ui, i ∈ At−1.
It follows from this that if we have already chosen the elements ui, i ∈

⋃t−1
i=1 Ai then we

have at most t ≤ h possibilities for the elements ui, i ∈ At. In order to finish the proof
we mention that the number of suitable partitions is Oh(1).

Lemma 1.6. For every a1, a2 ∈ Zn and h ≥ 2 we have

1. Ca1,a2,h,h,h,0 = n2h−2

(h!)22 + Oh(n2h−3);

2. Ca1,a2,h,t,s,k = Oh(nt+s−k−2) for t ≥ s and t > k ≥ 0;

3. Ca1,a2,h,s,s,s = Oh(ns−2) for every 2 ≤ s < h.

Proof. Case (1): By the definition of Ca1,a2,h,h,h,0

2(h!)2Ca1,a2,h,h,h,0 =
∣∣{
(
(u1, . . . , uh) , (v1, . . . , vh)

)
: ui )= uj, vi )= vj, ui )= vj,

h∑

i=1

ui = a1,
h∑

i=1

vi = a2}

∣∣∣∣∣ . (2)

An upper bound for (2) is nh−1nh−1 and a lower bound for (2) is n(n − 1) . . . (n − (h −
3))(n − (h − 2) − (h − 2) − 2)(n − h)(n − (h + 1)) . . . (n − h − (h − 3))(n − (2h − 2) −
(2h − 2) − 2), because we have n(n − 1) . . . (n − (h − 3)) choices for u1, . . . , uh−2. After
choosing u1, . . . , uh−2 there are at least n − (h − 2) − (h − 2) − 2 possibilities left for
uh−1 because uh−1 )= uj and uh )= uj for 1 ≤ j ≤ h − 2 and uh−1 )= uh. After fixing
u1, . . . , uh we have (n − h) . . . (n − (2h − 2)) choices for v1, . . . , vh−2. Finally, we have at
least n − 2h − (2h − 4) − 2 choices for vh−1 because vh−1 )= uj, vh )= uj, for 1 ≤ j ≤ h,
vh−1 )= vj, vh )= vj for 1 ≤ j ≤ h − 2 and vh−1 )= vh.

Case (2): Obviously,

Ca1,a2,h,t,s,k ≤
∣∣∣∣{((u1, . . . , uh), (v1, . . . , vh)) :

h∑

i=1

ui = a1,
h∑

i=1

vi = a2,

|u|d = t, |v|d = s, |u ∩ v|d = k}
∣∣∣∣. (3)

By the conditions |u|d = s, |v|d = t there are partitions {1, . . . , h} = ∪t
i=1Ai =

⋃s
i=1 Bi

such that ui = uj if and only if there exists an 1 ≤ l ≤ t such that i, j ∈ Al, and vi = vj if
and only if there exists an 1 ≤ l ≤ s such that i, j ∈ Bl. We have at most hns−1 choices
for (v1, . . . , vh) with

∑h
i=1 vi = a2. The condition |u ∩ v|d = k implies that there are
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injections χu : {1, . . . , k} → {1, . . . , t} and χv : {1, . . . , k} → {1, . . . , s} such that ui = vj

if and only if there exists a 1 ≤ l ≤ k such that ui ∈ Aχu(l) and vj ∈ Bχv(l). Hence we get

that there are at most hnt−k−1 choices for the vis, i ∈ {1, . . . , h} \
⋃k

i=1 Bχv(i). Since the
numbers of partitions and injections are Oh(1), the proof is completed.

Case (3): Evidently,

Ca1,a2,h,s,s,s ≤
∣∣∣∣{((u1, . . . , uh), (v1, . . . , vh)) :

h∑

i=1

ui = a1,
h∑

i=1

vi = a2,u )= v,

|u|d = s, |v|d = s, |u ∩ v|d = s}
∣∣∣∣. (4)

By the conditions |u|d = s, |v|d = s there are partitions {1, . . . , h} =
⋃s

i=1 Ai =
⋃s

i=1 Bi

such that ui = uj if and only if there exists an 1 ≤ l ≤ s such that i, j ∈ Al and vi = vj

if and only if there exists an 1 ≤ m ≤ s such that i, j ∈ Bm. The condition |u ∩ v|d = k
implies that there is a bijection χ : {1, . . . , s} → {1, . . . , s} such that ui = vj if and only
if there exists a 1 ≤ l ≤ s such that i ∈ Al and j ∈ Bχ(l). Since u )= v, therefore there
exists a 1 ≤ l ≤ s such that |Al| )= |Bχ(l)|. Fix such an l. Then there exists a 1 ≤ k ≤ s

such that |Ak|
|Bχ(k)|

)= |Al|
|Bχ(l)|

, because otherwise |Ak| = |Bχ(k)| |Al|
|Bχ(l)|

for every 1 ≤ k ≤ s, but

h =
s∑

k=1

|Ak| =
|Al|

|Bχ(l)|

s∑

k=1

|Bχ(k)| =
|Al|

|Bχ(l)|
h,

which is a contradiction. Fix such a k. Let {i1, . . . , is−2} = {1, . . . , s} \ {k, l}. We have
n(n − 1) · · · (n − (s − 3)) choices for the elements ui, i ∈

⋃s−2
j=1 Aij . After fixing the

elements ui, i ∈
⋃s−2

j=1 Aij let
s−2∑

j=1

∑

m∈Aij

um = U and
s−2∑

j=1

∑

m∈Bχ(ij)

vm = V . Then we need

x, y ∈ Zn such that U + |Ak|x + |Al|y = a1 and V + |Bχ(k)|x + |Bχ(l)|y = a2. Hence,

(|Al||Bχ(k)|− |Ak||Bχ(l)|)y = a1|Bχ(k)| + V |Ak|− U |Bχ(k)|− a2|Ak|. (5)

After fixing 1 ≤ k, l ≤ s and the elements ui, i ∈
s−2⋃

j=1

Aij , the elements U and V are

determined, therefore the right-hand side in (3) is unique. Since 0 < ||Al||Bχ(k)| −
|Ak||Bχ(l)|| ≤ h2, therefore the number of possible y’s is at most h2 and after fixing y we
have at most h choices for x. Finally we mention that we have got Oh(1) choices for the
partitions and bijection.

Proof of Theorem 1. For each unordered, different u1, . . . , uh ∈ Zn and v1, . . . , vh ∈ Zn

with
∑h

i=1 ui =
∑h

i=1 vi. Let Bu,v be the event that u1, . . . , uh, v1, . . . , vh ∈ An. In the
following we suppose that

∑h
i=1 ui =

∑h
i=1 vi. If we prove ∆ =

∑
{u,v}:|u∩v|d>0 Pr{Bu,v} =
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o(1), then by the Janson inequality we have

Pr{An is Bh set} = (1 + o(1))
∏

{u,v}

Pr{Bu,v}

= (1 + o(1))




∏

{u,v}:|u|d=h,|v|d=h,|u∩v|d=0

Pr{Bu,v}





×




h−1∏

k=1

∏

{u,v}:|u|d=h,|v|d=h,|u∩v|d=k

Pr{Bu,v}





×




h−1∏

s=2

∏

{u,v}:|u|d=s,|v|d=s,|u∩v|d=s

Pr{Bu,v}





×




h−1∏

s=1

s−1∏

k=0

∏

{u,v}:|u|d=s,|v|d=s,|u∩v|d=k

Pr{Bu,v}





×




h−1∏

s=1

h∏

t=s+1

s∏

k=0

∏

{u,v}:|u|d=s,|v|d=t,|u∩v|d=k

Pr{Bu,v}





= P1P2P3P4P5,

where, by Lemma 1.6.1,

P1 =
∏

a∈Zn

∏

{u,v}:|u|d=h,|v|d=h,|u∩v|d=0,
∑h

i=1 ui
∑h

i=1 vi=a

Pr{Bu,v}

=
(

1 − c2h

n2h−1

)n2h−1

2(h!)2
(1+Oh( 1

n))

= (1 + o(1)) exp
(
− c2h

2(h!)2

)
,

by Lemma 1.6.2,

P2 =
∏

a∈Zn

h−1∏

k=1

∏

{u,v}:|u|d=h,|v|d=h,|u∩v|d=k,
∑h

i=1 ui=
∑h

i=1 vi=a

Pr{Bu,v}

=
h−1∏

k=1

(1 − p2h−k
n )Oh(n2h−k−1)

=
h−1∏

k=1

exp
(

(pnn)2h−kOh

(
1
n

))

= exp (o(1)),
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by Lemma 1.6.3,

P3 =
∏

a∈Zn

h−1∏

s=2

∏

{u,v}:|u|d=s,|v|d=s,|u∩v|d=s,
∑h

i=1 ui=
∑h

i=1 vi=a

Pr{Bu,v}

=
h−1∏

s=2

(1 − ps
n)Oh(ns−1)

=
h∏

k=1

exp
(

(−pnn)kOh

(
1
n

))

= exp (o(1)),

by Lemma 1.6.3,

P4 =
∏

a∈Zn

h−1∏

s=1

s−1∏

k=0

∏

{u,v}:|u|d=s,|v|d=s,|u∩v|d=k,
∑h

i=1 ui=
∑h

i=1 vi=a

Pr{Bu,v}

=
h∏

s=1

s−1∏

k=0

(1 − p2s−k
n )Oh(n2s−k−1)

=
h∏

s=1

s−1∏

k=0

exp
(
−(pnn)2s−kOh(

1
n

)
)

= exp (o(1)),

and, by Lemma 1.6.2,

P5 =
∏

a∈Zn

h−1∏

s=1

h∏

t=s+1

s∏

k=0

∏

{u,v}:|u|d=s,|v|d=t,|u∩v|d=k,
∑h

i=1 ui=
∑h

i=1 vi=a

Pr{Bu,v}

=
h−1∏

s=1

h∏

t=s+1

s∏

k=0

(1 − ps+t−k
n )O(ns+t−k−1) = exp (o(1)).

Hence, it remains to prove that ∆ = o(1). In order to prove ∆ = o(1) we partition ∆ as

∆ =
∑

{u,v}:|u∩v|d>0

Pr{Bu,v}

=
h−1∑

s=1

∑

{u,v}:|u|d=s,|v|d=s,|u∩v|d=s

Pr{Bu,v}

+
h∑

s=2

s−1∑

k=1

∑

{u,v}:|u|d=s,|v|d=s,|u∩v|d=k

Pr{Bu,v}

+
h−1∑

s=1

h∑

t=s+1

s∑

k=0

∑

{u,v},|u|d=s,|v|d=t,|u∩v|d=k

Pr{Bu,v}

=
∑

1

+
∑

2

+
∑

3

.



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7 (2007), #A32 8

By Lemma 1.6.3,

∑

1

=
∑

a∈Zn

h−1∑

s=1

∑

{u,v}:|u|d=s,|v|d=s,|u∩v|d=s,
∑h

i=1 ui=
∑h

i=1 vi=a

Pr{Bu,v}

=
h−1∑

s=2

Oh(ns−1)ps
n

= Oh

(
1
n

h−1∑

s=2

(pnn)s

)
= o(1),

by Lemma 1.6.2,

∑

2

=
∑

a∈Zn

h∑

s=2

s−1∑

k=1

∑

{u,v}:|u|d=s,|v|d=s,|u∩v|d=k,
∑h

i=1 ui=
∑h

i=1 vi=a

Pr{Bu,v}

=
h∑

s=2

s−1∑

k=1

Oh(n2s−k−1)p2s−k
n

= Oh

(
1
n

h∑

s=2

s−1∑

k=1

(pnn)2s−k

)
= o(1),

and by Lemma 1.6.2,

∑

3

=
∑

a∈Zn

h−1∑

s=1

h∑

t=s+1

s∑

k=0

∑

{u,v},|u|d=s,|v|d=t,|u∩v|d=k,
∑h

i=1 ui=
∑h

i=1 vi=a

Pr{Bu,v}

=
h−1∑

s=1

h∑

t=s+1

s∑

k=1

Oh(nt+s−k−1)pt+s−k
n

= Oh

(
1
n

h−1∑

s=1

h∑

t=s+1

s∑

k=1

(pnn)t+s−k

)
= o(1),

which completes the proof.

Proof of Theorem 2. For a fixed x ∈ Zn and y1, . . . , yh ∈ Zn with
∑h

i=1 yi = x let y =
{y1, . . . , yh} and let By,x be the event y1, . . . , yh ∈ An. For a fixed x ∈ Zn let Cx =
∩y,

∑h
i=1 yi=xBy,x. Obviously,

Pr{An is an h-basis} = Pr(∩x∈ZnCx).

By Lemma 1.4 it is sufficient to show that for every fixed positive integer r we have

∑

{x1,...,xr}:xi∈Zn,xi '=xj

Pr{Cx1 ∩ · · · ∩ Cxr} → exp (−rc)

r!
.
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In order to estimate
∑

{x1,...,xr}:xi∈Zn,xi '=xj

Pr{Cx1 ∩ · · ·∩Cxr} =
∑

{x1,...,xr}:xi∈Zn,xi '=xj

Pr{∩1≤i≤r∩∩y:
∑h

j=1 yj=xi
By,xi}

we use Janson’s inequality. Obviously, Pr{By,xi} = o(1). If we prove ∆ = o(1), then by
Lemmas 1.3 and 1.5, and the definition of pn

∑

{x1,...,xr}:xi∈Zn,xi '=xj

Pr






⋂

1≤i≤r∩

⋂

y:
∑h

j=1 yj=xi

By,xi






= (1 + o(1))
r∏

i=1

∏

y:
∑h

j=1 yj=xi

Pr{By,xi}

= (1 + o(1))
r∏

i=1

h∏

k=1

∏

y:y1+···+yh=xi,|u|d=k

(1 − pk
n)

= (1 + o(1))
r∏

i=1

h−1∏

k=1

(
(1 − pk

n)Oh(nk−1)
)

(1 − pk
n)

nh−1

h! (1+Oh( 1
n))

= (1 + o(1))
r∏

i=1

[(
exp

{
−Oh

(
1

n

) ∑

1≤k≤h−1

(pnn)k

})

×
(

exp

{
−(pnn)h

h!

(
1 + Oh(p

h
n)
)( 1

n
+ Oh

(
1

n2

))})]

= (1 + o(1))

(
exp

{
−r

h!n log n(1 + c
log n)(1 + Oh,c(

1
log2 n

))

h!

1

n

})

= (1 + o(1))
exp (−cr)

nr
.

Therefore,

∑

{x1,...,xr},xi∈Znxi '=xj

Pr{Cx1 ∩ · · · ∩Cxr} = (1 + o(1))

(
n

r

)
exp (−cr)

nr
= (1 + o(1))

exp (−cr)

r!
.

Let u = {u1, . . . , uh} with u1 + · · ·+uh = xi and v = {v1, . . . , vh} with v1 + · · ·+vh = xj.
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In order to finish the proof, we separate ∆ as

∆ =
∑

1≤i,j≤r

∑

{u,xi},{v,xj}:|u∩v|d>0

Pr{Bu,xi ∩ Bv,xj}

=
∑

1≤i,j≤r

h−1∑

s=2

∑

{u,xi},{v,xj}:|u|d=s,|v|d=s,|u∩v|d=s

ps
n

+
∑

1≤i,j≤r

h∑

s=2

s−1∑

k=1

∑

{u,xi},{v,xj}:|u|d=s,|v|d=s,|u∩v|d=k

p2s−k
n

+
∑

1≤i,j≤r

h−1∑

s=1

h∑

t=s+1

s∑

k=1

∑

{u,xi},{v,xj}:|u|d=s,|v|d=t,|u∩{v1...,vr}|d=k

ps+t−k
n

=
∑

1

+
∑

2

+
∑

3

,

where, by Lemma 1.6.3,

∑

1

≤ r2
h−1∑

s=2

ps
nOh(n

s−2) = Oh,r

(
1

n2

h−1∑

s=2

(pnn)s

)
= o(1),

by Lemma 1.6.2,

∑

2

≤ r2
h∑

s=2

s−1∑

k=1

p2s−k
n Oh(n

2s−k−2) = Oh,r

(
1

n2

h∑

s=2

s−1∑

k=1

(pnn)2s−k

)
= o(1),

and, by Lemma 1.6.2,

∑

3

≤ r2
h−1∑

s=1

h∑

t=s+1

s∑

k=1

pt+s−k
n Oh(n

t+s−k) = Oh,r

(
1

n2

h−1∑

s=1

h∑

t=s+1

s∑

k=1

(pnn)t+s−k

)
= o(1)

which completes the proof.
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