# ON THE IRRATIONALITY OF A DIVISOR FUNCTION SERIES 

John B. Friedlander ${ }^{1}$<br>Department of Mathematics, University of Toronto, Toronto, Ontario M5S 3G3, Canada frdlndr@math.toronto.edu<br>Florian Luca ${ }^{2}$<br>Instituto de Matemáticas, Universidad Nacional Autónoma de México, C.P. 58089, Morelia, Michoacán, México<br>fluca@matmor.unam.mx<br>Mihai Stoiciu<br>Department of Mathematics and Statistics, Williams College, Williamstown, MA 01267, USA<br>mstoiciu@williams.edu

Received: 12/8/06, Revised: 3/20/07, Accepted: 6/12/07, Published: 7/3/07


#### Abstract

Here, we show, unconditionally for $k=3$, and on the prime $k$-tuples conjecture for $k \geq 4$, that $\sum_{n=1}^{\infty} \frac{\sigma_{k}(n)}{n!}$ is irrational, where $\sigma_{k}(n)$ denotes the sum of the $k$ th powers of the divisors of $n$.


## 1. Introduction

For a positive integer $n$ put

$$
\sigma_{k}(n)=\sum_{d \mid n} d^{k}
$$

for the sum of the $k$ th powers of the (positive) divisors of $n$. In [4], Erdős and Kac showed that the series

$$
\sum_{n=1}^{\infty} \frac{\sigma_{k}(n)}{n!}
$$

is irrational for both $k=1$ and $k=2$. The problem is mentioned also in [5], wherein it is stated that the method does not seem to extend to $k \geq 3$, and it appears as B14 in [6]. Let

[^0]us quickly give proofs of the irrationality of these series when $k=0,1,2$. Assume that the given series is $A / B$, where $A$ and $B$ are positive integers. Multiplying by $(n-1)$ !, where $n>B$, we get that
$$
\sum_{j=1}^{n-1} \sigma_{k}(j) \frac{(n-1)!}{j!}+\frac{\sigma_{k}(n)}{n}+\frac{\sigma_{k}(n+1)}{n(n+1)}+\sum_{j \geq 2} \frac{\sigma_{k}(n+j)}{n(n+1) \cdots(n+j)}=\frac{A(n-1)!}{B}
$$

The first of the above sums is an integer and the right hand side is also an integer. The second sum is positive and, for $k \leq 2$, its size is

$$
\leq \frac{\sigma_{2}(n+2)}{n(n+1)(n+2)}+\sum_{j \geq 3} \frac{\sigma_{2}(n+j)}{n(n+1) \cdots(n+j)} \ll \frac{1}{n}+\sum_{m \geq n} \frac{1}{m^{2}} \ll \frac{1}{n}
$$

so that this term belongs to the interval $[0, c / n]$, where $c$ is an absolute constant. We shall take $n$ to be a prime $n \equiv 1(\bmod 4)$ such that $(n+1) / 2$ has no prime factor $<y$, where $y$ is a large positive real number. Such primes exist by Dirichlet's theorem on primes in arithmetical progressions. Then

$$
\frac{\sigma_{1}(n+1)}{n(n+1)} \leq \frac{c_{1} \log \log n}{n}
$$

for some constant $c_{1}$, and

$$
\begin{align*}
\frac{5}{4} & \leq \frac{\sigma_{2}(n+1)}{n(n+1)} \leq \frac{5(n+1)}{4 n} \prod_{q \geq y}\left(1+\frac{1}{q^{2}}+\cdots\right) \\
& \leq \frac{5(n+1)}{4 n} \exp \left(\sum_{q \geq y} \frac{1}{q(q-1)}\right)=\frac{5(n+1)}{4 n} e^{O(1 / y)} \\
& =\frac{5}{4}+O\left(\frac{1}{y}\right) \tag{1}
\end{align*}
$$

whenever $n>y$. Thus, when $k=1$, we get that $\sigma_{1}(n) / n=1+1 / n$, and we conclude that there is an integer in the interval $\left[1 / n,\left(c+1+c_{1} \log \log n\right) / n\right]$, while when $k=2$ we get that $\sigma_{2}(n) / n=n+1 / n$, and so there exists an integer in the interval $\left[1 / 4,1 / 4+c / n+c_{2} / y\right]$, where $c_{2}$ is the constant implied by the $O$ symbol in (1). Choosing $n$ (and $y$ ) to be sufficiently large, we get a contradiction in the case $k=1$ (and $k=2$ ), which completes the proof.

In this paper, we make a modest contribution to the problem, proving two results about the irrationality of the above series for $k \geq 3$.

Theorem 1. The sum of the series

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\sigma_{3}(n)}{n!} \tag{2}
\end{equation*}
$$

is irrational.

We recall the statement of the Prime $k$-tuples Conjecture (see $[3,7,9]$ ), which is due to Dickson.

Conjecture 1. For any $k \geq 2$, let $a_{1}, \ldots, a_{k}$ and $b_{1}, \ldots, b_{k}$ be integers with $a_{i}>0$ for each $i=1, \ldots, k$. Suppose that for every prime number $p$ there exists an integer $n$ such that $\prod_{i=1}^{k}\left(a_{i} n+b_{i}\right)$ is not a multiple of $p$. Then there exist infinitely many positive integers $n$ such that $p_{i}=a_{i} n+b_{i}$ is prime for all $i=1, \ldots, k$.

We have the following result for any positive integer $k$.
Theorem 2. The Prime $k$-tuples Conjecture implies that

$$
\sum_{n=1}^{\infty} \frac{\sigma_{k}(n)}{n!}
$$

is irrational.

Throughout this paper, we use the Landau symbols $O$ and $o$ as well as Vinogradov's symbols $>, \ll$ and $\asymp$ with their regular meaning. The constants implied by these symbols depend at most on $k$. We use $p$ and $q$ to denote prime numbers.

Acknowledgements. We thank the referee for a careful reading of the manuscript and for suggestions which improved the quality of this paper. Most of this paper was written during a very enjoyable visit by the first two authors to Williams College; these authors wish to express their thanks to that institution for the hospitality and support.

## 2. Proof of Theorem 1

Our main tool is the following well-known theorem of Chen (see [1], [2]).
Theorem 3. Let a be an integer. There exists $x_{a}$ such that for $x>x_{a}$, the interval $[x / 2, x]$ contains $\gg x a / \varphi(a)^{2}(\log x)^{2}$ prime numbers $p \equiv 1(\bmod a)$ such that $q=(p+1) / 2$ is either a prime or a product of two primes each one of which exceeds $x^{1 / 10}$.

A proof containing the basic ideas for this theorem appears, for example, in Chapter 11 of [8]. Chen actually proved that for large even integers $N$ there are $\gg N /(\log N)^{2}$ primes $p$ such that $N-p$ is either a prime or a product of two large primes. Easy and well-known modifications of Chen's argument yield the above theorem.

To prove our Theorem 1 we assume that the sum of the series shown at (2) is rational and deduce a contradiction. We write it, as we did for $k=0,1$ and 2 as $A / B$, multiply
across by $(n-1)$ ! for some large $n$ (with $n>B$ ), and obtain

$$
\begin{equation*}
\frac{\sigma_{3}(n)}{n}+\frac{\sigma_{3}(n+1)}{n(n+1)}+\frac{\sigma_{3}(n+2)}{n(n+1)(n+2)}+\sum_{j \geq 3} \frac{\sigma_{3}(n+j)}{n(n+1) \cdots(n+k)}=(n-1)!\left(\frac{A}{B}-\sum_{j=1}^{n-1} \frac{\sigma_{k}(j)}{j!}\right) \tag{3}
\end{equation*}
$$

where the right hand side is an integer. In what follows, we shall exploit the above relation. Since $\sigma_{3}(n) \ll n^{3}$, we have

$$
\sum_{j \geq 3} \frac{\sigma_{3}(n+j)}{n(n+1) \cdots(n+j)} \ll \frac{1}{n}+\sum_{m \geq n} \frac{1}{m^{2}} \ll \frac{1}{n}
$$

Furthermore, the sum appearing on the left hand side of formula (3) above is a positive integer. We now let $y$ be a large positive real number which we shall fix later, and take $a=72 \prod_{5 \leq p \leq y} p$. Note that, by Chebyshev's bounds, this means that $y \asymp \log a$. We let $x$ be large compared to $a$ and $m \in[x / 2 a, x / a]$ be such that $p=a m+1$ is prime and $q=(p+1) / 2=(a m+2) / 2$ is either a prime or a product of two primes $q_{1} q_{2}$ each exceeding $x^{1 / 10}$. Choose $n$ to be the prime $n=p$. We then note that

$$
\frac{\sigma_{3}(n)}{n}=n^{2}+\frac{1}{n} .
$$

Furthermore, writing $n+2=a m+3=3 t$, we have that $t$ is coprime to all primes $q \leq y$, and so obtain the inequalities

$$
\begin{aligned}
\frac{28}{27}<\frac{\sigma_{3}(n+2)}{n(n+1)(n+2)} & =\frac{28}{27} \frac{\sigma_{3}(t)}{t^{3}}\left(1+O\left(\frac{1}{n}\right)\right) \\
& <\frac{28}{27} \prod_{p>y}\left(1-\frac{1}{p^{3}}\right)^{-1}\left(1+O\left(\frac{1}{n}\right)\right) \\
& <1+\frac{1}{27}+O\left(\frac{1}{y^{2}}\right)
\end{aligned}
$$

since $y<\sqrt{x}$. Combining this with our estimate for the tail of the series we have, for $n$ a prime as above,

$$
\begin{equation*}
\frac{\sigma_{3}(n)}{n}+\frac{\sigma_{3}(n+2)}{n(n+1)(n+2)}+\sum_{j \geq 3} \frac{\sigma_{3}(n+j)}{n(n+1) \cdots(n+j)}=A_{n}+\frac{1}{27}+O\left(\frac{1}{y^{2}}\right) \tag{4}
\end{equation*}
$$

where $A_{n}$ is a positive integer.
We now consider the remaining term $\sigma_{3}(n+1) /(n(n+1))$.
Assume first that for some large $x$ there is a prime $p=a m+1 \in[x / 2, x]$ such that $q=(p+1) / 2=(a / 2) m+1$ is prime. Then

$$
\begin{aligned}
\frac{\sigma_{3}(n+1)}{n(n+1)} & =\frac{\sigma_{3}(2 q)}{2 q(2 q-1)}=\frac{9\left(q^{3}+1\right)}{2 q(2 q-1)} \\
& =\frac{9}{4} q+\frac{9}{8}+\frac{9 q-4}{8 q(2 q-1)}=B_{n}+\frac{3}{8}+O\left(\frac{1}{n}\right)
\end{aligned}
$$

with some integer $B_{n}$, where we have used the fact that $q=(a / 2) m+1 \equiv 1(\bmod 4)$, because $8 \mid a$. Summing up everything, we find that

$$
\frac{1}{27}+\frac{3}{8}+O\left(\frac{1}{y^{2}}\right) \in \mathbb{Z}
$$

which is impossible if $y$ is chosen to be sufficiently large.

So, we are left with the more interesting part of the problem where $q=q_{1} q_{2}$, where $q_{1}>q_{2}>x^{1 / 10}$ holds for all the $\gg x a / \varphi(a)^{2}(\log x)^{2}$ choices of primes $p=a m+1 \in[x / 2, x]$ guaranteed by Chen's Theorem 3.

We put

$$
M=\left\lfloor\frac{\sigma_{3}(n+1)}{n(n+1)}\right\rfloor=\left\lfloor\frac{9 \sigma_{3}(q)}{2 q(2 q-1)}\right\rfloor .
$$

Note that since $q_{2} \leq q^{1 / 2}$, we have that

$$
\frac{\sigma_{3}(q)}{2 q(2 q-1)}=\frac{q^{3}+q_{1}^{3}+q_{2}^{3}+1}{2 q(2 q-1)}=\frac{q^{3}+q_{1}^{3}+O\left(q^{3 / 2}\right)}{2 q(2 q-1)}=\frac{q^{3}+q_{1}^{3}}{2 q(2 q-1)}+O\left(\frac{1}{q^{1 / 2}}\right) .
$$

Thus, using also the previous calculations of fractional parts (see (4)), we find that for large $x$,

$$
M+\frac{26}{27}-\frac{c_{0}}{y^{2}} \leq \frac{9 q^{3}+9 q_{1}^{3}}{2 q(2 q-1)} \leq M+\frac{26}{27}+\frac{c_{0}}{y^{2}}
$$

holds for all large $x$ with some constant $c_{0}>0$, an inequality which can be rewritten as

$$
\begin{aligned}
& q^{2}\left(4 M+3-9 q+\frac{23}{27}-\frac{2 q(m+O(1))}{q^{2}}-\frac{4 c_{0}}{y^{2}}\right) \leq 9 q_{1}^{3} \\
\leq & q^{2}\left(4 M+3-9 q+\frac{23}{27}-\frac{2 q(m+O(1))}{q^{2}}+\frac{4 c_{0}}{y^{2}}\right) .
\end{aligned}
$$

From this inequality and the fact that $q_{1}<q x^{-1 / 10}$, we find that

$$
\frac{M}{q}=\frac{9\left(q^{3}+q_{1}^{3}\right)}{2 q^{2}(2 q-1)}+O\left(\frac{1}{q}\right)=\frac{9}{4}+O\left(\frac{1}{x^{3 / 10}}\right)
$$

so

$$
-\frac{2 q(M+O(1))}{q^{2}}=-\frac{9}{2}+O\left(\frac{1}{x^{3 / 10}}\right)
$$

Hence, we deduce that

$$
4 M+3-9 q+\frac{23}{27}-\frac{2 q(M+O(1))}{q^{2}}=L+\frac{19}{54}+O\left(\frac{1}{x^{3 / 10}}\right)
$$

holds with some non-negative integer $L$. Thus, for large $x$, provided that $y<x^{3 / 20}$, we get that

$$
\frac{q^{2}}{9}\left(L+\frac{19}{54}-\frac{5 c_{0}}{y^{2}}\right)<q_{1}^{3}<\frac{q^{2}}{9}\left(L+\frac{19}{54}+\frac{5 c_{0}}{y^{2}}\right)
$$

which is equivalent to

$$
\begin{equation*}
\frac{q_{2}^{2}}{9}\left(L+\frac{19}{54}-\frac{5 c_{0}}{y^{2}}\right)<q_{1}<\frac{q_{2}^{2}}{9}\left(L+\frac{19}{54}+\frac{5 c_{0}}{y^{2}}\right) . \tag{5}
\end{equation*}
$$

The above inequalities certainly tell us that $L \geq 0$, provided that $y$ is sufficiently large. Further, the left hand side of the above inequality is $>q_{2}^{2} / 27$ if $y^{2}>220 c_{0}$, so if $y$ satisfies the above inequality and $x$ is large, then $q_{2}^{2} / 27 \leq q_{1} \leq x / q_{2}$, and therefore $q_{2} \leq 3 x^{1 / 3}$. Now fix $q_{2}$. Then the left hand side of the above inequality is $\geq(L+1 / 3) q_{2}^{2} / 27$ and the middle term satisfies $q_{1} \leq x / q_{2}$. Thus, $L+1 / 3 \leq 27 x / q_{2}^{3}$. Since $L \geq 0$ is an integer, it follows that the number of possibilities for $L$ is

$$
\begin{equation*}
1+\left\lfloor\frac{27 x}{q_{2}^{3}}\right\rfloor \leq \frac{81 x}{q_{2}^{3}} \tag{6}
\end{equation*}
$$

We now fix also $L \geq 0$. Then $q_{1}$ is a prime in the interval shown at (5) above such that $q_{1} q_{2} \equiv 1(\bmod a)$ and $2 q_{1} q_{2}-1=p$ is a prime. By the Brun sieve, the number of such primes is

$$
\ll \frac{c_{0} q_{2}^{2}}{y^{2}} \cdot\left(\frac{a}{\varphi(a)^{2}}\right) \cdot \frac{1}{\left(\log \left(10 c_{0} q_{2}^{2} /\left(9 y^{2} a\right)\right)\right)^{2}}
$$

Since $q_{2}>x^{1 / 10}$, it follows that for large $x$ we have $10 c_{0} q_{2}^{2} /\left(9 y^{2} a\right)>x^{1 / 6}$. Thus, the number of possibilities for $q_{1}$ once $q_{2}$ and $L$ are fixed is

$$
\ll \frac{1}{y^{2}} \cdot \frac{a}{\varphi(a)^{2}} \cdot \frac{q_{2}^{2}}{(\log x)^{2}} .
$$

Summing up over all the possibilities for $L$ shown at (6), we get that the total number of possibilities for $q_{1}$ when $q_{2}$ is fixed is

$$
\ll \frac{1}{y^{2}} \cdot \frac{a}{\varphi(a)^{2}} \cdot \frac{x}{(\log x)^{2}} \cdot \frac{1}{q_{2}},
$$

and now summing up the above bound over all primes $q_{2} \in\left[x^{1 / 10}, 3 x^{1 / 3}\right]$, we get that the total number of possibilities for $p$ is

$$
\begin{equation*}
\ll \frac{1}{y^{2}} \frac{a}{\varphi(a)^{2}} \frac{x}{(\log x)^{2}} \sum_{x^{1 / 10} \leq q_{2} \leq 3 x^{1 / 3}} \frac{1}{q_{2}} \ll \frac{1}{y^{2}} \frac{a}{\varphi(a)^{2}} \frac{x}{(\log x)^{2}}, \tag{7}
\end{equation*}
$$

where the fact that the last sum above is $O(1)$ follows from Mertens's estimate for the summatory function of the reciprocal of the primes. Let $c_{1}$ be the constant implied in the Vinogradov symbol from Chen's Theorem 3 and $c_{2}$ be the constant implied in the last Vinogradov symbol in (7). Comparing the estimates for the number of primes $p$ under scrutiny we get

$$
\frac{c_{1} a x}{\varphi(a)^{2}(\log x)^{2}} \leq \frac{c_{2} a x}{\varphi(a)^{2} y^{2}(\log x)^{2}}
$$

leading to $y^{2}<c_{3}$, where $c_{3}=c_{2} / c_{1}$. Choosing $y$ larger than this we complete the proof of Theorem 1.

## 3. Proof of Theorem 2

Let $k \geq 4$. For $i=1, \ldots, k$ we let $Q_{i}(X), R_{i}(X) \in \mathbb{Z}[X]$ be the polynomials given by the division algorithm:

$$
(X+i)^{k}=Q_{i}(X)(X+1) \cdots(X+i)+R_{i}(X) \quad i=1, \ldots, k
$$

where $\operatorname{deg} Q_{i}(X)=k-i$ and $\operatorname{deg} R_{i}(X) \leq i-1$. Note that when $i=k$ we have that $Q_{k}(X)=1$. For each of those $i=1, \ldots, k$ for which $Q_{i}(-i) \neq 0$ choose distinct primes $p_{i}>k$ such that $p_{i} \nmid \sigma_{k}(i) Q_{i}(-i)$. (For any other $i$, for notational purposes, take $p_{i}=1$.) As we have seen, $Q_{k}(-k)=1 \neq 0$, so that $p_{k} \nmid \sigma_{k}(k) Q_{k}(-k)$ can be arranged simply by choosing $p_{k}>\sigma_{k}(k)$.

Let $P=\prod_{i=1}^{k} p_{i}$ and let $m$ be a positive integer such that

$$
\frac{(k!)^{2}}{i} m+1 \equiv p_{i} \quad\left(\bmod p_{i}^{2}\right) \quad i=1, \ldots, k
$$

By the Chinese Remainder Theorem, there are infinitely many such positive integers $m$ and they form the arithmetic progression $m_{0}\left(\bmod P^{2}\right)$, where $m_{0}$ is the first positive integer in this progression. Given such an $m$, we choose $n=(k!)^{2} m$ and write $m=m_{0}+\ell P^{2}$ with some nonnegative integer $\ell$. Then

$$
n+i=i\left(\frac{(k!)^{2}}{i} m+1\right)=i p_{i}\left(\frac{(k!)^{2}}{i} \frac{P^{2}}{p_{i}} \ell+\frac{(k!)^{2} m_{0} / i+1}{p_{i}}\right) .
$$

Put

$$
A_{i}=\frac{(k!)^{2}}{i} \frac{P^{2}}{p_{i}} \quad \text { and } \quad B_{i}=\frac{(k!)^{2} m_{0} / i+1}{p_{i}}
$$

for $i=1, \ldots, k$.
One checks easily that we can apply the Prime $k$-tuples Conjecture 1 to the linear polynomials $A_{i} \ell+B_{i}$. Indeed, the prime numbers dividing $A_{i}$ are exactly the primes $p \leq k$ together with the primes $p_{i}$. Since $B_{i} \mid(k!)^{2} m_{0} / i+1$, we see that $B_{i}$ is coprime to all primes $p \leq k$. Further, $B_{i} \equiv 1\left(\bmod p_{i}\right)$ from the way $m_{0}$ was chosen. To see that $B_{i}$ is coprime to $p_{j}$ if $j \neq i$ assume otherwise. Then $p_{j} \mid\left((k!)^{2} / j\right) m_{0}+1$ and $p_{j}\left|B_{i}\right|\left((k!)^{2} / i\right) m_{0}+1$. Hence, $p_{j} \mid(k!)^{2} m_{0}+j$ and $p_{j} \mid(k!)^{2} m_{0}+i$, so $p_{j} \mid(j-i)$, but this is false because $p_{j}>k$. Thus, the conditions for the applicability of the Prime $k$-tuples Conjecture 1 are fulfilled and we can let $\ell$ be large and such that $A_{i} \ell+B_{i}=q_{i}$ are all primes for $i=1, \ldots, k$. Put $a_{i}=i p_{i}$ and note that if $m=m_{0}+\ell P^{2}$, then $n+i=a_{i} q_{i}$ for $i=1, \ldots, k$.

Now assume that the series

$$
\sum_{j=1}^{\infty} \frac{\sigma_{k}(j)}{j!}=\frac{A}{B}
$$

with $A$ and $B$ coprime integers. Suppose $n$ is sufficiently large, and in particular $n>B$. Multiplying across by $n$ !, we get

$$
\begin{equation*}
\sum_{j \leq n} \sigma_{k}(j) \frac{n!}{j!}+\sum_{i=1}^{k} \frac{\sigma_{k}(n+i)}{(n+1) \cdots(n+i)}+\sum_{j \geq k+1} \frac{\sigma_{k}(n+j)}{(n+1) \cdots(n+j)} \in \mathbb{Z} \tag{8}
\end{equation*}
$$

The first sum above is an integer, while the last sum is positive and, since $\sigma_{k}(n) \ll n^{k}$,

$$
\begin{aligned}
\sum_{j \geq k+1} \frac{\sigma_{k}(n+j)}{(n+1) \cdots(n+j)} & =\frac{\sigma_{k}(n+k+1)}{(n+1) \cdots(n+k+1)}+\sum_{j \geq k+2} \frac{\sigma_{k}(n+j)}{(n+1) \cdots(n+j)} \\
& \ll \frac{1}{n}+\sum_{j \geq k+2} \frac{1}{(n+j)^{2}} \ll \frac{1}{n}
\end{aligned}
$$

As for the intermediate terms, since $q_{i}$ is prime we have

$$
\begin{aligned}
\frac{\sigma_{k}(n+i)}{(n+1) \cdots(n+i)} & =\frac{\sigma_{k}\left(a_{i}\right)\left(q_{i}^{k}+1\right)}{(n+1) \cdots(n+i)} \\
& =\frac{\sigma_{k}\left(a_{i}\right)}{a_{i}^{k}}\left(\frac{(n+i)^{k}+a_{i}^{k}}{(n+1) \cdots(n+i)}\right) \\
& =\frac{\sigma_{k}\left(a_{i}\right)}{a_{i}^{k}}\left(Q_{i}(n)+\frac{R_{i}(n)+a_{i}^{k}}{(n+1) \cdots(n+i)}\right) \\
& =\frac{\sigma_{k}\left(a_{i}\right)}{a_{i}^{k}} Q_{i}(n)+O\left(\frac{1}{n}\right)
\end{aligned}
$$

where for the above error term we used the fact that $\operatorname{deg} R_{i} \leq i-1$. Since $n \equiv-i\left(\bmod p_{i}\right)$, we get that $Q_{i}(n) \equiv Q_{i}(-i)\left(\bmod p_{i}\right)$ so that $Q_{i}(n)=Q_{i}(-i)+p_{i} \ell_{i}(n)$, for some integers $\ell_{i}(n)$. Thus,

$$
\frac{\sigma_{k}(n+i)}{(n+1) \cdots(n+i)}=\frac{\sigma_{k}\left(i p_{i}\right)}{\left(i p_{i}\right)^{k}}\left(Q_{i}(-i)+\ell_{i}(n) p_{i}\right)+O\left(\frac{1}{n}\right) .
$$

We add everything together, multiply formula (8) by $(k!)^{k} P^{k-1}$ and get

$$
\sum_{i=1}^{k} P_{i}^{k-1} \sigma_{k}\left(i p_{i}\right) \frac{(k!)^{k}}{i^{k}} \frac{1}{p_{i}}\left(Q_{i}(-i)+p_{i} \ell_{i}(n)\right)+O\left(\frac{1}{n}\right) \in \mathbb{Z}
$$

where

$$
P_{i}=P p_{i}^{-1}=\prod_{\substack{1 \leq j \leq k \\ j \neq i}} p_{j}
$$

From this it follows that

$$
\sum_{i=1}^{k} P_{i}^{k-1} \frac{(k!)^{k}}{i^{k}} \frac{\sigma_{k}\left(i p_{i}\right) Q_{i}(-i)}{p_{i}}+O\left(\frac{1}{n}\right) \in \mathbb{Z}
$$

At this moment, we observe that the sum on the left does not depend on $n$ and so

$$
\sum_{1 \leq i \leq k} P_{i}^{k-1} \frac{(k!)^{k}}{i^{k}} \frac{\sigma_{k}\left(i p_{i}\right)}{p_{i}} Q_{i}(-i) \in \mathbb{Z}
$$

Using also the fact that $\sigma_{k}\left(i p_{i}\right)=\sigma_{k}(i) \sigma_{k}\left(p_{i}\right)=\sigma_{k}(i)\left(p_{i}^{k}+1\right)$, we get that the above relation implies

$$
\sum_{1 \leq i \leq k} P_{i}^{k-1} \frac{(k!)^{k}}{i^{k}} \frac{\sigma_{k}(i)}{p_{i}} Q_{i}(-i) \in \mathbb{Z}
$$

This is a non-empty (since $Q_{k}(-k)=1$ ) sum of non-zero rational numbers whose reduced denominators are distinct primes. Thus, the above sum cannot be an integer. The proof of Theorem 2 is complete.

Note Added: March 2007. Shortly after this paper was submitted, we learned about the recent appearance of the paper [10], where the same two results as the present ones have been obtained. The proof of the case $k=3$ in [10] also uses sieve methods but is rather different, whereas the conditional proof for larger $k$ 's is similar to ours. We thank Professor Igor Shparlinski for pointing out this reference to us.

## References

[1] J. R. Chen, 'On the representation of a large even integer as a sum of a prime and a product of at most two primes', Kexue Tongbao 17 (1966), 385-386.
[2] J. R. Chen, 'On the representation of a large even integer as a sum of a prime and a product of at most two primes', Sci. Sinica 16 (1973), 157-176.
[3] L. E. Dickson, 'A new extension of Dirichlet's theorem on prime numbers', Messenger of Math., 33 (1904), 155-161.
[4] P. Erdős and M. Kac, 'Problem 4518', Amer. Math. Monthly 61 (1954), 264.
[5] P. Erdős, 'On the irrationality of certain series: problems and results', in New advances in transcendence theory (Durham, 1986), 102-109, Cambridge Univ. Press, Cambridge, 1988.
[6] R. K. Guy, Unsolved Problems in Number Theory, Springer, 2004.
[7] G.H. Hardy and J.E. Littlewood, 'Some problems on partitio numerorum III. On the expression of a number as a sum of primes', Acta Math., 44 (1923), 1-70.
[8] H. Halberstam and H.-E. Rickert, Sieve methods, Academic Press, London, 1974.
[9] A. Schinzel and W. Sierpiński, 'Sur certaines hypothèses concernant les nombres premiers', Acta Arith., 4 (1958), 185-208; Erratum, Acta Arith., 5 (1959), 259.
[10] J.-C. Schlage-Puchta, 'The irrationality of a number theoretical series', The Ramanujan J. 12 (2006), 455-460.


[^0]:    ${ }^{1}$ Research of J. F.was supported in part by NSERC grant A5123.
    ${ }^{2}$ Research of F. L. was supported in part by grants SEP-CONACYT 46755 and a Guggenheim Fellowship.

