RANDOM B_{h} SETS AND ADDITIVE BASES IN \mathbb{Z}_{N}

Csaba Sándor ${ }^{1}$
Department of Stochastics, Budapest University of Technology and Economics, Hungary
csandor@math.bme.hu

Received: 12/22/06, Revised: 6/20/07, Accepted: 6/22/07, Published: 7/3/07

Abstract

We determine a threshold function for B_{h} and additive basis properties in \mathbb{Z}_{n}.

1. Introduction

We use the following notations: \mathbb{Z} denotes the integers $0, \pm 1, \pm 2, \ldots ; \mathbb{N}$ is the set of positive integers; \mathbb{Z}_{n} is the additive cyclic group of order n. Members of a set S are referred to as $\left\{s_{1}, s_{2}, \ldots\right\}$. The cardinality of a finite set S is denoted by $|S|$. A multiset $\mathbf{q}=\left\{q_{1}, \ldots, q_{k}\right\}_{m}$ can be formally defined as a pair (Q, m), where Q is the set of distinct elements of \mathbf{q} and $m: Q \rightarrow \mathbb{N}$, where $m(q)$ is the multiplicity of $q \in \mathbf{q}$ for each $q \in Q$. The number of distinct elements of \mathbf{q} is denoted by $|\mathbf{q}|_{d}$. The usual set operations such as union, intersection and Cartesian product can be easily generalized for multisets. In this paper we use the intersection: suppose that (A, m) and (B, n) are multisets, then the intersection can be defined as $(A \cap B, f)$, where $f(x)=\min \{m(x), n(x)\}$.

For a given $S \subset \mathbb{Z}_{n}$ and $x \in \mathbb{Z}_{n}$ denote by $r_{S, h}(x)$ the number of different representations $x=s_{1}+\cdots+s_{h}$ with $s_{i} \in S$, that is

$$
r_{S, h}(x)=\left|\left\{\left\{s_{1}, \ldots, s_{h}\right\}_{m}: s_{1}+\cdots+s_{h}=x, \quad s_{i} \in S\right\}\right| .
$$

A set $S \subset \mathbb{Z}_{n}$ is called B_{h} set if the number of distinct representation of x as $s_{1}+\cdots+s_{h}$, $s_{i} \in S$ is at most 1 , that is $r_{S, h}(x) \leq 1$ for all $x \in \mathbb{Z}_{n}$. A set $S \subset \mathbb{Z}_{n}$ is called additive h-basis if every element in \mathbb{Z}_{n} can be represented as the sum of not necessarily distinct h elements of the set S, that is $r_{S, h}(x) \geq 1$ for every $x \in \mathbb{Z}_{n}$.

For n a positive integer, let $0 \leq p_{n} \leq 1$. The random subset $S\left(n, p_{n}\right)$ is a probabilistic space over the set of subsets of \mathbb{Z}_{n} determined by $\operatorname{Pr}\left(k \in S_{n}\right)=p_{n}$ for every $k \in \mathbb{Z}_{n}$,

[^0]with these events being mutually independent. This model is often used for proving the existence of certain sequences. Given any combinatorial number theoretic property P, there is a probability that $S\left(n, p_{n}\right)$ satisfies P, which we write $\operatorname{Pr}\left\{S\left(n, p_{n}\right) \models P\right\}$. The function $r(n)$ is called a threshold function for a combinatorial number theoretic property P if
(i) When $p_{n}=o(r(n)), \lim _{n \rightarrow \infty} \operatorname{Pr}\left\{S\left(n, p_{n}\right) \models P\right\}=0$,
(ii) When $r(n)=o(p(n)), \lim _{n \rightarrow \infty} \operatorname{Pr}\left\{S\left(n, p_{n}\right) \models P\right\}=1$,
or visa versa.
The goal of this paper is to determine a threshold function for B_{h} sets and additive h-bases in \mathbb{Z}_{n}. We use the typical notation $\exp (x)=e^{x}$

Theorem 1.1. Let $c>0$ be arbitrary. Let us suppose that $p_{n}=\frac{c}{n^{\frac{2 h-1}{2 h}}}$ and the random set $A_{n} \subset \mathbb{Z}_{n}$ is defined the following way: For every $k \in \mathbb{Z}_{n}$ we have $\operatorname{Pr}\left(k \in A_{n}\right)=p_{n}$. Then $\lim _{n \rightarrow \infty} \operatorname{Pr}\left\{A_{n}\right.$ is a B_{h} set $\}=\exp \left(-\frac{c^{2 h}}{2(h!)^{2}}\right)$.
Theorem 1.2. Let c be an arbitrary real number. Suppose that $p_{n}=\frac{(h!n \operatorname{logn})^{1 / h}\left(1+\frac{c}{h \log n}\right)}{n}$ and the random set $A_{n} \subset \mathbb{Z}_{n}$ is defined the following way: For every $k \in \mathbb{Z}_{n}$ we have $\operatorname{Pr}\left\{k \in A_{n}\right\}=p_{n}$. Then $\lim _{n \rightarrow \infty} \operatorname{Pr}\left(A_{n}\right.$ is an additive h-basis $)=\exp (-\exp (-c))$.

2. Proofs

In order to prove the theorems we need two lemmas from probability theory (see e.g. [1] p. 41, 95-98.). In many instances, we would like to bound the probability that none of the bad events $B_{i}, i \in I$, occur. If the events are mutually independent, then $\operatorname{Pr}\left(\cap_{i \in I} \overline{B_{i}}\right)=$ $\prod_{i \in I} \operatorname{Pr}\left(\overline{B_{i}}\right)$. When the B_{i} are "mostly" independent, the Janson's inequality allows us, sometimes, to say that these two quantities are "nearly" equal. Let Ω be a finite universal set and R be a random subset of Ω given by $\operatorname{Pr}(r \in R)=p_{r}$, these event being mutually independent over $r \in \Omega$. Let $E_{i}, i \in I$ be subsets of Ω, where I a finite index set. Let B_{i} be the event $E_{i} \subset R$. Let X_{i} be the indicator random variable for B_{i} and $X=\sum_{i \in I} X_{i}$ be the number of E_{i} s contained in R. The event $\cap_{i \in I} \overline{B_{i}}$ and $X=0$ are then identical. For $i, j \in I$, we write $i \sim j$ if $i \neq j$ and $E_{i} \cap E_{j} \neq \emptyset$. We define $\Delta=\sum_{i \sim j} \operatorname{Pr}\left(B_{i} \cap B_{j}\right)$, here the sum is over ordered pairs. We set $M=\prod_{i \in I} \operatorname{Pr}\left(\overline{B_{i}}\right)$.
Lemma 1.3 (Janson's inequality). Let $B_{i}, i \in I, \Delta, M$ be as above and assume that $\operatorname{Pr}\left(B_{i}\right) \leq \epsilon$ for all i. Then

$$
M \leq \operatorname{Pr}\left(\bigcap_{i \in I} \bar{B}_{i}\right) \leq M \exp \left(\frac{1}{1-\epsilon} \cdot \frac{\Delta}{2}\right)
$$

The more traditional approach to the Poisson paradigm is called Brun's sieve, for its use by the number theorist T . Brun. Let F_{1}, \ldots, F_{m} be events, X_{i} the indicator random variable for F_{i}, and $X=X_{1}+\cdots+X_{m}$ the number of B_{i} that hold. Let there be a hidden parameter n (so that actually $m=m(n), B_{i}=B_{i}^{(n)}, X=X^{(n)}$) which will define our O notations. Define

$$
S^{(r)}=\sum \operatorname{Pr}\left\{B_{i_{1}} \wedge \cdots \wedge B_{i_{r}}\right\}
$$

where the sum is over all sets $\left\{i_{1}, \ldots, i_{r}\right\} \subseteq\{1, \ldots, m\}$. The inclusion-exclusion principle gives that $\operatorname{Pr}\{X=0\}=\operatorname{Pr}\left\{\bar{B}_{1} \wedge \cdots \wedge \bar{B}_{m}\right\}=1-S^{(1)}+S^{(2)}-\cdots+(-1)^{r} S^{(r)} \cdots$.

Lemma 1.4. Suppose there is a constant μ so that $E(X)=S^{(1)} \rightarrow \mu$ and such that for every fixed r,

$$
E\left(\frac{X^{(r)}}{r!}\right)=S^{(r)} \rightarrow \frac{\mu^{r}}{r!}
$$

Then $\operatorname{Pr}\{X=0\} \rightarrow \exp (-\mu)$ and, for every t, we have $\operatorname{Pr}(X=t) \rightarrow \frac{\mu^{t}}{t!} \exp (-\mu)$.

In order to prove the theorems we need two lemmas. In the sequel, for the sake of brevity, we write $\mathbf{u}=\left\{u_{1}, \ldots, u_{h}\right\}_{m}$ and $\mathbf{v}=\left\{v_{1}, \ldots, v_{h}\right\}_{m}$ with $\mathbf{u} \neq \mathbf{v}$. For every $a \in \mathbb{Z}_{n}$ and $h, t \in \mathbb{N}, 0<t \leq h$, let

$$
S_{a, h, t}=\left|\left\{\mathbf{u}: \quad u_{i} \in \mathbb{Z}_{n} \quad \sum_{i=1}^{h} u_{i}=a, \quad|\mathbf{u}|_{d}=t\right\}\right|
$$

and for every $a_{1}, a_{2} \in \mathbb{Z}_{n}$ and $h, t, s, k \in \mathbb{N}$ with $0<k \leq \min \{s, t\}$ let

$$
C_{a_{1}, a_{2}, h, t, s, k}=\left|\left\{\{\mathbf{u}, \mathbf{v}\}: \quad \sum_{i=1}^{h} u_{i}=a_{1}, \sum_{i=1}^{h} v_{i}=a_{2},|\mathbf{u}|_{d}=s,|\mathbf{v}|_{d}=t,|\mathbf{u} \cap \mathbf{v}|_{d}=k\right\}\right| .
$$

Lemma 1.5. For every $a \in \mathbb{Z}_{n}$ and $h \geq 2$ we have

1. $S_{a, h, h}=\frac{n^{h-1}}{h!}+O_{h}\left(n^{h-2}\right)$;
2. $S_{a, h, t}=O_{h}\left(n^{t-1}\right)$ for $1 \leq t \leq h-1$.

Proof. Case (1): By the definition of $S_{a, h, h}$

$$
\begin{equation*}
h!S_{a, h, h}=\mid\left\{\left(u_{1}, \ldots, u_{h}\right): \quad u_{i} \in \mathbb{Z}_{n}, \quad \sum_{i=1}^{h} u_{i}=a, \quad \text { and } \quad u_{i} \neq u_{j} \quad \text { for } \quad i \neq j\right\} \mid . \tag{1}
\end{equation*}
$$

An upper bound for (1) is $n(n-1) \ldots(n-h+2)$ and a lower bound is $n(n-1) \ldots(n-$ $h+3)(n-(h-2)-(h-2)-2)$ because we have $n(n-1) \ldots(n-(h-3))$ possibilities for u_{1}, \ldots, u_{h-2} and the conditions $u_{h-1} \neq u_{i}, u_{h} \neq u_{i}$ for $1 \leq i \leq h-2$ and $u_{h-1} \neq u_{h}$ exclude at most $h-2+h-2+2$ choices for u_{h-1}.

Case (2): The condition $|\mathbf{u}|_{d}=t$ implies that there is a partition $\{1, \ldots, h\}=\bigcup_{i=1}^{t} A_{i}$ such that $u_{i}=u_{j}$ if and only if $1 \leq i, j \leq h$ are in the same A_{l}. Fix such a partition. Then there are n choices for the elements $u_{i}, i \in A_{1}$, then $(n-1)$ possibilities for the elements $u_{i}, i \in A_{2}$ etc. and finally $(n-(t-2))$ choices for the elements $u_{i}, i \in A_{t-1}$. It follows from this that if we have already chosen the elements $u_{i}, i \in \bigcup_{i=1}^{t-1} A_{i}$ then we have at most $t \leq h$ possibilities for the elements $u_{i}, i \in A_{t}$. In order to finish the proof we mention that the number of suitable partitions is $O_{h}(1)$.

Lemma 1.6. For every $a_{1}, a_{2} \in \mathbb{Z}_{n}$ and $h \geq 2$ we have

1. $C_{a_{1}, a_{2}, h, h, h, 0}=\frac{n^{2 h-2}}{(h!)^{22}}+O_{h}\left(n^{2 h-3}\right)$;
2. $C_{a_{1}, a_{2}, h, t, s, k}=O_{h}\left(n^{t+s-k-2}\right)$ for $t \geq s$ and $t>k \geq 0$;
3. $C_{a_{1}, a_{2}, h, s, s, s}=O_{h}\left(n^{s-2}\right)$ for every $2 \leq s<h$.

Proof. Case (1): By the definition of $C_{a_{1}, a_{2}, h, h, h, 0}$

$$
\begin{align*}
2(h!)^{2} C_{a_{1}, a_{2}, h, h, h, 0}=\mid\left\{\left(\left(u_{1}, \ldots, u_{h}\right),\left(v_{1}, \ldots, v_{h}\right)\right):\right. & u_{i} \neq u_{j}, v_{i} \neq v_{j}, u_{i} \neq v_{j}, \\
& \left.\sum_{i=1}^{h} u_{i}=a_{1}, \sum_{i=1}^{h} v_{i}=a_{2}\right\} \mid . \tag{2}
\end{align*}
$$

An upper bound for (2) is $n^{h-1} n^{h-1}$ and a lower bound for (2) is $n(n-1) \ldots(n-(h-$ 3) $)(n-(h-2)-(h-2)-2)(n-h)(n-(h+1)) \ldots(n-h-(h-3))(n-(2 h-2)-$ $(2 h-2)-2)$, because we have $n(n-1) \ldots(n-(h-3))$ choices for u_{1}, \ldots, u_{h-2}. After choosing u_{1}, \ldots, u_{h-2} there are at least $n-(h-2)-(h-2)-2$ possibilities left for u_{h-1} because $u_{h-1} \neq u_{j}$ and $u_{h} \neq u_{j}$ for $1 \leq j \leq h-2$ and $u_{h-1} \neq u_{h}$. After fixing u_{1}, \ldots, u_{h} we have $(n-h) \ldots(n-(2 h-2))$ choices for v_{1}, \ldots, v_{h-2}. Finally, we have at least $n-2 h-(2 h-4)-2$ choices for v_{h-1} because $v_{h-1} \neq u_{j}, v_{h} \neq u_{j}$, for $1 \leq j \leq h$, $v_{h-1} \neq v_{j}, v_{h} \neq v_{j}$ for $1 \leq j \leq h-2$ and $v_{h-1} \neq v_{h}$.

Case (2): Obviously,

$$
\begin{align*}
C_{a_{1}, a_{2}, h, t, s, k} \leq \mid\left\{\left(\left(u_{1}, \ldots, u_{h}\right),\left(v_{1}, \ldots, v_{h}\right)\right):\right. & \sum_{i=1}^{h} u_{i}=a_{1}, \sum_{i=1}^{h} v_{i}=a_{2} \\
& \left.|\mathbf{u}|_{d}=t,|\mathbf{v}|_{d}=s,|\mathbf{u} \cap \mathbf{v}|_{d}=k\right\} \mid \tag{3}
\end{align*}
$$

By the conditions $|u|_{d}=s,|v|_{d}=t$ there are partitions $\{1, \ldots, h\}=\cup_{i=1}^{t} A_{i}=\bigcup_{i=1}^{s} B_{i}$ such that $u_{i}=u_{j}$ if and only if there exists an $1 \leq l \leq t$ such that $i, j \in A_{l}$, and $v_{i}=v_{j}$ if and only if there exists an $1 \leq l \leq s$ such that $i, j \in B_{l}$. We have at most $h n^{s-1}$ choices for $\left(v_{1}, \ldots, v_{h}\right)$ with $\sum_{i=1}^{h} v_{i}=a_{2}$. The condition $|\mathbf{u} \cap \mathbf{v}|_{d}=k$ implies that there are
injections $\chi_{u}:\{1, \ldots, k\} \rightarrow\{1, \ldots, t\}$ and $\chi_{v}:\{1, \ldots, k\} \rightarrow\{1, \ldots, s\}$ such that $u_{i}=v_{j}$ if and only if there exists a $1 \leq l \leq k$ such that $u_{i} \in A_{\chi_{u}(l)}$ and $v_{j} \in B_{\chi_{v}(l)}$. Hence we get that there are at most $h n^{t-k-1}$ choices for the $v_{i} \mathrm{~s}, i \in\{1, \ldots, h\} \backslash \bigcup_{i=1}^{k} B_{\chi_{v}(i)}$. Since the numbers of partitions and injections are $O_{h}(1)$, the proof is completed.

Case (3): Evidently,

$$
\begin{align*}
C_{a_{1}, a_{2}, h, s, s, s} \leq \mid\left\{\left(\left(u_{1}, \ldots, u_{h}\right),\left(v_{1}, \ldots, v_{h}\right)\right):\right. & \sum_{i=1}^{h} u_{i}=a_{1}, \sum_{i=1}^{h} v_{i}=a_{2}, \mathbf{u} \neq \mathbf{v} \\
& \left.|\mathbf{u}|_{d}=s,|\mathbf{v}|_{d}=s,|\mathbf{u} \cap \mathbf{v}|_{d}=s\right\} \mid \tag{4}
\end{align*}
$$

By the conditions $|u|_{d}=s,|v|_{d}=s$ there are partitions $\{1, \ldots, h\}=\bigcup_{i=1}^{s} A_{i}=\bigcup_{i=1}^{s} B_{i}$ such that $u_{i}=u_{j}$ if and only if there exists an $1 \leq l \leq s$ such that $i, j \in A_{l}$ and $v_{i}=v_{j}$ if and only if there exists an $1 \leq m \leq s$ such that $i, j \in B_{m}$. The condition $|\mathbf{u} \cap \mathbf{v}|_{d}=k$ implies that there is a bijection $\chi:\{1, \ldots, s\} \rightarrow\{1, \ldots, s\}$ such that $u_{i}=v_{j}$ if and only if there exists a $1 \leq l \leq s$ such that $i \in A_{l}$ and $j \in B_{\chi(l)}$. Since $\mathbf{u} \neq \mathbf{v}$, therefore there exists a $1 \leq l \leq s$ such that $\left|A_{l}\right| \neq\left|B_{\chi(l)}\right|$. Fix such an l. Then there exists a $1 \leq k \leq s$ such that $\frac{\left|A_{k}\right|}{\left|B_{\chi(k)}\right|} \neq \frac{\left|A_{l}\right|}{\left|B_{\chi(l)}\right|}$, because otherwise $\left|A_{k}\right|=\left|B_{\chi(k)}\right| \frac{\left|A_{l}\right|}{\left|B_{\chi(l)}\right|}$ for every $1 \leq k \leq s$, but

$$
h=\sum_{k=1}^{s}\left|A_{k}\right|=\frac{\left|A_{l}\right|}{\left|B_{\chi(l)}\right|} \sum_{k=1}^{s}\left|B_{\chi(k)}\right|=\frac{\left|A_{l}\right|}{\left|B_{\chi(l)}\right|} h,
$$

which is a contradiction. Fix such a k. Let $\left\{i_{1}, \ldots, i_{s-2}\right\}=\{1, \ldots, s\} \backslash\{k, l\}$. We have $n(n-1) \cdots(n-(s-3))$ choices for the elements $u_{i}, i \in \bigcup_{j=1}^{s-2} A_{i_{j}}$. After fixing the elements $u_{i}, i \in \bigcup_{j=1}^{s-2} A_{i_{j}}$ let $\sum_{j=1}^{s-2} \sum_{m \in A_{i_{j}}} u_{m}=U$ and $\sum_{j=1}^{s-2} \sum_{m \in B_{\chi\left(i_{j}\right)}} v_{m}=V$. Then we need $x, y \in \mathbb{Z}_{n}$ such that $U+\left|A_{k}\right| x+\left|A_{l}\right| y=a_{1}$ and $V+\left|B_{\chi(k)}\right| x+\left|B_{\chi(l)}\right| y=a_{2}$. Hence,

$$
\begin{equation*}
\left(\left|A_{l}\right|\left|B_{\chi(k)}\right|-\left|A_{k}\right|\left|B_{\chi(l)}\right|\right) y=a_{1}\left|B_{\chi(k)}\right|+V\left|A_{k}\right|-U\left|B_{\chi(k)}\right|-a_{2}\left|A_{k}\right| . \tag{5}
\end{equation*}
$$

After fixing $1 \leq k, l \leq s$ and the elements $u_{i}, i \in \bigcup_{j=1}^{s-2} A_{i_{j}}$, the elements U and V are determined, therefore the right-hand side in (3) is unique. Since $0<\left\|A_{l}\right\| B_{\chi(k)} \mid-$ $\mid A_{k}\left\|B_{\chi(l)}\right\| \leq h^{2}$, therefore the number of possible y 's is at most h^{2} and after fixing y we have at most h choices for x. Finally we mention that we have got $O_{h}(1)$ choices for the partitions and bijection.

Proof of Theorem 1. For each unordered, different $u_{1}, \ldots, u_{h} \in \mathbb{Z}_{n}$ and $v_{1}, \ldots, v_{h} \in \mathbb{Z}_{n}$ with $\sum_{i=1}^{h} u_{i}=\sum_{i=1}^{h} v_{i}$. Let $B_{\mathbf{u}, \mathbf{v}}$ be the event that $u_{1}, \ldots, u_{h}, v_{1}, \ldots, v_{h} \in A_{n}$. In the following we suppose that $\sum_{i=1}^{h} u_{i}=\sum_{i=1}^{h} v_{i}$. If we prove $\Delta=\sum_{\{\mathbf{u}, \mathbf{v}\}:|\mathbf{u} \cap \mathbf{v}|_{d}>0} \operatorname{Pr}\left\{B_{\mathbf{u}, \mathbf{v}}\right\}=$
$o(1)$, then by the Janson inequality we have

$$
\begin{aligned}
& \operatorname{Pr}\left\{A_{n} \text { is } B_{h} \text { set }\right\}=(1+o(1)) \prod_{\{\mathbf{u}, \mathbf{v}\}} \operatorname{Pr}\left\{B_{\mathbf{u}, \mathbf{v}}\right\} \\
&=(1+ \\
&=(1))\left(\prod_{\{\mathbf{u}, \mathbf{v}\}:|\mathbf{u}|_{d}=h,|\mathbf{v}|_{d}=h,|\mathbf{u} \cap \mathbf{v}|_{d}=0} \operatorname{Pr}\left\{B_{\mathbf{u}, \mathbf{v}}\right\}\right) \\
& \times\left(\prod_{k=1}^{h-1} \prod_{\{\mathbf{u}, \mathbf{v}\}:|\mathbf{u}|_{d}=h,|\mathbf{v}|_{d}=h,|\mathbf{u} \cap \mathbf{v}|_{d}=k} \operatorname{Pr}\left\{B_{\mathbf{u}, \mathbf{v}}\right\}\right) \\
& \times\left(\prod_{s=2}^{h-1} \prod_{\{\mathbf{u}, \mathbf{v}\}:|\mathbf{u}|_{d}=s,|\mathbf{v}|_{d}=s,|\mathbf{u} \cap \mathbf{v}|_{d}=s} \operatorname{Pr}\left\{B_{\mathbf{u}, \mathbf{v}}\right\}\right) \\
& \times\left(\prod_{s=1}^{h-1} \prod_{k=0}^{s-1} \prod_{\{\mathbf{u}, \mathbf{v}\}:|\mathbf{u}|_{d}=s,|\mathbf{v}|_{d}=s,|\mathbf{u} \cap \mathbf{v}|_{d}=k} \operatorname{Pr}\left\{B_{\mathbf{u}, \mathbf{v}}\right\}\right) \\
& \times\left(\prod_{s=1}^{h-1} \prod_{t=s+1}^{h} \prod_{k=0}^{s} \prod_{\{\mathbf{u}, \mathbf{v}\}:|\mathbf{u}|_{d}=s,|\mathbf{v}|_{d}=t,|\mathbf{u} \cap \mathbf{v}|_{d}=k} \operatorname{Pr}\left\{B_{\mathbf{u}, \mathbf{v}}\right\}\right)
\end{aligned}
$$

where, by Lemma 1.6.1,

$$
\begin{aligned}
P_{1} & =\prod_{a \in \mathbb{Z}_{n}} \prod_{\{\mathbf{u}, \mathbf{v}\}:|\mathbf{u}|_{d}=h,|\mathbf{v}|_{d}=h,|\mathbf{u} \cap \mathbf{v}|_{d}=0, \sum_{i=1}^{h} u_{i} \sum_{i=1}^{h} v_{i}=a} \operatorname{Pr}\left\{B_{\mathbf{u}, \mathbf{v}}\right\} \\
& =\left(1-\frac{c^{2 h}}{n^{2 h-1}}\right)^{\frac{2^{2 h-1}}{2(h!)^{2}}\left(1+O_{h}\left(\frac{1}{n}\right)\right)} \\
& =(1+o(1)) \exp \left(-\frac{c^{2 h}}{2(h!)^{2}}\right)
\end{aligned}
$$

by Lemma 1.6.2,

$$
\begin{aligned}
P_{2} & =\prod_{a \in \mathbb{Z}_{n}} \prod_{k=1}^{h-1} \prod_{\{\mathbf{u}, \mathbf{v}\}:|\mathbf{u}|_{d}=h,|\mathbf{v}|_{d}=h,|\mathbf{u} \cap \mathbf{v}|_{d}=k, \sum_{i=1}^{h} u_{i}=\sum_{i=1}^{h} v_{i}=a} \operatorname{Pr}\left\{B_{\mathbf{u}, \mathbf{v}}\right\} \\
& =\prod_{k=1}^{h-1}\left(1-p_{n}^{2 h-k}\right)^{O_{h}\left(n^{2 h-k-1}\right)} \\
& =\prod_{k=1}^{h-1} \exp \left(\left(p_{n} n\right)^{2 h-k} O_{h}\left(\frac{1}{n}\right)\right) \\
& =\exp (o(1))
\end{aligned}
$$

by Lemma 1.6.3,

$$
\begin{aligned}
P_{3} & =\prod_{a \in \mathbb{Z}_{n}} \prod_{s=2}^{h-1} \prod_{\{\mathbf{u}, \mathbf{v}\}:|\mathbf{u}|_{d}=s,|\mathbf{v}|_{d}=s,|\mathbf{u} \cap \mathbf{v}|_{d}=s, \sum_{i=1}^{h} u_{i}=\sum_{i=1}^{h} v_{i}=a} \operatorname{Pr}\left\{B_{\mathbf{u}, \mathbf{v}}\right\} \\
& =\prod_{s=2}^{h-1}\left(1-p_{n}^{s}\right)^{O_{h}\left(n^{s-1}\right)} \\
& =\prod_{k=1}^{h} \exp \left(\left(-p_{n} n\right)^{k} O_{h}\left(\frac{1}{n}\right)\right) \\
& =\exp (o(1))
\end{aligned}
$$

by Lemma 1.6.3,

$$
\begin{aligned}
P_{4} & =\prod_{a \in \mathbb{Z}_{n}} \prod_{s=1}^{h-1} \prod_{k=0}^{s-1} \prod_{\{\mathbf{u}, \mathbf{v}\}:|\mathbf{u}|_{d}=s,|\mathbf{v}|_{d}=s,|\mathbf{u} \cap \mathbf{v}|_{d}=k, \sum_{i=1}^{h} u_{i}=\sum_{i=1}^{h} v_{i}=a} \operatorname{Pr}\left\{B_{\mathbf{u}, \mathbf{v}}\right\} \\
& =\prod_{s=1}^{h} \prod_{k=0}^{s-1}\left(1-p_{n}^{2 s-k}\right)^{O_{h}\left(n^{2 s-k-1}\right)} \\
& =\prod_{s=1}^{h} \prod_{k=0}^{s-1} \exp \left(-\left(p_{n} n\right)^{2 s-k} O_{h}\left(\frac{1}{n}\right)\right) \\
& =\exp (o(1))
\end{aligned}
$$

and, by Lemma 1.6.2,

$$
\begin{aligned}
P_{5} & =\prod_{a \in \mathbb{Z}_{n}} \prod_{s=1}^{h-1} \prod_{t=s+1}^{h} \prod_{k=0}^{s} \prod_{\{\mathbf{u}, \mathbf{v}\}:|\mathbf{u}|_{d}=s,|\mathbf{v}|_{d}=t,|\mathbf{u} \cap \mathbf{v}|_{d}=k, \sum_{i=1}^{h} u_{i}=\sum_{i=1}^{h} v_{i}=a} \operatorname{Pr}\left\{B_{\mathbf{u}, \mathbf{v}}\right\} \\
& =\prod_{s=1}^{h-1} \prod_{t=s+1}^{h} \prod_{k=0}^{s}\left(1-p_{n}^{s+t-k}\right)^{O\left(n^{s+t-k-1}\right)}=\exp (o(1))
\end{aligned}
$$

Hence, it remains to prove that $\Delta=o(1)$. In order to prove $\Delta=o(1)$ we partition Δ as

$$
\begin{aligned}
\Delta= & \sum_{\{\mathbf{u}, \mathbf{v}\}:|\mathbf{u} \cap \mathbf{v}|_{d}>0} \operatorname{Pr}\left\{B_{\mathbf{u}, \mathbf{v}}\right\} \\
= & \sum_{s=1}^{h-1} \sum_{\{\mathbf{u}, \mathbf{v}\}:|\mathbf{u}|_{d}=s,|\mathbf{v}|_{d}=s,|\mathbf{u} \cap \mathbf{v}|_{d}=s} \operatorname{Pr}\left\{B_{\mathbf{u}, \mathbf{v}}\right\} \\
& +\sum_{s=2}^{h} \sum_{k=1}^{s-1} \sum_{\{\mathbf{u}, \mathbf{v}\}:|\mathbf{u}|_{d}=s,|\mathbf{v}|_{d}=s,|\mathbf{u} \cap \mathbf{v}|_{d}=k} \operatorname{Pr}\left\{B_{\mathbf{u}, \mathbf{v}}\right\} \\
& +\sum_{s=1}^{h-1} \sum_{t=s+1}^{h} \sum_{k=0}^{s} \sum_{\{\mathbf{u}, \mathbf{v}\},|\mathbf{u}|_{d}=s,|\mathbf{v}|_{d}=t,|\mathbf{u} \cap \mathbf{v}|_{d}=k} \operatorname{Pr}\left\{B_{\mathbf{u}, \mathbf{v}}\right\} \\
= & \sum_{1}+\sum_{2}+\sum_{3} .
\end{aligned}
$$

By Lemma 1.6.3,

$$
\begin{aligned}
\sum_{1} & =\sum_{a \in \mathbb{Z}_{n}} \sum_{s=1}^{h-1} \sum_{\{\mathbf{u}, \mathbf{v}\}:|\mathbf{u}|_{d}=s,|\mathbf{v}|_{d}=s,|\mathbf{u} \cap \mathbf{v}|_{d}=s, \sum_{i=1}^{h} u_{i}=\sum_{i=1}^{h} v_{i}=a} \operatorname{Pr}\left\{B_{\mathbf{u}, \mathbf{v}}\right\} \\
& =\sum_{s=2}^{h-1} O_{h}\left(n^{s-1}\right) p_{n}^{s} \\
& =O_{h}\left(\frac{1}{n} \sum_{s=2}^{h-1}\left(p_{n} n\right)^{s}\right)=o(1),
\end{aligned}
$$

by Lemma 1.6.2,

$$
\begin{aligned}
\sum_{2} & =\sum_{a \in \mathbb{Z}_{n}} \sum_{s=2}^{h} \sum_{k=1}^{s-1} \sum_{\{\mathbf{u}, \mathbf{v}\}:|\mathbf{u}|_{d}=s,|\mathbf{v}|_{d}=s,|\mathbf{u} \cap \mathbf{v}|_{d}=k, \sum_{i=1}^{h} u_{i}=\sum_{i=1}^{h} v_{i}=a} \operatorname{Pr}\left\{B_{\mathbf{u}, \mathbf{v}}\right\} \\
& =\sum_{s=2}^{h} \sum_{k=1}^{s-1} O_{h}\left(n^{2 s-k-1}\right) p_{n}^{2 s-k} \\
& =O_{h}\left(\frac{1}{n} \sum_{s=2}^{h} \sum_{k=1}^{s-1}\left(p_{n} n\right)^{2 s-k}\right)=o(1)
\end{aligned}
$$

and by Lemma 1.6.2,

$$
\begin{aligned}
\sum_{3} & =\sum_{a \in \mathbb{Z}_{n}} \sum_{s=1}^{h-1} \sum_{t=s+1}^{h} \sum_{k=0}^{s} \sum_{\{\mathbf{u}, \mathbf{v}\},|\mathbf{u}|_{d}=s,|\mathbf{v}|_{d}=t,|\mathbf{u} \cap \mathbf{v}|_{d}=k, \sum_{i=1}^{h} u_{i}=\sum_{i=1}^{h} v_{i}=a} \operatorname{Pr}\left\{B_{\mathbf{u}, \mathbf{v}}\right\} \\
& =\sum_{s=1}^{h-1} \sum_{t=s+1}^{h} \sum_{k=1}^{s} O_{h}\left(n^{t+s-k-1}\right) p_{n}^{t+s-k} \\
& =O_{h}\left(\frac{1}{n} \sum_{s=1}^{h-1} \sum_{t=s+1}^{h} \sum_{k=1}^{s}\left(p_{n} n\right)^{t+s-k}\right)=o(1)
\end{aligned}
$$

which completes the proof.

Proof of Theorem 2. For a fixed $x \in \mathbb{Z}_{n}$ and $y_{1}, \ldots, y_{h} \in \mathbb{Z}_{n}$ with $\sum_{i=1}^{h} y_{i}=x$ let $\mathbf{y}=$ $\left\{y_{1}, \ldots, y_{h}\right\}$ and let $B_{\mathbf{y}, x}$ be the event $y_{1}, \ldots, y_{h} \in A_{n}$. For a fixed $x \in \mathbb{Z}_{n}$ let $C_{x}=$ $\cap_{\mathbf{y}, \sum_{i=1}^{h} y_{i}=x} \bar{B}_{\mathbf{y}, x}$. Obviously,

$$
\operatorname{Pr}\left\{A_{n} \text { is an h-basis }\right\}=\operatorname{Pr}\left(\cap_{x \in \mathbb{Z}_{n}} \overline{C_{x}}\right)
$$

By Lemma 1.4 it is sufficient to show that for every fixed positive integer r we have

$$
\sum_{\left\{x_{1}, \ldots, x_{r}\right\}: x_{i} \in \mathbb{Z}_{n}, x_{i} \neq x_{j}} \operatorname{Pr}\left\{C_{x_{1}} \cap \cdots \cap C_{x_{r}}\right\} \rightarrow \frac{\exp (-r c)}{r!}
$$

In order to estimate
$\sum_{\left\{x_{1}, \ldots, x_{r}\right\}: x_{i} \in \mathbf{Z}_{n}, x_{i} \neq x_{j}} \operatorname{Pr}\left\{C_{x_{1}} \cap \cdots \cap C_{x_{r}}\right\}=\sum_{\left\{x_{1}, \ldots, x_{r}\right\}: x_{i} \in \mathbf{Z}_{n}, x_{i} \neq x_{j}} \operatorname{Pr}\left\{\cap_{1 \leq i \leq r \cap} \cap_{\mathbf{y}: \sum_{j=1}^{h} y_{j}=x_{i}} \bar{B}_{\mathbf{y}, x_{i}}\right\}$
we use Janson's inequality. Obviously, $\operatorname{Pr}\left\{B_{\mathbf{y}, x_{i}}\right\}=o(1)$. If we prove $\Delta=o(1)$, then by Lemmas 1.3 and 1.5, and the definition of p_{n}

$$
\begin{aligned}
\sum_{\left\{x_{1}, \ldots, x_{r}\right\}: x_{i} \in \mathbf{Z}_{n}, x_{i} \neq x_{j}} & \operatorname{Pr}\left\{\bigcap_{1 \leq i \leq r \cap} \bigcap_{\mathbf{y}: \sum_{j=1}^{h} y_{j}=x_{i}} \bar{B}_{\mathbf{y}, x_{i}}\right\} \\
= & (1+o(1)) \prod_{i=1}^{r} \prod_{\mathbf{y}: \sum_{j=1}^{h} y_{j}=x_{i}} \operatorname{Pr}\left\{\bar{B}_{\mathbf{y}, x_{i}}\right\} \\
= & (1+o(1)) \prod_{i=1}^{r} \prod_{k=1}^{h} \prod_{\mathbf{y}: y_{1}+\cdots+y_{h}=x_{i},|\mathbf{u}|_{d}=k}\left(1-p_{n}^{k}\right) \\
= & (1+o(1)) \prod_{i=1}^{r} \prod_{k=1}^{h-1}\left(\left(1-p_{n}^{k}\right)^{O_{h}\left(n^{k-1}\right)}\right)\left(1-p_{n}^{k}\right)^{\frac{n^{h-1}}{h!}}\left(1+O_{h}\left(\frac{1}{n}\right)\right) \\
= & (1+o(1)) \prod_{i=1}^{r}\left[\left(\exp \left\{-O_{h}\left(\frac{1}{n}\right) \sum_{1 \leq k \leq h-1}\left(p_{n} n\right)^{k}\right\}\right)\right. \\
& \left.\times\left(\exp \left\{-\frac{\left(p_{n} n\right)^{h}}{h!}\left(1+O_{h}\left(p_{n}^{h}\right)\right)\left(\frac{1}{n}+O_{h}\left(\frac{1}{n^{2}}\right)\right)\right\}\right)\right] \\
= & (1+o(1))\left(\exp \left\{-r \frac{h!n \log n\left(1+\frac{c}{\log n}\right)\left(1+O_{h, c}\left(\frac{1}{\log ^{2} n}\right)\right)}{h!} \frac{1}{n}\right\}\right) \\
= & (1+o(1)) \frac{\exp (-c r)}{n^{r}} .
\end{aligned}
$$

Therefore,
$\sum_{\left\{x_{1}, \ldots, x_{r}\right\}, x_{i} \in \mathbb{Z}_{n} x_{i} \neq x_{j}} \operatorname{Pr}\left\{C_{x_{1}} \cap \cdots \cap C_{x_{r}}\right\}=(1+o(1))\binom{n}{r} \frac{\exp (-c r)}{n^{r}}=(1+o(1)) \frac{\exp (-c r)}{r!}$.
Let $\mathbf{u}=\left\{u_{1}, \ldots, u_{h}\right\}$ with $u_{1}+\cdots+u_{h}=x_{i}$ and $\mathbf{v}=\left\{v_{1}, \ldots, v_{h}\right\}$ with $v_{1}+\cdots+v_{h}=x_{j}$.

In order to finish the proof, we separate Δ as

$$
\begin{aligned}
\Delta= & \sum_{1 \leq i, j \leq r} \sum_{\left\{\mathbf{u}, x_{i}\right\},\left\{\mathbf{v}, x_{j}\right\}:|\mathbf{u} \cap \mathbf{v}|_{d}>0} \operatorname{Pr}\left\{B_{\mathbf{u}, x_{i}} \cap B_{\mathbf{v}, x_{j}}\right\} \\
= & \sum_{1 \leq i, j \leq r} \sum_{s=2}^{h-1} \sum_{\left\{\mathbf{u}, x_{i}\right\},\left\{\mathbf{v}, x_{j}\right\}:|\mathbf{u}|_{d}=s,|\mathbf{v}|_{d}=s,|\mathbf{u} \cap \mathbf{v}|_{d}=s} p_{n}^{s} \\
& +\sum_{1 \leq i, j \leq r} \sum_{s=2}^{h} \sum_{k=1}^{s-1} \sum_{\left\{\mathbf{u}, x_{i}\right\},\left\{\mathbf{v}, x_{j}\right\}:|\mathbf{u}|_{d}=s,|\mathbf{v}|_{d}=s,|\mathbf{u} \cap \mathbf{v}|_{d}=k} p_{n}^{2 s-k} \\
& +\sum_{1 \leq i, j \leq r} \sum_{s=1}^{h-1} \sum_{t=s+1}^{h} \sum_{k=1}^{s} \sum_{\left\{\mathbf{u}, x_{i}\right\},\left\{\mathbf{v}, x_{j}\right\}:|\mathbf{u}|_{d}=s,|\mathbf{v}|_{d}=t,\left|\mathbf{u} \cap\left\{v_{1} \ldots, v_{r}\right\}\right|_{d}=k} p_{n}^{s+t-k} \\
= & \sum_{1}+\sum_{2}+\sum_{3}
\end{aligned}
$$

where, by Lemma 1.6.3,

$$
\sum_{1} \leq r^{2} \sum_{s=2}^{h-1} p_{n}^{s} O_{h}\left(n^{s-2}\right)=O_{h, r}\left(\frac{1}{n^{2}} \sum_{s=2}^{h-1}\left(p_{n} n\right)^{s}\right)=o(1)
$$

by Lemma 1.6.2,

$$
\sum_{2} \leq r^{2} \sum_{s=2}^{h} \sum_{k=1}^{s-1} p_{n}^{2 s-k} O_{h}\left(n^{2 s-k-2}\right)=O_{h, r}\left(\frac{1}{n^{2}} \sum_{s=2}^{h} \sum_{k=1}^{s-1}\left(p_{n} n\right)^{2 s-k}\right)=o(1)
$$

and, by Lemma 1.6.2,

$$
\sum_{3} \leq r^{2} \sum_{s=1}^{h-1} \sum_{t=s+1}^{h} \sum_{k=1}^{s} p_{n}^{t+s-k} O_{h}\left(n^{t+s-k}\right)=O_{h, r}\left(\frac{1}{n^{2}} \sum_{s=1}^{h-1} \sum_{t=s+1}^{h} \sum_{k=1}^{s}\left(p_{n} n\right)^{t+s-k}\right)=o(1)
$$

which completes the proof.

References

[1] N. Alon, and J. Spencer, The Probabilistic Method, Wiley-Interscience, Series in Discrete Math. and Optimization, 1992.

[^0]: ${ }^{1}$ Supported by Hungarian National Foundation for Scientific Research, Grant No. T 49693 and 61908.

