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Abstract

Let n denote a positive integer relatively prime to 10. Let the period of 1/n be a · b with
b > 1. Break the repeating block of a · b digits up into b sub blocks, each of length a,
and let B(n, a, b) denote the sum of these b blocks. In 1836, E. Midy proved that if p is a
prime greater than 5, and the period of 1/p is 2 · a, then B(p, a, 2) = 10a − 1. In 2004, B.
Ginsberg [2] showed that if p is a prime greater than 5, and the period of 1/p is 3 · a, then
B(p, a, 3) = 10a − 1. In 2005, A. Gupta and B. Sury [3] showed that if p is a prime greater
than 5, and the period of 1/p is a ·b with b > 1, then B(p, a, b) = k · (10a−1). (The results of
Midy and Ginsberg follow quickly from this). In this paper we examine the case in which p is
not necessarily prime. Define two positive integers u and v to be period compatible provided
that there exist odd integers r and t and a positive integer s such that the periods of 1/u
and 1/v are of the form r · 2s and t · 2s respectively. Let n be a positive integer relatively
prime to 10 and let the period of 1/n be a · b with b > 1. The following are proved:

(i) If n is relatively prime to 10a − 1, then B(n, a, b) = k · (10a − 1).
(ii) If for every prime factor p of n, the integer a is not a multiple of the period
of 1/p, then B(n, a, b) = k · (10a − 1).
(iii) If b = 2, then B(n, a, 2) = 10a − 1 if, and only if, every two prime factors of
n are period compatible.

Introduction

According to Dickson [1], Midy’s Theorem was first given in [5]. The theorem, without
reference to [5], is also proven in both [4] and [6].

Let n denote a positive integer that is relatively prime to 10, and let B(n) denote the
smallest repeating block of digits in the decimal expansion of 1/n. For example, B(7) =
142857, and B(13) = 076923. By the period of 1/n we mean the number of digits in B(n),
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that is, the order of 10 (mod n). A simple computation establishes the following identity,
which we label for future reference:

(1) n · B(n) = 10k − 1, where k is the order of 10 (mod n).

If k = a · b, then we can split B(n) up into b sub-blocks, each of length a. The ith such
sub-block will be denoted by Bi(n, a, b). For example,

B(31) = 032258064516129 B1(31, 5, 3) = 03225
B2(31, 5, 3) = 80645 B3(31, 5, 3) = 16129.

Finally, let B(n, a, b) denote the sum of the numbers Bi(n, a, b) for 1 ≤ i ≤ b. In our example,

B(31, 5, 3) = 03225 + 80645 + 16129 = 99999.

Continuing to let k denote the order of 10 (mod n) and letting k = ab, define N(a, b) by

(2) N(a, b) = (10k − 1)/(10a − 1).

Note that N(a, b) = 10k−a + 10k−2a + . . . + 10a + 1. Combining Equations (1) and (2), we
get the following simple relationship:

(3) (10a − 1) · N(a, b) = n · B(n).

Let n be a positive integer that is relatively prime to 10. Suppose that k is the order of
10 (mod n) and that k = a · b with b > 1. We say that n has the 9’s property with respect to
b provided that B(n, a, b) is a multiple of 10a − 1. In case B(n, a, b) = 10a − 1, we say that
n has the 9’s property. We abbreviate the phrase ‘ ‘9’s property with respect to b” by ‘ ‘9’s
property[b].”

Theorem 1 below characterizes those integers n such that n has the 9’s property[b]. From
this we establish in Theorem 2 that if p is a prime greater than 5 and the length of the period
B(p) is a · b with b > 1, then p has the 9’s property[b].

In Section 3 we generalize Midy’s Theorem in another way by giving a characterization
of those integers n that have the 9’s property[2], (Theorem 8).

1. The First Generalization

The following theorem is useful in proving the first generalization of Midy’s Theorem.

Theorem 1 Let n be a positive integer relatively prime to 10, and k = a · b be the order
of 10 (mod n). The sum B(n, a, b) is divisible by 10a − 1 if, and only if, n divides N(a, b).
That is, n has the 9’s property[b] if, and only if, n divides N(a, b).

Proof. The period B(n) in the decimal expansion of 1/n can be represented as follows:

B(n) = B1(n, a, b) · 10k−a + B2(n, a, b) · 10k−2a + · · · + Bb−1(n, a, b) · 10a + Bb(n, a, b).
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From this we get the following equation:

(4) B(n) = B1(n, a, b) · [10k−a − 1] + B2(n, a, b) · [10k−2a − 1] + · · · + Bb−1(n, a, b) ·
[10a − 1] + B(n, a, b).

Since 10a − 1 divides 10k−ia − 1 for all i satisfying 1 ≤ i < b, from Equation (4) we derive
the following:

(5) 10a − 1 divides B(n) if, and only if, 10a − 1 divides B(n, a, b).

(Statement (5) is simply “casting out 9’s” in base 10a).

It is now easy to finish the proof. Assume that 10a − 1 divides B(n, a, b). Then by
Statement (5) it follows that 10a − 1 must divide B(n). But then 10a − 1 factors out of both
sides of Equation (3) and so it follows from Equation (3) that n divides N(a, b). Conversely,
assume that n divides N(a, b). Then from Equation (3) it follows that 10a − 1 divides B(n).
But then 10a − 1 divides B(n, a, b) by Statement (5), completing the proof. !

The following, the first generalization of Midy’s Theorem, follows immediately from Equa-
tion (3) and Theorem 1.

Theorem 2 Let n be a positive integer relatively prime to 10 and let k = a · b be the order
of n with b > 1. If n is relatively prime to 10a − 1, then B(n, a, b) is a multiple of 10a − 1.
In particular, if n is a prime number greater than 5, then n has the 9’s property[b].

Here is another easy consequence of Theorem 1.

Theorem 3 Let n be a positive integer relatively prime to 10 and k = a · b be the period of
1/n with b > 1. If for every prime factor p of n, the integer a is not a multiple of the period
of 1/p, then n has the 9’s property [b].

Proof. Suppose that for every prime factor p of n we have that the integer a is not a multiple
of the order of 10 (mod p). Then p, being prime, is relatively prime to 10a − 1. But n
divides 10k −1 and so p also divides 10k −1. But then by Equation (2) and the fact that p is
relatively prime to 10a − 1, we have that p is a divisor of N(a, b). Let i be the multiplicity of
the prime p as a factor of n. Then pi is relatively prime to 10a − 1, and the same argument
we just used to show that p is a divisor of N(a, b) also shows that pi is a divisor of N(a, b).
Since p was an arbitrary prime factor of n, it follows that n is a divisor of N(a, b). But
then by Theorem 1 it follows that B(n, a, b) is a multiple of 10a − 1, that is, n has the 9’s
property[b]. !

The following example illustrates Theorem 3.

Example 4 Let n = 217 = 7 · 31. The order of 10 (mod 7) is 6, the order of 10 (mod 31) is
15, and the order of 10 (mod 217) is 30. In particular, B(217) is given by

B(217) = 004608294930875576036866359447.



INTEGERS:ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7 (2007),#A03 4

The following table indicates whether B(217, a, b) is a multiple of 10a − 1 or not. Whenever
the integer a is neither a multiple of 6 nor of 15, then Theorem 3 guarantees that the 9’s
property[b] will hold. Therefore, all the cases in the following table, except those for a = 6
and a = 15, are guaranteed by the theorem.

There exists q such that
a b B(217, a, b) = q · (10a − 1)
1 30 yes
2 15 yes
3 10 yes
5 6 yes
6 5 no
10 3 yes
15 2 no

2. The Second Generalization

The second generalization of Midy’s Theorem returns to the restriction on the order of 10
(mod n) being even, but relaxes the condition that n be prime. In fact, under the condition
that the order of 10 (mod n) be even and n is relatively prime to 10, the theorem characterizes
those integers n such that B(n, a, 2) = 10a − 1.

Throughout this section n is relatively prime to 10, and the period of 1/n is k = 2a. The
block B(n) is divided into two sub-blocks, so b = 2 and a = k/2. Also in this section, by 9’s
property we mean 9’s property with respect to 2.

Suppose that n has the 9’s property. By Theorem 1, n divides 10a + 1. If p is a prime
factor of n, then p also divides 10a + 1. But then p clearly cannot divide 10a − 1. It follows
that n is relatively prime to 10a − 1. It is easy to see that a is the smallest positive integer
j such that n divides 10j + 1. What are the values of j such that n divides 10j + 1? It is
not difficult to prove that this happens exactly when j = a · (2i + 1) for i = 0, 1, 2, . . . .

Conversely, suppose that n divides 10j + 1 for some positive integer j. Then there must
be a smallest such positive integer j, which we denote by α. Let κ = 2 · α. Then n divides
(10α + 1) · (10α − 1), that is, n divides 10κ − 1. If there were a smaller positive even integer
i such that n divides 10i − 1, then the minimal property of α would be violated. If there
were a smaller such integer i that were odd, then the fact that n has even order would be
violated. Therefore, κ must be the order of 10 (mod n). Now by Theorem 1 it follows that
n has the 9’s property, and we have derived the following old theorem of Schölmilch:

Theorem 5 (Schölmilch [7]) Let n be a positive integer relatively prime to 10. The number
n has the 9’s property if and only if there exists some integer j such that n divides 10j + 1.



INTEGERS:ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7 (2007),#A03 5

Theorem 5, like Theorem 1 above, is limited as a test to see if a number has the 9’s prop-
erty. Nevertheless, it will play an important role in the development of a more satisfactory
characterization of those integers that have the 9’s property. The first task is to show that
if n has the 9’s property, then every power of n also has the 9’s property.

Lemma 6 If n is any number that has the 9’s property, then ni also has the 9’s property
for all positive integers i.

Proof. Let the order of n be k = 2 ·a. Then n divides 10a +1. Moreover, for any odd positive
integer j, 10a + 1 divides the quantity 10ja + 1. In fact, we have

(i) 10ja + 1 = (10a + 1) · (10(j−1)a − 10(j−2)a + 10(j−3)a − . . . − 10a + 1)

For simplicity, let the right hand factor on the right hand side of Equation (i) be denoted by
E(j). A direct calculation shows that for a given odd j, there exists a quantity Q(j) such
that

(ii) E(j) = Q(j) · (10a + 1) + j.

Choose j = 10a + 1 in Equation (ii). Then, for this value of j, Equation (ii) shows that
E(j) is divisible by 10a + 1. But then by Equation (i) we see that (10a + 1)2 divides 10t + 1
when we choose t to be the integer a · (10a + 1). But n divides 10a + 1 whence n2 divides
10t +1. Therefore, by Theorem 3 we see that n2 has the 9’s property. Applying this result to
n2 shows that n4 has the 9’s property and, by iteration we see that nq has the 9’s property
whenever q is any power of 2. Given any integer i, there exists an integer u that is a power
of 2 with i ≤ u. Since nu divides 10v + 1 for some integer v and ni divides nu, necessarily ni

also divides 10v + 1. It follows by Theorem 3 that ni has the 9’s property, completing the
proof. !

The integer t in the proof of Lemma 6 is much larger than the smallest integer that
would yield the desired result that n2 has the 9’s property. For example, if n = 7, then a = 3
and the proof produces the value 3003 for the integer t. That is, the square 49 of 7 divides
103003 + 1. But the order of 49 is 42, so 49 also divides 1021 + 1.

Lemma 6 will be used in the proof of Theorem 8 below, which characterizes those numbers
n that have the 9’s property in terms of a certain relationship between the prime factors of
n. What Lemma 6 essentially allows us to do is to concentrate on the relationship between
prime factors of n without having to be concerned with their multiplicities.

The number 1507 does not have the 9’s property. Since the order of 1507 is only 8, it is
an easy example with which to work. An analysis of why 1507 fails to have the 9’s property
is instructive and motivates the proof of Theorem 8.

We have B(1507) = 00066357, that is, the period of 1/1507 is 8. Therefore, by Theorem
1, 1507 has the 9’s property if and only if 1507 divides 10001. It doesn’t, of course, but why
it doesn’t is revealing. The prime factors of 1507 are 11 and 137. Now 11 divides 101 + 1
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and 137 divides 104 + 1. Observe that 11 divides 10u + 1 for u = 1, 3, 5, . . ., and that 137
divides 10v +1 for v = 4, 12, 20, . . . . The set of u’s and the set of v’s are disjoint. Therefore,
whenever 11 divides a number 10t + 1, 137 cannot divide it, and vice versa. It follows that
their product, 1507, can never divide a number of the form 10t + 1, so by Theorem 5 the
number 1507 cannot have the 9’s property. This single example actually captures the whole
essence of the 9’s property for an arbitrary integer n.

We previously discussed the result contained in the following lemma, but we formally
state it here since it is important in the proof of Theorem 8 below.

Lemma 7 Let n be a positive integer and k = 2 · a be the order of 10(mod n). Then, n
divides 10t + 1 if, and only if, t = a · (2i + 1) for all i = 0, 1, 2, . . . .

We will now prove the second generalization of Midy’s Theorem, an internal characteri-
zation of those integers that have the 9’s property.

Theorem 8 Given a positive integer n, let the prime factors of n be denoted by pi for
1 ≤ i ≤ r. For each i, let h(i) denote the order of 10 (mod pi). Then n has the 9’s property
if, and only if, the following condition is satisfied:

# There exists a positive integer s such that for each integer i with 1 ≤ i ≤ r,
h(i) = 2s · q(i) where q(i) is an odd integer. [The q(i)’s may be different for
different i’s, but for each i the factor 2s is the same.]

Proof. Let p denote any prime number that has the 9’s property. Suppose that the order of
10 (mod p) is equal to 2 · j, that is, the shortest period length in the decimal expansion of
1/p is 2 · j. Then, by Lemma 7, p divides 10k + 1 precisely when k is a positive integer of
the form k = (2 · i − 1) · j for i = 1, 2, 3, . . . .

To prove the ‘only if’ part of the theorem, assume that Condition # does not hold. One
possibility is that s = 0 for some i whence h(i) = q(i), that is, h(i) is odd. But then the
prime factor pi does not have the 9’s property. In this case n cannot have the 9’s property
either. For if it did, then n would divide some number 10k+1. But then every prime factor of
n would also divide this number, and so every prime factor would also have the 9’s property.
On the other hand, suppose that # fails to hold because the number n has prime factors p
and q such that the order of 10 (mod p) is 2 · (2a ·u) and the order of 10 (mod q) is 2 · (2b · v),
where a and b are non-negative integers that are not equal and u and v are odd integers.
Suppose that n does have the 9’s property. Then n must divide some number 10m + 1. Let
α = 2a · u. Then p divides 10α + 1, and α is the smallest such exponent for 10 for which
this is true. Likewise, q divides 10β + 1 where β = 2b · v, and β is the smallest exponent for
which this is true. But p and q both divide 10m + 1. Therefore, by Lemma 7,

m = (2a · u) · (2x + 1) for some x = 1, 2, 3, . . . ,

and
m = (2b · v) · (2y + 1) for some y = 1, 2, 3, . . . .
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Now u and v are both odd integers, and therefore the multiplicity of the prime number 2 in
the factorization of m must be the number a by one of the indented equations above and
must be the number b by the other equation. But this is impossible since a #= b. Thus, if
Condition # fails to hold, then n cannot have the 9’s property.

To prove the ‘if’ part of the theorem, assume that Condition # holds. For each integer
i with 1 ≤ i ≤ r, let d(i) = h(i)/2. Also, for each i let m(i) denote the multiplicity of the
prime pi in the factorization of the number n, that is, the number of times that the prime
occurs as a factor of n. From Lemma 6 we know that pm(i)

i has the 9’s property. But from the

proof of Lemma 6 we also know that pm(i)
i divides the number 10t(i) + 1 where the exponent

t(i) is an odd multiple of d(i) for all elements i in the set {1, 2, . . . r}. By Condition #, for
each i we have d(i) = 2s−1 · q(i). Now each number q(i) is odd so the product q of all the
numbers q(i) is also odd. Let t denote the product of all the numbers t(i) for i in the set
{1, 2, . . . r}. Then t · q is an odd number that is a multiple of every q(i) and every t(i). Let

e = t · q · 2s−1. Then for every i we have that pm(i)
i is a divisor of 10e + 1. But the numbers

pm(i)
i are relatively prime to one another for different values of i and so their product, namely

n, is also a divisor of 10e +1. It follows by Theorem 5 that n has the 9’s property, completing
the proof. !

Example 9 The order of 10 (mod 49) is 42 = 6 · 7. However, 49 does not have the 9’s
property[7]. Therefore, if p is a prime greater than 5, p2 does not necessarily have the 9’s
property with respect to all divisors b > 1 of the order of 10 (mod p2), unlike the prime p.
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